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Background: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), as a common chronic liver condition globally, is 
experiencing an increasing incidence rate which poses significant health risks. Despite this, the detailed mechanisms underlying the disease’s 
onset and progression remain poorly understood. In this study, we aim to identify effective diagnostic biomarkers for MASLD using 
microarray data combined with machine learning techniques, which will aid in further understanding the pathogenesis of MASLD.
Methods: We collected six datasets from the Gene Expression Omnibus (GEO) database, using five of them as training sets and one 
as a validation set. We employed three machine learning methods—LASSO, SVM, and Random Forest (RF)—to identify hub genes 
associated with MASLD. These genes were further validated using the external dataset GSE164760. Additionally, functional 
enrichment analysis, immune infiltration analysis, and immune function analysis were conducted. A TF-miRNA-mRNA network 
was constructed, and single-cell RNA sequencing was used to determine the distribution of key genes within key cell clusters. Finally, 
the expression of the key genes was further validated using the palmitic acid-induced AML-12 cell line and the MCD mouse model.
Results: In this study, through differential gene expression (DEGs) analysis and machine learning techniques, we successfully identified 
10 hub genes. Among these, the key gene EGR1 was validated and screened using an external dataset, with an area under the curve (AUC) of 
0.882. Enrichment analyses and immune infiltration assessments revealed multiple pathways involving EGR1 in the pathogenesis and 
progression of MASLD, showing significant correlations with various immune cells. Furthermore, additional cellular experiments and 
animal model validations confirmed that the expression trends of EGR1 are highly consistent with our analytical findings.
Conclusion: Our research has confirmed EGR1 as a key gene in MASLD, providing novel insights into the disease’s pathogenesis 
and identifying new therapeutic targets for its treatment.
Keywords: metabolic dysfunction-associated steatotic liver disease, immune infiltration, machine learning, TF-miRNA-mRNA 
network, EGR1

Introduction
Metabolic dysfunction-associated liver disease (MASLD) is the most prevalent chronic liver condition globally, primarily 
characterized by excessive fat accumulation within the liver. Unlike non-alcoholic fatty liver disease (NAFLD), MASLD 
places greater emphasis on metabolic dysfunction.1 The diagnostic criteria for MASLD include the presence of hepatic 
steatosis confirmed by imaging or biopsy, along with at least one cardiometabolic risk factor, in the absence of other 
etiologies that could cause fatty liver changes.2 MASLD can progress from simple steatosis to more severe forms such as 
metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis, and MASH-related hepatocellular 
carcinoma.3 Approximately 32.4% of the global population is affected by MASLD. Despite its high prevalence and 
the substantial burden it poses on global health, there remains a significant gap in effective treatment options.4,5
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The pathogenesis of MASLD is highly complex, as it is a metabolic disorder triggered by multiple factors. The prevailing 
theory is the “multiple parallel hits hypothesis”, which posits that the development of MASLD involves the simultaneous 
impact of various factors, including insulin resistance, obesity, adipose tissue dysfunction, mitochondrial dysfunction, and 
endoplasmic reticulum stress.6,7 Research indicates a close relationship between the gut microbiota and MASLD, with gut 
microbial metabolites forming a gut-liver axis. Strategies to improve gut microbiota can effectively correct the dysbiosis 
associated with MASLD and contribute to improved prognosis and insulin resistance recovery.8 Additionally, studies suggest 
that interactions between genetic and epigenetic factors also determine individual susceptibility to MASLD.9

Furthermore, MASLD is a metabolic disorder closely linked to metabolic syndrome (MetS), type 2 diabetes (T2DM), 
cardiovascular diseases, and chronic kidney disease.10–12 Despite this, effective treatments for MASLD are still limited. 
Currently, the primary management strategies include lifestyle modifications, pharmacological therapy, and, if necessary, 
surgical interventions.13 However, these treatments often fail to achieve the desired outcomes. Therefore, understanding the 
mechanisms driving the onset and progression of MASLD is essential for the development of new therapeutic approaches.

Early growth response 1 (EGR1) is a transcription factor that exerts its biological effects through its characteristic zinc 
finger domain. It plays a crucial role in processes such as cell growth, proliferation, and development.14–16 Recent studies 
suggest that EGR1 may be involved in metabolic diseases, inflammatory responses, and liver diseases. It has been reported 
that EGR1 may integrate central and peripheral circadian rhythms and regulate lipid metabolic homeostasis in the liver, 
thereby reducing the formation of lipid droplets.17 Additionally, EGR1 can mediate the activation of leptin by insulin, 
contributing to lipid metabolism.18 In the context of inflammation, EGR1 inhibits the expression of pro-inflammatory genes in 
macrophages, thereby alleviating inflammatory responses.19 Furthermore, the transcriptional activation of EGR1 has been 
shown to promote the repair of acetaminophen-induced liver injury and enhance liver regeneration.20 Based on these findings, 
we propose EGR1 as a key diagnostic biomarker and aim to further investigate its role in MASLD.

In this study, we integrated five datasets and conducted differential expression analysis. We used three distinct 
machine learning algorithms to further filter the differentially expressed genes. The key genes identified were validated 
using an external dataset and analyzed for immune infiltration using the CIBERSORT algorithm. We also explored the 
relationships between the key gene and immune cells, conducted enrichment analyses, constructed a TF-miRNA-mRNA 
network and performed single-cell analysis. Finally, the findings were validated in cellular and animal models.

Materials and Methods
Microarray Datasets Acquisition
Six microarray datasets were initially retrieved from the GEO database (http://www.ncbi.nlm.nih.gov/), including 
GSE48452 (Control = 14, MASLD = 32), GSE63067 (Control = 7, MASLD = 11), GSE66676 (Control = 34, 
MASLD = 33), GSE89632 (Control = 24, MASLD = 39), GSE107231 (Control = 5, MASLD = 5), and GSE164760 
(Control = 6, MASLD = 74). The flowchart of the current study is illustrated in Figure 1.

Analysis of Datasets
The series matrix expression files for the six datasets were obtained, and the corresponding platform annotation files were 
employed to transform the probe expression matrices into gene expression matrices. RMA normalization was performed using 
the “affy” package. In cases where multiple probes corresponded to a single gene, the mean expression value was calculated. 
The five training sets were merged next, and batch effects were corrected using the “combat” function from the “sva” package.21 

The effectiveness of batch correction was validated by comparing PCA plots before and after correction. The “limma” 
package22 within R software was utilized to identify differentially expressed genes (DEGs) between the combined groups of 
patients with Metabolic dysfunction-associated steatotic liver disease (MASLD) and healthy controls (HC). The thresholds for 
statistical significance were established at |Log2FoldChange| ≥0.5 and adjusted p-value (adj. P) <0.05. Furthermore, the 
“ggplot2” and “pheatmap” packages in R were employed to generate volcano plots and heatmaps for these DEGs.
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Machine Learning
The Random Forest (RF) algorithm,23 Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Least 
Absolute Shrinkage and Selection Operator (LASSO) regression24 were utilized to identify genes with the greatest 
impact on the prognosis of MASLD. A Venn diagram was employed to determine the intersection of genes identified by 
these three machine learning techniques, pinpointing hub genes for further research (Details of the parameters and 
hyperparameters used in the machine learning algorithms are provided in the Supplementary Material).

External Dataset Validation
To further validate intersecting genes, we evaluated them in the external dataset GSE164760 through time-dependent 
ROC curves. This evaluation included the area under the curve (AUC), specificity, and sensitivity, and also determined 
the differential expression of these genes between MASLD and control groups. Visualization of the results was 
performed using the R packages “pROC”25 and “ggpubr”.

Figure 1 Research Flow Chart.
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Function Enrichment Analysis
To elucidate the potential biological functions and pathways of genes, we employed the “clusterProfiler” R package26 for 
functional enrichment analysis. Gene Ontology (GO) is a powerful tool for examining genes’ molecular functions, 
cellular components, and biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis, a broadly utilized database, enables researchers to explore the biological functions of gene sets and pinpoint the 
crucial pathways or processes involved in specific biological phenomena.

Gene Set Variation Analysis
The “c2.cp.Kegg.Hs.symbols” and “c5.go.Hs.symbols” files were initially downloaded from the MSigDB database. 
Subsequently, the R package “GSVA”27 was utilized to elucidate the enrichment differences between GO and KEGG 
pathways using a non-parametric, unsupervised gene set variation analysis (GSVA) approach.

Gene Set Enrichment Analysis
We use the “clusterProfiler” package for Gene Set Enrichment Analysis (GSEA), to determine whether KEGG-specific 
pathways are enriched for a set of related genes.

Immune Function Score and Immune Infiltration Analysis
We utilized the CIBERSORT algorithm to quantify the varying levels of infiltration among 22 immune cell types in tissue 
samples. In each sample, the cumulative score of all immune cells was normalized to 1. Additionally, we calculated 
correlations between the immune cells and visualized these relationships through histograms, heatmaps, and various 
other methods. Based on expression profile information, we employed the “GSVA” package for Single Sample Gene Set 
Enrichment Analysis (ssGSEA) to examine the differences in immune cell and immune function scores between groups 
with high and low key gene expression. We assessed the enrichment scores of 16 immune cells and 13 immune functions 
to further investigate the association between key gene expression and MASLD.

TF-miRNA-mRNA Regulatory Network
Potential transcription factors for target genes were predicted using the Trrust database (https://www.grnpedia.org/trrust), 
while candidate miRNAs were identified via the Starbase database (https://rnasysu.com/encori). The results were 
visualized using Cytoscape.

Processing of Single-Cell Sequencing Data
The single-cell RNA sequencing (scRNA-seq) dataset (GSE159977) was retrieved from the publicly accessible GEO 
database. We processed the scRNA-seq data using the “Seurat” R package.28 Low-quality cells were excluded based on 
the following criteria: cells expressing fewer than three genes, containing fewer than 300 genes, or exhibiting mitochon-
drial gene content exceeding 5%. Data normalization was performed with the “NormalizeData” function using the 
“LogNormalize” method. To identify the top 2000 highly variable genes, we applied the “FindVariableFeatures” 
function. Principal component analysis (PCA) was conducted on these highly variable genes using the “RunPCA” 
function, and the top 15 principal components (PCs) were selected for further analysis. Cell clustering was performed 
using the “FindNeighbors” and “FindClusters” functions. Subsequently, UMAP analysis was conducted with the 
“RunUMAP” function, and cells were clustered based on UMAP-1 and UMAP-2 coordinates. To annotate cell clusters, 
we utilized the “SingleR” R package with the Human Primary Cell Atlas as the reference dataset.

Cell Model
The AML-12 mouse hepatocyte cell line (CL-0602) was purchased from Procell Life Science & Technology Company 
Limited. The cells were cultured in DMEM/F12 medium (PM150312, Procell, Wuhan, China), supplemented with 10% 
fetal bovine serum (164210–50, Procell, Wuhan, China) and 1% penicillin/streptomycin (PB180120, Procell, Wuhan, 
China), and incubated at 37°C in a 5% COP atmosphere. The cells were evenly seeded in a 6-well tissue culture plates at 

https://doi.org/10.2147/JIR.S499396                                                                                                                                                                                                                                                                                                                                                                                                                                                           Journal of Inflammation Research 2025:18 1642

Wu et al                                                                                                                                                                              

Powered by TCPDF (www.tcpdf.org)

https://www.grnpedia.org/trrust
https://rnasysu.com/encori


a density of 1 × 105 cells/well, and treated with 200 µM palmitic acid (KC003, Kunchuang, Xi’an, China) for 48 hours to 
establish a hepatocyte steatosis model.

Oil Red O Staining
Prepare the Oil Red O staining kit (G1262, Solarbio Science & Technology Co., Ltd., Beijing, China). Wash the prepared 
cells twice with PBS, then fix them in Oil Red O fixative for 20 minutes. Rinse the cells twice with distilled water and 
soak in 60% isopropanol for 30 seconds. Add freshly prepared Oil Red O staining solution and incubate for 20 minutes. 
After rinsing, re-stain the cells with Mayer’s hematoxylin solution. Finally, incubate the cells in Oil Red O buffer and 
observe under a light microscope.

Animal Models
Twelve six-week-old male C57BL/6J mice were used in this experiment, purchased from Liaoning Changsheng 
Biotechnology Company Limited (Liaoning, China), maintained in standard cages at a controlled ambient temperature 
of 22°C ± 2°C and subjected to a 12-hour dark/light cycle. There are no restrictions on the availability of water and food. 
The mice were randomly divided into two groups, with six mice in each group: Control group: standard diet; Treatment 
group: methionine-choline deficient diet (XSYT-ED-009, 22% fat, 15% protein, 63% carbohydrates). After 8 weeks, 
blood and liver tissues were collected from the mice. The protocol for these animal experiments received approval from 
the Professional Committee for Animal Protection of Harbin Medical University, and all procedures adhered to the 
applicable guidelines and regulations (2023-DWSYLLCZ-04), and performed following Regulations on the Management 
of Laboratory Animals in Heilongjiang Province and Laboratory Animals General requirements for biosafety in animal 
experiments.

Histological Procedure
To verify the success of the modeling, serological and histopathological examinations were conducted on the specimens. 
Fresh liver tissue was fixed in formalin for 24 hours, embedded in paraffin, dehydrated, and sectioned for H&E staining. 
Additionally, fresh liver tissue was fixed in 4% paraformaldehyde solution, dehydrated, and stained with Oil Red O for 
frozen sections. To eliminate the potential impact of food on the serum biomarkers, all mice were fasted for 12 hours 
prior to the experimental treatment, with free access to water. Serum levels of total cholesterol (A111-1-1, JianCheng 
Bioengineering Institute, Nanjing, China) and triglycerides (A110-1-1, JianCheng Bioengineering Institute, Nanjing, 
China) were quantified using commercial kits on an automatic blood biochemistry analyzer (VITROS 5600, Abbott, 
Chicago, USA), according to the manufacturer’s instructions. Total cholesterol levels were measured using the COD-PAP 
method, while triglyceride levels were quantified using the GPO-PAP method. The criteria for diagnosing MASLD in 
mice include the following: (1) biochemical analysis showing elevated serum levels of total cholesterol (TC) and 
triglycerides (TG); (2) hepatic histological examination, including H&E staining and Oil Red O staining, to assess 
liver fat deposition.

Quantitative RT-PCR Analysis
RNA was extracted from cells and mouse liver tissues using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA 
purity was assessed using a Nanodrop 2000 spectrophotometer, employing UV absorbance measurements. Followed by 
reverse transcription using PrimeScript reverse transcriptase (Takara, Kusatsu, Japan). Gene expression was analyzed 
using 2×SYBR Green qPCR (Vazyme, Nanjing, China). The relative expression of hub gene was quantified using the 
2−ΔΔCt method, with β-actin serving as the internal reference control. Primer sequences are provided in Table 1.

Western Blot
Total protein was extracted from cell and tissue samples using RIPA buffer, with the addition of a protease inhibitor to prevent 
protein degradation. After separating proteins by electrophoresis on a 10% SDS-PAGE, they were transferred to a PVDF 
membrane via electroblotting. The membrane was then blocked with 5% non-fat milk at room temperature for 1 hour. Primary 
antibodies were incubated with the membrane overnight at 4°C. The primary antibodies included rabbit polyclonal antibody 
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EGR1 (Abmart, PA1373, Shanghai, China) and β-actin (ABclonal, AC006, Wuhan, China). Subsequently, the membrane was 
incubated with the appropriate secondary antibody (ABclonal, AS014, Wuhan, China) for 1.5 hours at room temperature. 
Signal detection was performed using a Bio-Rad imaging system (Bio-Rad, CA, USA) with chemiluminescent substrate.

Data Analysis
Biostatistical analysis was carried out using Rstudio (version 4.3.1), while statistical analysis and graphical representation 
of experimental data were executed using GraphPad Prism version 9.5 software. Group differences for variables with 
a normal distribution were assessed using Student’s t-test. The data in this study are presented as mean ± standard 
deviation. P-value<0.05 was considered indicative of statistical significance.

Results
Identification of DEGs and Analysis of Immune Infiltration
We downloaded five datasets from the Gene Expression Omnibus (GEO) database: GSE48452, GSE63067, GSE66676, 
GSE89632, and GSE107231. These datasets were subsequently merged and normalized. Supplementary Figures 1 and 2 
illustrates the changes in the data before and after batch correction. Through differential analysis, we identified 42 
differentially expressed genes, including 17 upregulated and 25 downregulated genes. The expression patterns of these 
genes are displayed in a heatmap (Figure 2A) and a volcano plot (Figure 2B).

Complex interactions between various immune cell populations and hepatocytes, stellate cells, and sinusoidal 
endothelial cells play a critical role during the pathogenesis of MASLD.29 Therefore, we employed the CIBERSORT 
algorithm to investigate differences in the immune microenvironment between MASLD patients and healthy controls. 
Our analysis revealed alterations in the proportions of 22 different immune cell types between the MASLD and control 
groups (Figure 2C). Figure 2D presents a correlation analysis among these 22 immune cell groups within the MASLD 
cohort. Figure 2E displays significantly differentially expressed immune cell types between the two groups, notably 
highlighting an enriched expression of monocytes in the MASLD group. These findings suggest that alterations in the 
immune microenvironment may play a crucial role in the development of MASLD.

Hub Gene Selection Through Machine Learning Techniques
To further identify Hub differentially expressed genes between the MASLD group and the control group, we employed 
three machine learning algorithms: LASSO, RandomForest, and SVM-RFE (Figure 3A–F). We used a Venn diagram to 
intersect the key genes identified by each algorithm, ultimately identifying ten hub genes (Figure 3G), the ten hub genes 
identified through our analysis are as follows: CYP7A1, PEG10, P4HA1, IGFBP2, IL6, ME1, NR4A2, VIL1, 
TMEM154, and EGR1.

External Dataset Validation
Significant differential expression of ten characteristic genes was observed between MASLD patients and control 
samples (Supplementary Figure 3A–J), indicating their potential pivotal roles in MASLD progression. Further, ROC 
analysis was performed to assess their prognostic value (Supplementary Figures 4A–J), revealing that all genes possessed 
substantial diagnostic utility.

Table 1 Primers Used for RT-PCR Analysis

Gene Species Forward Primer Reverse Primer

β-actin Mouse GTGACGTTGACATCCGTAAAGA GCCGGACTCATCGTACTCC
EGR-1 Mouse AACAACCCTATGAGCACCTG GAGTCGTTTGGCTGGGATAA

TNF-α Mouse CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG

IL-6 Mouse TCCATCCAGTTGCCTTCTTG TTCCACGATTTCCCAGAGAAC
IL-1β Mouse GCCTGTGTTTTCCTCCTTGC TGCTGCCTAATGTCCCCTTG

CCL2 Mouse TTAAAAACCTGGATCGGAACCAA GCATTAGCTTCAGATTTACGGGT
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To confirm these key genes’ expression patterns and diagnostic capabilities, additional validation was conducted using the 
external dataset GSE164760, involving gene expression verification and ROC curve analysis. The results demonstrated 
upregulation in CYP7A1, PEG10, and TMEM154, while EGR1, IGFBP2, NR4A2, and P4HA1 showed downregulation 
(Figure 4A–G). Further ROC analysis was performed on hub genes using the validation dataset GSE164760, and the area 

Figure 2 Preprocessing of data and Expression profile of DEGs.(A)The heatmap of differential gene expression.(B)Volcano plots of DEGs,|log2 fold change (FC)|≥0.5 and 
p < 0.05 as selection criteria, The red and green dots indicate the up-regulated and down-regulated DEGs, respectively.(C)Relative abundance of 22 immune cells between 
MASLD and control samples.(D)The cellular correlation among the 22 immune cells.(E)Comparative distribution analysis of 22 immune cell infiltrates between MASLD and 
control samples.*P < 0.05.
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under the curve (AUC) values were obtained. The AUC values for IGFBP2 (AUC = 0.869), NR4A2 (AUC = 0.883), 
TMEM154 (AUC = 0.836), and EGR1 (AUC = 0.882) were all greater than 0.83 (Figure 4H–K), further confirming the strong 
predictive capabilities of these genes.

Enrichment Analysis
Based on the AUC values from the external validation set, we selected EGR1 as the key gene for further research. Using 
the R package “limma”, we divided patients in the MASLD group into high EGR1 expression and low EGR1 expression 
groups. Through differential analysis, we identified a total of 278 differentially expressed genes. Figure 5A is a heatmap 
of the differentially expressed genes, displaying the top 40 genes with expression differences. Figure 5B shows the 
correlations among these 40 genes, with red indicating positive correlations and blue indicating negative correlations.

Subsequently, we conducted Gene Ontology (GO) (Figure 5C) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (Figure 5D) enrichment analyses on these differentially expressed genes. The biological process analysis 
revealed significant enrichment in regulation of cell-cell adhesion, leukocyte cell-cell adhesion, chemotaxis, taxis, 
mononuclear cell differentiation and leukocyte migration. The cellular component analysis mainly enriched in external 
side of plasma membrane, secretory granule membrane, endocytic vesicle, collagen-containing extracellular matrix, 

Figure 3 Machine learning to screen hub genes. (A)Ten-time cross-verification of adjusted parameter in selection least absolute shrinkage and selection operator (LASSO). 
Each curve in the picture represents one gene.(B)The solid vertical lines represent the partial likelihood deviance SE, the lowest point of the dotted vertical line represent 
the number of genes (n = 15).(C)The accuracy and (D) the error of the feature selection for the SVM-RFE algorithm. n=29 has the highest accuracy and the lowest cross- 
validation error.(E)Relationship between the number of random forest trees and error rates.(F)Rank genes according to their relative importance.(G)The Venn diagram to 
intersect 3 gene subsets.
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endocytic vesicle membrane. The molecular function analysis mainly involved DNA-binding transcription activator 
activity, RNA polymerase II-specific, DNA-binding transcription activator activity, immune receptor activity, cytokine 
binding. In the KEGG enrichment analysis, significant enrichment was observed in pathways including osteoclast 
differentiation, human T-cell leukemia virus 1 infection, cytokine-cytokine receptor interaction, fluid shear stress and 
atherosclerosis, MAPK signaling pathway.

GSEA and GSVA of Hub Gene
To further investigate the impact of the key gene on the pathogenesis of MASLD, we performed Gene Set Enrichment 
Analysis (GSEA) and Gene Set Variation Analysis (GSVA). The GSEA of GO revealed that cell chemotaxis, cellular 
response to molecule of bacterial origin, granulocyte chemotaxis, leukocyte chemotaxis, positive regulation of miRNA 
metabolic process are enriched in the high-expression group of EGR1 (Figure 6A); Mitochondrial gene expression, 
mitochondrial translation, mitochondrial protein containing complex, ribosomal subunit, structural constituent of ribo-
some were enriched in the low-expression group of EGR1 (Figure 6B). GSEA of KEGG showed that chemokine 
signaling pathway, cytokine-cytokine receptor interaction, leishmania infection, MAPK signaling pathway, toll-like 
receptor signaling pathway are enriched in the high expression group of EGR1 (Figure 6C); oxidative phosphorylation, 
Parkinson’s disease, peroxisomes, proteasomes and ribosomes were enriched in the low expression group of EGR1 
(Figure 6D).

Figure 4 Gene expression in the training set. (A-G)Violin plots showed the expression of hub genes in the training set. (H-K)ROC analysis of hub genes in the training set. 
*P < 0.05; **P < 0.01.
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Subsequently, we conducted GSVA to analyze the differences between the high and low expression subgroups of 
EGR1. In the high expression group of EGR1 (Figure 6E), there is activation of several pathways, including those related 
to Parkinson’s disease, protein export, aminoacyl-tRNA synthesis, ribosome, and oxidative phosphorylation. In the low 
expression group of EGR1, pathways including prion diseases, MAPK signaling, B-cell receptor signaling, T-cell 
receptor signaling, and leishmania infection are enriched.

Immune Analysis
Previous research indicates that the immune microenvironment plays a crucial role in the pathogenesis of MASLD. To 
further investigate the effects of EGR1 on alterations in the immune microenvironment, we analyzed differences in 16 
immune cell types and 13 immune functions between groups with high and low expression of hub genes (Figure 7A).

Subsequent analysis explored the associations between the key gene and immune cells. As depicted in Figure 7B, 
EGR1 exhibits significant positive correlations with neutrophils (r=0.3) and mast cells activated(r=0.25), and notable 
negative correlations with dendritic cells resting (r=−0.21) and mast cells resting (r=−0.31). These results highlight the 
integral role of EGR1 in modulating diverse immune cell interactions, emphasizing its potential as an immune-related 
therapeutic target for MASLD.

Figure 5 Identification and biological function analysis of core gene high and low expression groups. (A)Heat map showing the differentially expressed genes between the 
two groups. (B)Correlation analysis among the top 40 differentially expressed genes. (C)GO enrichment analysis showing the functional roles of differentially expressed 
genes from the perspectives of Biological Process (BP), Cellular Component (CC), and Molecular Function (MF). (D)KEGG enrichment analysis reveals the related signaling 
pathways of differentially expressed genes.

https://doi.org/10.2147/JIR.S499396                                                                                                                                                                                                                                                                                                                                                                                                                                                           Journal of Inflammation Research 2025:18 1648

Wu et al                                                                                                                                                                              

Powered by TCPDF (www.tcpdf.org)



Figure 6 GSEA and GSVA of key gene. (A-B)GSEA analysis of core genes using the GO gene sets. (C-D)GSEA analysis of key genes using the KEGG gene sets. (E) 
GSVA enrichment method was used to perform enrichment analysis of KEGG pathways for key genes.
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TF-miRNA-mRNA Regulatory Network and Single-Cell Sequencing Data
Potential transcription factors (TFs) were retrieved from the Trrust database, and candidate miRNAs were identified 
using the Starbase database. We subsequently constructed a visual representation of the interaction network (Figure 7C). 
The TF-miRNA-mRNA regulatory network models the intricate interplay of gene expression regulation within cells. 
Researching these networks is essential for elucidating cellular mechanisms of gene regulation, which profoundly impact 
our understanding of disease processes and the development of innovative therapeutic approaches. In the diagram, green 
boxes represent transcription factors (TFs), and blue boxes represent microRNAs (miRNAs), which are short non-coding 
RNA molecules.

Figure 7 Immune analysis of key genes, TF-miRNA-mRNA regulatory network and single-cell analysis. (A)immune-related functions scores. (B)The relationship between 
key genes and 22 types of immune cells. (C) TF-miRNA-mRNA regulatory network. (D)Analysis of Single-Cell RNA Sequencing Dataset GSE159977. (E)Key gene 
enrichment in immune cells.*P < 0.05; **P < 0.01, ***P < 0.001.
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Through the analysis of the single-cell dataset GSE159977, we identified the distribution of key gene across four 
distinct cell clusters (Figure 7D). Specifically, for the key gene EGR1, we observed significant differences in monocytes 
between the control and MASLD groups (Figure 7E).

Validated by in Vivo and in Vitro Experiments
We established a steatotic liver cell model in mice. Using Oil Red O staining, we observed that lipid droplets were 
significantly accumulated in the PA group compared to the normal control group (Figure 8A). PCR analysis demonstrated 
a significant reduction in EGR1 expression levels in the PA group (Figure 8B). At the protein level, EGR1 was also 
markedly decreased (Figure 8C and D). We further validated the expression levels of key gene in an animal model. 
Compared to the control group, liver tissue sections from MCD diet-fed mice exhibited prominent inflammation and 
ballooning degeneration in H&E and Oil Red O staining, with substantial lipid droplet accumulation (Figure 8E). In 
addition, serum levels of total cholesterol (TC) and triglycerides (TG) in these mice showed significant alterations 
(Figure 8F and G), confirming the successful establishment of the model.

Subsequently, we measured the expression levels of pro-inflammatory cytokines in liver tissue. Significant changes 
were observed in CCL2, IL-1β, and TNF-α levels, while IL-6 levels remained unchanged (Figure 8H). The relative 
mRNA levels of EGR1 in mouse liver tissue showed a marked reduction (Figure 8I), and corresponding protein levels 
displayed significant differences (Figure 8J and K), consistent with previous findings.

Discussion
Approximately 32.4% of the global population is affected by Metabolic Dysfunction-Associated Steatotic Liver Disease 
(MASLD), and its prevalence has been rising significantly over time, leading to a substantial public health burden.30 

Despite this, effective treatments remain scarce. Therefore, identifying key genes involved in the pathogenesis of 
MASLD is essential for developing effective therapeutic strategies. In this study, we integrated microarray data analysis 
with machine learning techniques to identify differentially expressed genes. Validation with external datasets identified 
EGR1 as a key gene, showing an AUC value significantly higher than that of other genes. Analysis of gene expression 
patterns in both the training and validation sets showed that EGR1 exhibited marked differences between MASLD 
patients and healthy controls, highlighting its pivotal role in the onset and progression of MASLD. Additionally, immune 
infiltration analysis revealed distinct differences in immune cell profiles between MASLD patients and healthy controls.

To improve the accuracy and reliability of identifying biomarkers associated with MASLD development, we 
employed three machine learning algorithms to further refine 42 differentially expressed genes. This process led to the 
identification of ten hub genes: CYP7A1, PEG10, P4HA1, IGFBP2, IL6, ME1, NR4A2, VIL1, TMEM154, and EGR1. 
Notably, CYP7A1, PEG10, and TMEM154 were upregulated in MASLD patients in the training set, while EGR1, 
IGFBP2, NR4A2, and P4HA1 were downregulated, a pattern corroborated by the validation dataset GSE164760. ROC 
regression analysis highlighted EGR1 (AUC=0.882) as having strong predictive power. Based on the key gene, we 
categorized MASLD patients into high-expression and low-expression groups for further analysis, thereby offering new 
perspectives on MASLD research.

Among the differentially expressed genes in high and low expression groups of core genes, Gene Ontology (GO) 
enrichment analysis of biological processes revealed significant enrichment in chemotaxis, taxis, mononuclear cell 
differentiation and leukocyte migration. Chemotaxis and taxis refer to the directional migration of cells in response to 
external stimuli, a process primarily regulated by chemokines and their receptors. These receptors are classified into four 
subfamilies: CXC, CC, C, and CX3C. In MASLD, these chemokines are involved not only in the progression from 
simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) but also in modulating the ratio of Kupffer 
cell differentiation into M1 and M2 macrophages in the liver.31,32 Studies have shown that upon liver inflammation, 
monocytes are recruited to the site of injury, where they secrete pro-inflammatory cytokines.33 These monocytes then 
differentiate into various macrophage subsets depending on the local microenvironmental signals,34 with an initial 
predominance of pro-inflammatory M1 macrophages. This phenotype exacerbates the progression of hepatic steatosis 
to fibrosis. Moreover, therapeutic inhibition of monocyte recruitment has been shown to reduce liver fibrosis in animal 
models.35 Additionally, in mouse models of MASLD, there is a significant increase in the proportion of monocyte- 
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Figure 8 Experimental validation of gene expression. (A)Oil Red O staining was used to visualize lipid droplets within the cell model. (B)Relative mRNA levels of key gene in cell 
model. (C)Protein levels of EGR1 in AML12 cells. (D)Quantification of proteins in each group using Western blotting. (E)H&E staining and Oil Red O staining of liver tissues from 
control and MCD group mice (magnification ×100, scale bar = 200 μm. In the MCD group, hepatocytes are significantly swollen and spherical in shape, with enlarged nuclei that are 
compressed to one side. Fat vacuoles are visible, indicating fat infiltration. Inflammatory cell infiltration is markedly increased. ORO staining reveals numerous red lipid droplets.). 
Relative serum TC(F) and TG(G) levels in control and MCD group mice. (H)Relative mRNA levels of pro-inflammatory cytokines in animal model. (I)Relative mRNA levels of key 
gene in animal model. (J)Protein levels of EGR1 in animal model. (K)Quantification of proteins in each group using Western blotting.*P < 0.05; **P < 0.01, ***P < 0.001.
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derived macrophages relative to the total number of liver macrophages, further highlighting the contribution of these cells 
to disease progression.36 Leukocyte migration, an essential component of the immune response, ensures that leukocytes 
are recruited to sites of infection to resolve inflammation and repair tissue damage.37 Taken together, these processes play 
a crucial role in the development and progression of MASLD, suggesting that the key gene EGR1 may exert its effects by 
modulating these pathways, potentially inhibiting the occurrence and progression of MASLD.

We also investigated the differences in immune profiles between high and low core gene expression groups. 
Increasing evidence suggests that various immune cells play a significant role in the development and progression of 
MASLD.38 Immune responses have both advantages and disadvantages, they can provide protection but may also 
exacerbate tissue damage. Moreover, the same cell type may have different effects at different stages and locations. 
We observed differences in neutrophils, Th1 helper T cells, and macrophages. Neutrophils are among the first cells to 
arrive at the site of damage after inflammation begins. These cells produce myeloperoxidase (MPO), a lysosomal enzyme 
that interacts with hydrogen peroxide (H2O2) to generate reactive oxygen species (ROS), contributing to the progression 
of MASH through oxidative stress and tissue damage.39 Th1 helper T cells, which are polarized from CD4+ T helper 
cells,40 are pro-inflammatory cells that mediate cell-mediated immunity and secrete cytokines such as interferon-gamma 
(IFN-γ) and interleukin-2 (IL-2). IFN-γ, in particular, drives the polarization of macrophages into the M1 phenotype and 
stimulates macrophages to secrete pro-inflammatory factors.41 Macrophage infiltration, particularly in the portal vein, is 
considered an early event in MASLD.42 Due to the varying liver microenvironment, macrophages respond to different 
metabolites and signals, exhibiting dual functions and classifying into classical activated M1 and alternatively activated 
M2 types.43 M1 macrophages primarily produce pro-inflammatory factors such as IL-1, IL-6, and IL-23, which promote 
inflammation, liver damage, and fibrosis.44 In contrast, M2 macrophages have opposing effects. The changing ratio of 
these macrophage types during MASLD progression may be crucial to disease advancement. Therefore, modulating 
target genes to influence specific immune cells could potentially mitigate the progression of MASLD.

Recent studies have shown that EGR1 plays a crucial regulatory role in various metabolic diseases. For instance, increased 
hepatic expression of EGR1 has been shown to improve diet-induced fatty liver.45 Research has found that inhibition of EGR1 
expression significantly raises liver lipid levels and promotes the progression of fatty liver to mild fibrosis.3 Furthermore, in 
adipocytes exposed to high insulin for prolonged periods, EGR1 and its target gene GGPPS may contribute to the development 
of insulin resistance by continuously activating the Erk/MAPK signaling pathway.46 EGR1 is also involved in regulating 
inflammatory responses. Studies have demonstrated that overexpression of EGR1 inhibits the activation of inflammatory 
enhancers and significantly reduces the levels of TNF-α and IL-6 released by macrophages.19 Additionally, EGR1 plays 
a protective role in liver injury. In a CCL4-treated mouse model, EGR1 knockout mice showed more severe liver necrosis and 
higher plasma levels of AST and ALT. Further research revealed that EGR1 protects against CCL4-induced liver injury by 
regulating TNF-α levels.47 Furthermore, EGR1 has been reported to act as a tumor suppressor in liver cancer. EGR1 induces 
apoptosis in human liver cancer cell lines HepG2 and Hep3B and enhances cell apoptosis by synthesizing ursodeoxycholic 
acid derivatives.48 These findings suggest that EGR1 plays an important regulatory role in various metabolic and liver diseases 
and may serve as a potential therapeutic target.

In addition, we conducted GSEA and GSVA to perform a comprehensive bioinformatics evaluation of the involvement of 
key gene in various disease-related signaling pathways, including the MAPK signaling pathway, B cell receptor signaling 
pathway, and T cell receptor signaling pathway, and Leishmaniasis infection. Leishmaniasis infection, caused by a parasitic 
organism, can potentially lead to excessive activation of the immune system, resulting in pathological changes such as liver 
inflammation and fibrosis. Studies have shown a positive correlation between Leishmaniasis infection burden and an increased 
apoptosis index in hepatocytes, Kupffer cells, and inflammatory infiltrates.49 In addition, our analysis identified several key 
biological processes, providing new insights into the pathophysiological mechanisms of MASLD. We also constructed a TF- 
miRNA-mRNA network, highlighting TFs and miRNAs associated with the key gene. These TFs and miRNAs play crucial 
roles in the transcription and translation processes of the key gene, suggesting potential regulatory mechanisms. Furthermore, 
single-cell sequencing data revealed differential expression of target genes within specific cell subpopulations, indicating that 
these cells may play a significant role in disease progression. Finally, validation using cellular and animal liver models 
confirmed our findings, with differential expression of the EGR1 gene consistent with our analysis.
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However, there are several limitations to our study. First, the dataset used in this research is sourced from the publicly 
available GEO database, which has a limited sample size. Additionally, the heterogeneity between datasets may affect the 
generalizability of the model. Second, our research relied solely on a mouse model, with a limited number of samples, 
and the findings from the bioinformatics analysis could not be validated using clinical samples. Furthermore, additional 
in vivo and in vitro studies are necessary to comprehensively investigate the gene’s role in disease processes.

Conclusion
This study integrated five datasets and performed differential expression analysis. We applied three distinct machine learning 
algorithms to identify key genes and validated these genes using external datasets. Additionally, we conducted immune 
infiltration analysis using the CIBERSORT algorithm to explore the relationship between key genes and immune cells. The 
research also included enrichment analysis, TF-miRNA-mRNA network construction, and single-cell analysis, with validation 
conducted in both cellular and animal models. This work provides novel biomarkers and targets for the understanding and 
treatment of MASLD.
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