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In brief

A rigorous study on the lag time between

implemented policies and their effects on

the trajectory of COVID-19 outcomes is

desired as more data are available. Time-

series models and data-driven search

algorithms can be used to effectively

model COVID-19 outcomes and detect

their changes due to their associated

policies. We find five patterns in the

trajectory of US COVID-19 outcomes and

a 10- to 14-day lag time between

implementation of the policies and their

effects on COVID-19 outcomes.
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THE BIGGER PICTURE Public health policy implemented at the state level has been important in managing
the spread of COVID-19. State governors have had to balance the need to reduce the spread of COVID-19
with the public’s desire to return to normal life. As a result, there are both restrictive policies and reopening
policies that influence social behavior and consequentially the spread of COVID-19. Here, we describe the
relationship between changes in the trajectory of COVID-19 cases and deaths and policy implementations.
First, we detect change points in the COVID-19 outcomes using a data-driven search algorithm and then
relate these change points to implemented policies. Particularly, we show that there is a change in
COVID-19 outcomes approximately 10–14 days after state-level policy implementation. This work can
help health officials understand the time it will take for state-level policies to have an impact on the trajectory
of a highly infectious illness like COVID-19. Knowing that there is a significant lag time between policy im-
plementation and its effect on the spread of disease can help officials be more proactive in responding to
health crises.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
State-level policy interventions have been critical in managing the spread of the new coronavirus.
Here, we study the lag time between policy interventions and change in COVID-19 outcome trajec-
tory in the United States. We develop a stepwise drifts random walk model to account for non-sta-
tionarity and strong temporal correlation and subsequently apply a change-point detection algorithm
to estimate the number and times of change points in the COVID-19 outcome data. Furthermore,
we harmonize data on the estimated change points with non-pharmaceutical interventions adopted
by each state of the United States, which provides us insights regarding the lag time between the
enactment of a policy and its effect on COVID-19 outcomes. We present the estimated change
points for each state and the District of Columbia and find five different emerging trajectory pat-
terns. We also provide insight into the lag time between the enactment of a policy and its effect
on COVID-19 outcomes.
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INTRODUCTION

The outbreak of the COVID-19 pandemic
In December of 2019, a new strand of coronavirus was identified in

Wuhan, China. The first case of COVID-19 in the United States of

Americawas identifiedonJanuary19–20,2020, in thestateofWash-

ington, after a man returned from Wuhan, China, on January 15,

2020.1 The first non-travel-related COVID-19 case was confirmed

on February 26, 2020, which raised concerns related to community

transmission of the new coronavirus in the United States.2

On March 11, 2020, after noticing patterns of international

spread, the World Health Organization declared COVID-19 a

pandemic. With the number of COVID-19 cases rising steadily in

the United States and around the world, concerted intervention

by states and the US federal government was required in order

to effectively monitor and prevent the spread of the virus. The

goal of these interventions was to ensure and maintain access to

testing for as many people as required. OnMarch 13, 2020, Pres-

identDonaldTrumpdeclaredastateofemergency inanattempt to

strengthen the response of the federal government to the

pandemic. As commented on by the Kaiser Family Foundation

(KFF),US states tookslowaction tocontain the spreadof the virus,

especially thosestateshit hardestby theoutbreak, suggesting that

effective policy responsesweredelayed. In one suchexample, the

first patient to have diagnosed COVID-19 died on February 29,

2020, whereas the declaration of a state of emergency by national

and state-level governments was announced nearly a full month

later. According to KFF, every state in the United States had

made an emergency declaration by March 16, 2020, with most

of these declarations listed as either a State of Emergency or a

Public Health Emergency.3 Although these emergency declara-

tions were made, the United States had already reported 4,507

cases onMarch 16 and 188,461 byMarch 31, 2020.4 In response,

several states issued stay-at-home orders, such as California

issuing its stay-at-home order on March 19, 2020.5

Importance of state-wise policies compared with
federal-level policies
According to KFF, many states have implemented policies in or-

der to increase access to COVID-19 testing and treatment in

addition to improving the management of other health condi-

tions.3 Governments across the world, at either the national or

the subnational level, have similar methods for implementing

public policies. Many nations implemented policies after consid-

ering the challenges faced by other nations when implementing a

similar policy. This allowed legislators to draw valuable lessons

during implementation and alter policies in the aim of achieving

the best possible outcome for their constituents.6 Policy deci-

sions are further conditioned by ‘‘contextual factors, including

institutional (e.g., constitutional and legalistic structures) factors,

cultural orientations, economies, and political styles (among

others).’’6 Policy networks, which are entities that seek to influ-

ence policy, relationships with other legislations, and the related

outcomes, both respond and contribute to the shifting of atten-

tion to policy issues and the change of government agendas.6

Examples of policy networks include political parties, elected of-

fices, non-governmental organizations, and public entities,

which communicate across numerous connections vital to the

policy-making process.6
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The COVID-19 pandemic has encouraged a rapid and dra-

matic shift in the priorities of policy networks and, correspond-

ingly, shifts in the priorities ofmany government decision-making

venues, such as legislatures and parliaments.6 The Swiss parlia-

ment, for instance, interrupted its usual slate for the spring ses-

sion and adopted other issues, such as climate change and

pension changes.6 Since the start of COVID-19, many policy net-

works, like those at the state level, have begun to focus more on

the fundamental purpose of particular policy areas, whether that

be education or to provide food for struggling families. Other ex-

amples include the implementation of California’s state-wide law

to prohibit the eviction of tenants on commercial property,6 or ini-

tiatives put in place, such as Connecticut providing $95.5 million

in SNAP benefits to families of children eligible for free and

reduced-price school meals through the Pandemic Electronic

Benefits Transfer program.5

Literature review on previous studies
Social distancing measures were either fully or partially relaxed

by all US states and the District of Columbia weeks after they

were first issued in order to suppress the transmission of

COVID-19 and reduce the growth in cases of severe coronavirus

disease. Using segmented linear regression, one study

measured the extent to which the relaxation of social distancing

measures influenced the control of the epidemic in the United

States.7 Following the gradual easing back of social distancing

measures across the United States, Tsai et al.7 observed an im-

mediate and significant turnaround in the suppression of the

epidemic as the country’s ability to monitor the disease burden

associated with COVID-19 was compromised by the premature

relaxation of social distancing steps. However, another study

suggested a slightly dissimilar conclusion when applying

reduced-form econometric methods to empirically evaluate the

effect of anti-contagion policies on the growth rate of infections.8

When reduced-form econometric methods were used, it was

found that anti-contagion policies have significantly decelerated

the growth rate of infections8. It was estimated that among the

six countries (China, South Korea, Italy, Iran, France, and the

United States) analyzed, anti-contagion policies have prevented

or delayed approximately 61 million confirmed cases and

averted 495 million total infections.8

In another study, a group of researchers used a stochastic in-

dividual-based model for the transmission of COVID-19 to

describe individual contact networks stratified into household,

school, community, and workplace layers, using demographic

and epidemiological data from the United Kingdom.9 The au-

thors found that if social distancing measures were relaxed,

including the reopening of schools, they must be accompanied

by large-scale, population-wide testing for symptomatic individ-

uals alongside contact tracing.9 Another rapid review was also

conducted to assess the effects of quarantine, alone or in com-

bination with other measures, on individuals who have come in

contact with confirmed cases of COVID-19.10 The review

concluded that evidence of COVID-19 was limited to modeling

studies, but consistently indicated that quarantine is crucial to

the reduction of infection and mortality during the pandemic.

Another study used generalized linear mixed-effects models

with state-level clustering in order to estimate county-level asso-

ciations with an overall social vulnerability index (SVI) as well as
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SVI subcomponent scores with COVID-19 case fatality rate

(CFR).11 The authors found no significant association between

overall SVI and COVID-19 incidence but found that the social

status and minority status subcomponents of the SVI were

both predictors of higher incidence and CFR. Other papers

have been suggestive of the existence of social inequities in

the United States for COVID-19 outcomes in regard to national,

state, and local public health data.12 The analysis of US county-

level COVID-19 deaths, confirmed cases, and positive tests in Il-

linois and New York City, which is stratified by zip codes, area

percent crowding, poverty, and population of color, revealed

that socioeconomic disparities for COVID-19 outcomes exist in

the United States.12 To provide an evidence base for policy

and resource allocation, the paper suggests the use of straight-

forward cost-effective methods to report on social disparities in

COVID-19 results. In addition to social disparities, the associa-

tion of public health interventions with epidemiological charac-

teristics of the COVID-19 pandemic was evaluated using individ-

ual-level data on 32,583 laboratory-confirmed COVID-19 cases

in Wuhan, China.13 The rates of laboratory-confirmed COVID-

19 cases were calculated across five periods: first, from

December 8, 2019, to January 9, 2020, when no public health in-

terventions were executed; then, January 10–22, 2020, during

the Chinese New Year Holiday; January 23 to February 1,

2020, during which travel restrictions and quarantine were en-

forced; February 2–16, 2020; and February 17 to March 8,

2020, when universal symptom surveys were completed. Over

the series of public health interventions, it was identified that

there was a temporal association between the interventions

and the improved control of the COVID-19 pandemic in Wuhan,

China.13 This indicates that public health interventions were

associated with improved control of the COVID-19 pandemic

in the earlier stages of the outbreak in Wuhan, China, which

may inform public health policy in other countries and regions.13

In addition to public health interventions, non-pharmaceutical

interventions (NPIs) appeared to be effective in containing the

COVID-19 outbreak in China.14 The study constructed a travel-

network-based susceptible-exposed-infectious-removed model

using epidemiological parameters estimated for the early stages

of the outbreak inWuhan before NPIs were implemented, in order

to simulate the outbreak of the pandemic across cities inmainland

China. Based on the model’s results, without the implementation

ofNPIs, the number of confirmedCOVID-19 caseswould possibly

have shown a 67-fold increase, indicating that the early detection

and isolation of cases were forecast to prevent more infections

than travel restrictions and reductions in contact.14 Also, it was

proposed that integrated NPIs would have achieved the stron-

gest, most robust, andmost rapid effect of preventingmore infec-

tions.14 However, if these NPIs had been implemented 1–3 weeks

earlier in China, it is estimated that the total number of infections

could have been reduced by 66%–95%.14 In conclusion, to miti-

gate health, social, and economic impacts in affected regions

around the world, integrated NPI strategies should be planned,

implemented, and modified earlier than they were.14

COVID-19 infections and the effect of policies over time:
A change-point perspective
As the data related to this pandemic are recorded over time, a nat-

ural choice for the development of methodological research could
be time-series analysis. Also, because the infection rate of

COVID-19 changes based on several reasons, one of the most

important researchgoalscouldbe theassociationof thosechanges

in infection rateswith the interventions imposed to stop or delay the

growth of the pandemic. Therefore, a change-point analysis of the

COVID-19 data associated with the growth rate of the pandemic

should be rigorously studied. In the short period of time from the

start of the pandemic until now, we are indeed witnessing an

increasing number of contributions in this area of research.

Using data fromGermany, Dehning et al.15 applied a Bayesian

epidemiological model to analyze the time dependence of the

growth rate of COVID-19 infections from a change-point

perspective. Their research found that the growth rate of the

pandemic is indeed correlated with the time points at which pub-

lic interventions (policies) were decided. Jiang et al.16 performed

a change-point analysis based on COVID-19 health outcomes

(cases, deaths) using a piecewise linear trend model. They

analyzed the trajectory of cumulative COVID-19 cases and

deaths across 30 countries. In addition, they developed a fore-

casting model for predicting cumulative deaths in the United

States. In yet another study, based on data from European coun-

tries, researchers identified the change points in the COVID-19

epidemic.17 A mixed-effects Poisson regression model was

used to assess the relationship between the level of social

distancing and the observed decay in the national epidemic.

Wagner et al.18 performed an interrupted time-series analysis

to evaluate the association between the interventions taken by

the US states and the reduction in the spread of COVID-19.

The current gaps in knowledge on this topic include four crit-

ical issues that need to be further considered altogether. First,

the models for COVID-19 outcomes need to be flexible to better

adapt to continuously evolving changes in the pandemic.

Restrictive models such as model-based regression could be

limited in modeling diverse patterns pertinent to COVID-19 out-

comes. Second, the COVID-19 outcomes in a day are heavily

dependent on the previous day. To bemore effective at account-

ing for this temporal correlation, one will need amodel that effec-

tively models this strong temporal correlation. Third, the COVID-

19 outcomes typically showmultiple changing trajectories due to

policy changes adopted by the states. The COVID-19 models

need to consider such multiple structural changes in the trajec-

tory. Fourth, as the time lag between a newly adopted policy

and its resulting change in COVID-19 outcomes can vary, a prob-

abilistic approach could be relevant to model the lag time. In

short, to combine all of these four issues, one will need to

develop a unified approach that rigorously finds change points

in COVID-19 outcomes and links these change points to their

associated policies via a probabilistic approach.

Goals of this study
In this paper we study the lag time between policy interventions

and a change in daily COVID-19 outcome trajectory in the

United States, a critical topic that has been less studied in

the literature. First, we modeled the COVID-19 time series

data using a stepwise drifts random walk to account for non-

stationarity, strong temporal correlation, and multiple changes

in the rate of change for the daily COVID-19 outcome

(confirmed cases and deaths). Second, because a rigorous

estimation of change points in the COVID-19 outcomes is
Patterns 2, 100306, August 13, 2021 3



Figure 1. Number of lockdown policy imple-

mentations for the 50 US states

The number of lockdown policy implementations as

recorded by the KFF is displayed for each of the 50

states. For each state, there are seven different

types of lockdown policies, including stay-at-home

orders, mandatory quarantine, non-essential busi-

ness closures, large gathering bans, school clo-

sures, restaurant limits, and state-of-emergency

declarations.
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very important, we apply a genetic algorithm (GA) with the min-

imum description length criterion to estimate the number and

times of change points in the US COVID-19 outcome. GAs

are a data-driven search technique based on the natural selec-

tion principle and, in particular, have been very effective in de-

tecting multiple unknown change points in time-series data,19–

22 unlike some previous studies17,18 that considered at most

only one change point. We estimated the change points sepa-

rately for each state and the District of Columbia. Third, we

estimated the time-dependent growth rate for each US state

based on its estimated change points and then identified five

different emerging trajectory patterns in COVID-19 outcomes.

Fourth, to link our estimated change points with population-

level NPIs adopted by each US state, we created a random

variable that assesses the relationship between the change

points in COVID-19 health outcomes and the dates of NPIs

and then tested the hypothesis of whether there is any impact

of the NPIs on the COVID-19 outcomes within several selected

days. For this, the underlying probabilistic model associated

with this random variable is also identified.

Data used for this study
Data for COVID-19 outcomes

We used the US COVID-19 dataset from the New York Times

data repository at https://github.com/nytimes/covid-19-data

for our analysis of the US pandemic change points. For the

data analysis, we selected the daily confirmed cases (from

March 8, 2020, to February 28, 2021) and daily deaths (from

March 18, 2020, to February 28, 2021) for each of the 50 states
4 Patterns 2, 100306, August 13, 2021
and the District of Columbia. We performed all the statistical

analysis using the statistical software R version 4.0.5.

Data for non-pharmaceutical interventions

We extracted the dates marking policy implementations, avail-

able until July 30, 2020, for each of the 50 states and the District

of Columbia, from the KFF GitHub (https://github.com/KFFData/

COVID-19-Data/tree/kff_master/State%20Policy%20Actions/

State%20Social%20Distancing%20Actions). We then manually

updated the policy dates until February 22, 2020, using the cur-

rent status of the different types of policies from August 3,

2019, to February 22, 2020.Wemade available the current status

of each policy in theKFFGitHub (here). If fromAugust to February

there was a change in the state of any of the below-mentioned

policy types, it was added to the original spreadsheet with policy

dates until July 30, 2020. Policieswere sorted into seven different

categories, including stay-at-home orders, mandatory quaran-

tines, non-essential business closures, bans on large gatherings,

school closures, limitations on restaurants, and declarations of a

state of emergency. The date of rollback for five of these policies

(stay-at-home orders, mandatory quarantines, non-essential

business closures, bans on large gatherings, and limitations on

restaurant limits) was also recorded. Each state could have mul-

tiple policies of the same type if, for example, the policy was im-

plemented, rolled back, and reimplemented. In this scenario, two

separate policy implementation dates would be recorded. The

updated policy data spreadsheet can be found at our GitHub

website. Basedon the updatedpolicy data spreadsheet,we visu-

alized the number of lockdown (Figure 1) and the number of re-

opening (Figure 2) policy implementations for each US state.
Figure 2. Number of reopening policy imple-

mentations for the 50 US states

The number of reopening policy implementations as

recorded by the KFF is displayed for each of the 50

states. For each state, there are five different dates

for different reopening policies, including the roll-

back of stay-at-home orders, mandatory quaran-

tine, non-essential business closures, large gath-

ering bans, and restaurant limits.

https://github.com/nytimes/covid-19-data
https://github.com/KFFData/COVID-19-Data/tree/kff_master/State%20Policy%20Actions/State%20Social%20Distancing%20Actions
https://github.com/KFFData/COVID-19-Data/tree/kff_master/State%20Policy%20Actions/State%20Social%20Distancing%20Actions
https://github.com/KFFData/COVID-19-Data/tree/kff_master/State%20Policy%20Actions/State%20Social%20Distancing%20Actions
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Figure 3. Estimated change points in the

Florida daily COVID-19 new confirmed cases

and cumulative confirmed cases for the

period from March 8, 2020, to February 28,

2021

New confirmed (left) and cumulative confirmed

(right) cases are shown. The blue line represents the

7-day moving average of daily new confirmed ca-

ses. The red vertical dashed lines indicate the GA-

estimated change points for the confirmed cases.
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RESULTS

Estimated change points for COVID-19 outcomes in
Florida
We applied our change-point method to each US state and the

District of Columbia. To depict a detailed picture of the entire

change-point results, we selected the COVID-19 data from Flor-

ida and thoroughly illustrated the analysis method and interpre-

tation. Figure 3 summarizes our GA change-point estimation re-

sults for the log-transformed 7-day moving average series of

daily new COVID-19 confirmed cases in Florida from March 8,

2020, to February 28, 2021. On the left, each vertical line denotes

the daily number of new COVID-19 confirmed cases, the blue

line represents the 7-day moving average case series, and the

red vertical dotted lines show the GA estimated change-point

times. As shown in the figure, the GA method estimates 10

change points on March 19, March 27, April 5, May 30, July

16, August 1, August 21, August 29, September 28, 2020, and

January 9, 2021, segmenting the study period into 11 different

regimes. These change-point times are also superimposed on

the daily cumulative COVID-19 cases as displayed on the right

of the figure. The GA appears to describe well the changes in

day-to-day growth rate of the number of new cases (on the
Table 1. Estimated means (with their standard errors in

parentheses) and standard deviations for day-to-day changes in

the Florida 7-day moving average COVID-19 log-transformed

confirmed cases

The regime for COVID-19 cases Estimated dj Estimated uj

March 8–March 18 0.4179 (0.0974) 0.3230

March 19–March 26 0.2172 (0.0131) 0.0371

March 27–April 4 0.0786 (0.0177) 0.0530

April 5–May 29 �0.0082 (0.0082) 0.0608

May 30–July 15 0.0594 (0.0068) 0.0466

July 16–July 31 �0.0212 (0.0062) 0.0248

August 1–August 20 �0.0389 (0.0076) 0.0338

August 21–August 28 �0.0343 (0.0051) 0.0143

August 29–September 27 �0.0085 (0.0125) 0.0685

September 28–January 8 0.0189 (0.0065) 0.0661

January 9–February 28 �0.0209 (0.0043) 0.0309

The parameters dj anduj are interpreted as the expected value and stan-

dard deviation, respectively, of day-to-day changes (or growth rate) in the

moving average during the period in regime j, as expressed in Equations 3

and 4.
left) and the changes in the growth rate for day-to-day cumula-

tive cases (on the right), as well.

Table 1 summarizes the estimated values of the means and

standard deviations for day-to-day changes in the Florida log-

transformed 7-day moving average case series with the 10

GA-estimated change points. The mean and standard deviation

estimates for the day-to-day changes (or growth rates) experi-

enced 11 different regimes, starting from a daily increase of

41.79% in the initial period of March 8–March 18, 2020, and

ending with �2.09% in the last period of January 9–February

28, 2021. The results also indicate that, since March 8, 2020,

the 7-day moving average of new cases increased, on average,

at a rate of 41.79% day�1 until March 18, and after 10 changes,

decreased at a rate of 2.09% day�1 in the period of January 9–

February 28, 2021.

Next, we applied the GA method to the log-transformed 7-day

moving average series of Florida daily COVID-19 deaths from

March 18, 2020, to February 28, 2021. The GA detected seven

change points on April 1, April 8, June 15, July 29, September 2,

October 24, 2020, and January 24, 2021, partitioning the study

period into eight regimes. Figure 4 depicts our GA change-point

estimation results. The left of the figure shows the number of daily

deaths as vertical lines, the 7-day moving average of daily deaths

as the blue line, and the GA-estimated change-point times as red

vertical lines. The right shows the daily cumulative deaths with

these four GA change-point times overlaid. The GA change-point

times appear to detect well the changing mean of day-to-day dif-

ferences in the deaths series (on the left) and also the changes in

the rate of mean changes in day-to-day cumulative cases (on

the right).

Table 2 summarizes the estimated values of the means and

standard deviations for day-to-day changes in the Florida log-

transformed 7-day moving average death series with the 10 GA-

estimated change points. The estimated mean for the day-to-

day growth rate in Florida COVID-19 deaths was 20.47% in the

initial regime for March 18–31, and after seven changes, was

decreased to �0.80% in the last regime for January 24–February

28, 2021. Equivalently, this result implies that the 7-day moving

average of COVID-19 deaths changed, starting from a rate of

20.47% day�1 until March 31 and ending with a rate of �0.80%

day�1 for the period of January 24–February 28, 2021.

Estimated change points for COVID-19 outcomes in the
United States
Wenow summarize our results of GA-estimated change points in

the United States for two COVID-19 outcomes: (1) 7-day moving
Patterns 2, 100306, August 13, 2021 5
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Figure 4. Estimated change points in the

Florida daily COVID-19 new deaths and cu-

mulative deaths for the period from March

8, 2020, to February 28, 2021

New (left) and cumulative (right) deaths are shown.

The blue line represents the 7-day moving average

of daily new deaths. The red vertical dashed lines

indicate the GA-estimated change points for the

new deaths.
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average series of daily new COVID-19 confirmed cases from

March 8, 2020, to February 28, 2021, and (2) 7-day moving

average series of daily COVID-19-related deaths from March

18, 2020, to February 28, 2021. For the new confirmed cases,

we considered all 50 states and the District of Columbia in the

analysis. For the death data, only those states that exceeded

720 cumulative deaths as of February 28, 2021, were considered

in this study, resulting in Alaska, Hawaii, Maine, Vermont, and

Wyoming being excluded from the analysis.

Figure 5 depicts our GA change-point results for the daily new

cases. Except for Hawaii, with its highest peak occurring in

August 2020, all of the US states experienced their highest peaks

during November 2020 and January 2021. Focusing on the con-

tinental United States, we identified five emerging patterns of the

trajectory of US confirmed cases. The first pattern, denoted

by +�+, is observed in Connecticut, Delaware, District of

Columbia, Massachusetts, Michigan, New Hampshire, New Jer-

sey, New York, Rhode Island, and Vermont, showing an early

peak during April and May, a fast decrease after then, and the

highest peak inmid-November 2020 and January 2021. The sec-

ond pattern, denoted by +++, occurs in Illinois, Indiana, Louisi-

ana, Maryland, Nebraska, Pennsylvania, Virginia, and Washing-

ton, characterized by the first peak in late March and May,

another peak during the summer, and then the highest peak be-

tween mid-November 2020 and January 2021. The third pattern,

�++, which shows two substantial peaks, the first substantial

peak around July and the highest peak occurring between

mid-November 2020 and January 2021, is observed in Alabama,
Table 2. Estimated means (with their standard errors in

parentheses) and standard deviations for day-to-day changes in

Florida 7-day moving average COVID-19 log-transformed deaths

The regime for COVID-19 deaths Estimated dj Estimated uj

March 18–March 31 0.2047 (0.0474) 0.1773

April 1–April 7 0.1008 (0.0170) 0.0450

April 8–June 14 �0.0020 (0.0081) 0.0666

June 15–July 28 0.0387 (0.0075) 0.0495

July 29–September 1 �0.0116 (0.0070) 0.0413

September 2–October 23 �0.0119 (0.0116) 0.0838

October 24–January 23 0.0115 (0.0063) 0.0607

January 24–February 28 �0.0080 (0.0058) 0.0348

The parameters dj anduj are interpreted as the expected value and stan-

dard deviation, respectively, of day-to-day changes (or growth rate) in the

moving average during the period in regime j, as expressed in Equations 3

and 4.
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Alaska, Arizona, California, Florida, Georgia, Idaho, Mississippi,

Nevada, Oregon, South Carolina, Tennessee, Texas, and Utah.

The fourth pattern, �/+, shows low constant trends until August

and then a sharp increase, with the highest peak occurring be-

tween November 2020 and January 2021, and appears in Colo-

rado, Maine, Minnesota, Montana, New Mexico, North Dakota,

Ohio, South Dakota, West Virginia, Wisconsin, and Wyoming.

The rest of the states experienced a steady increasing trend

and then a fast increase, with the highest peak during the winter,

the fifth pattern, //+, in daily case series.

Table 3 summarizes the continental US states and the District

of Columbia according to their corresponding patterns. We find

geographical similarities within these five patterns, especially in

patterns 1, 3, 4, and 5. Specifically, we note several northeastern

states in pattern 1, many southern states in pattern 3, northern

states in pattern 4, and a few central states in pattern 5.

Five patterns are also found in the daily deaths as displayed in

Figure 6. The first pattern (+�+), an early considerable peak dur-

ing April and May, a fast decrease after then, and another peak

from December 2020 to February 2021, is observed in Colorado,

Connecticut, Delaware, District of Columbia, Illinois, Indiana,

Maryland, Massachusetts, Michigan, Minnesota, New Hamp-

shire, New Jersey, New York, Pennsylvania, and Rhode Island.

The second pattern (+++) of a first peak in April, another substan-

tial peak in the summer, and then a third peak in the winter ap-

pears in Florida, Louisiana, and Washington. The third pattern

(+//), with three incremental peaks, one peak during April and

May, a larger peak during July and August, and the highest

peak between December 2020 and February 2021, is found in

Alabama, Arizona, California, Georgia, Idaho, Mississippi, Ne-

vada, New Mexico, Oregon, South Carolina, Texas, and Utah.

The fourth pattern (��+), a low steady trend and then one large

peak from November 2020 to February 2021, can be found in

Iowa, Kansas, Montana, Nebraska, North Dakota, South Dakota,

West Virginia, and Wisconsin. The fifth pattern (//+), a steadily

increasing trend, is observed in Arkansas, Kentucky, Missouri,

North Carolina, Ohio, Oklahoma, Tennessee, and Virginia.

Table 4 summarizes these 45 states and theDistrict ofColumbia

according to their similar patterns. Geographical similarities are

also identified: several northeastern states in pattern 1, southern

states in pattern 3, and a few central states in pattern 4.
Lag time between NPIs and change points for
confirmed cases
In Table 5, we report the results of the hypothesis test using the

Wilcoxon signed-rank test for test 1. At a 5% level of signifi-

cance, the null hypotheses with d = 3 and d = 7 are rejected,
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Figure 5. Estimated change points in US COVID-19 confirmed cases

The blue line represents the 7-day moving average of daily confirmed cases. The red vertical dashed lines indicate the GA-estimated change points.
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Table 3. Five patterns of changes in daily COVID-19 new cases for the continental United States

Pattern 1 (+�+) Pattern 2 (+++) Pattern 3 (�++) Pattern 4 (�/+) Pattern 5 (//+)

Connecticut Illinois Alabama Colorado Arkansas

Delaware Indiana Alaska Maine Iowa

District of Columbia Louisiana Arizona Minnesota Kansas

Massachusetts Maryland California Montana Kentucky

Michigan Nebraska Florida New Mexico Missouri

New Hampshire Pennsylvania Georgia North Dakota North Carolina

New Jersey Virginia Idaho Ohio Oklahoma

New York Washington Mississippi South Dakota

Rhode Island Nevada West Virginia

Vermont Oregon Wisconsin

South Carolina Wyoming

Tennessee

Texas

Utah

ll
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but the null hypotheses with d = 10 and 14 are not. This result

shows that the effect of a policy on a change point in COVID-

19 confirmed cases may occur within 10 days of an NPI.

Figure 7 is the visual representation of the goodness-of-fit test

to the log-normal distribution. All plots in the figure indicate that

the log-normal model is well justified, as the candidate distribu-

tion of our random variable Ywith change point is based on daily

confirmed cases. Table 6 represents the numerical goodness-

of-fit results based on the Akaike information criterion (AIC)

and the Bayesian information criterion (BIC). It shows that the

log-normal model gives the best fit to the data compared with

other competing models. To be more specific, both AIC and

BIC values for the log-normal are at least 50 points below their

closest competitor (Weibull model).

Now, we compute the log-normal parameter estimates and

their standard errors for our fitted log-normal probability model

and summarize the results in Table 7. The fitted log-normal cu-

mulative distribution function plot for our random variable Y is

displayed in Figure 8. This summarizes how our model can be

used to figure with a certain degree of certainty within how

many days wewill see an impact of a policy or NPI on the change

point in daily confirmed cases. For example, based on the red

dotted horizontal line, we find that there is a 50% chance that

we will see the effect of an NPI on changing the positivity rate

within 8 days. Similarly, based on the blue-dotted horizontal

line, there is a 95% chance that we will see the effect of an NPI

on changing the positivity rate within 61 days.

Lag time between NPIs and change points for
death cases
The Wilcoxon signed-rank test results for the lag time between

NPIs and change points for the death cases (test 2) are summa-

rized in Table 8. At a 5% level of significance, the null hypotheses

withd=3andd=7are rejected,but thenull hypotheseswithd=10

and 14 are not. It shows that the effect of the policy on change

points in the COVID-19 daily death counts may occur within

10 days of an NPI.

Figure 9 displays the goodness-of-fit to the log-normal distri-

bution. All plots in the figure indicate that the log-normal model
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is satisfactorily justified as the candidate distribution of our

random variable Y with change point based on daily deaths. Ta-

ble 9 represents the goodness-of-fit results based on AIC and

BIC. The result numerically confirms that the log-normal model

gives the best fit to the data compared with other competing

models. To be more specific, both AIC and BIC values for the

log-normal are at least 40 points below their closest competitor

(Weibull model).

Table 10 shows the log-normal parameter estimates and their

standard errors for our fitted log-normal model. Using these esti-

mates, we estimated the cumulative distribution function of our

randomvariableY for the death cases. Figure 10depicts this result

and summarizes how ourmodel can be used to assesswithin how

many days we will see an impact of a policy or NPI on the change

point in daily death counts. For instance, from the red dotted hor-

izontal line, there is a 50% chance that we will see the effect of an

NPI on changing the daily death counts within 9 days. Similarly,

from the blue-dotted horizontal line, we can conjecture that there

is a 95% chance that we will see the effect of an NPI on changing

the daily death counts within 74 days.

Association of policy types with COVID-19 growth rate
changes
For each state and each dataset of COVID-19 cases and deaths,

we calculated the number of positive and negative changes in the

estimatedCOVID-19growth rates that followed lockdownpolicies

and also the number of positive and negative changes in the esti-

mated COVID-19 growth rates that followed reopening policies.

The change in growth rates at the current regime was determined

by subtracting the previous growth rate from the current growth

rate. A positive change in the growth rate represents an increase

in the growth rate of COVID-19 cases or deaths, while a negative

change in the growth rate indicates a decrease in the growth rate

of COVID-19 cases or deaths. These results are summarized in

Table 11. Overall, lockdown policies are more associated with a

decrease in growth rates (�87.6% for confirmed cases and

�69.2% for deaths), and reopening policies are more likely asso-

ciated with an increase in growth rates (�68.9% for confirmed

cases and �53.4% for deaths). Considering that many other
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Figure 6. Estimated change points in US COVID-19 deaths

The blue line represents the 7-day moving average of daily deaths. The red vertical dashed lines indicate the GA-estimated change points.
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factors can influence growth rates, this identified association be-

tween policy type and growth rate change is notable.

We then conducted a chi-square test for independence be-

tween the policy type and the growth rate change using the re-

sults in Table 11 and found that there was a significant associa-

tion between policy type and growth rate change for cases (c2 =
113.29, p < 0.001) and for deaths (c2 = 13.41, p < 0.001). We see

a less prominent association between policy type and growth

rate change for COVID-19 deaths. This is likely because death

is a more distal measure of pandemic trajectory, and therefore

there are more confounders between the policy and its change

point that will affect the strength of the relationship.
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Table 4. Five different patterns of changes in daily COVID-19 related deaths in the United States

Pattern 1 (+�+) Pattern 2 (+++) Pattern 3 (+//) Pattern 4 (��+) Pattern 5 (//+)

Colorado Florida Alabama Iowa Arkansas

Connecticut Louisiana Arizona Kansas Kentucky

Delaware Washington California Montana Missouri

District of Columbia Georgia Nebraska North Carolina

Illinois Idaho North Dakota Ohio

Indiana Mississippi South Dakota Oklahoma

Maryland Nevada West Virginia Tennessee

Massachusetts New Mexico Wisconsin Virginia

Michigan Oregon

Minnesota South Carolina

New Hampshire Texas

New Jersey Utah

New York

Pennsylvania

Rhode Island
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To further understand this association, in Figure 11 we visu-

alize the distribution of the magnitude of the growth rate

changes associated with lockdown and reopening policies for

confirmed cases (top) and deaths (bottom). As expected, lock-

down policies have overall lower growth rate change for both

confirmed cases and deaths, whereas reopening policies

tend to have increased growth rate changes for both outcomes.

We find that the separation for growth rate change between

lockdown policies and reopening policies is greater for

confirmed cases than for deaths.
DISCUSSION

As the pandemic becomes more apparent and the COVID-19 vi-

rus spreads more widely, governments and public health

agencies have responded to this evolving situation, intending

to reduce COVID-19 transmission by implementing several

health policies. The US COVID-19 data show that the confirmed

cases and deaths have had multiple changes in their growth

rates according to the implemented policies. However, how

many changes there are andwhen those changes have occurred

are not clear for many states and should be rigorously estimated

by using a reasonable approach. Otherwise, a naive use of the

existing epidemiological models with these changes ignored

could result in an unrealistic prediction with spurious patterns.

To better understand the actual COVID-19 data with these

changing patterns considered, we applied several statistical ap-

proaches to study such different patterns of change.
Table 5. Results from the Wilcoxon signed-rank test with four

different choices of d days

d (days) P

3 <0.001

7 <0.001

10 0.312

14 �0.999
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We used two different sources of data and incorporated their

separate analytical results to develop a unified method from a

statistical data science perspective. For the first part of our uni-

fiedmethod, we used twomajor outcomes (confirmed cases and

deaths) associated with the COVID-19 pandemic. By using a

stepwise drifts randomwalk model and a GA technique for those

outcomes presented in the COVID-19 data, we assessed

whether there existed changes in the growth rates of the out-

comes over time for all the US states. We applied the GA

change-point method to estimate change points in each state.

We found that there were similarities in the trajectory of US

COVID-19 outcomes among the states and then categorized

the continental US states and the District of Columbia into five

groups based on the underlying changing patterns associated

with the outcomes. As summarized in Tables 3 and 4, we found

strong geographical similarities within the five pattern groups,

especially among the northeastern, northern, southern, and cen-

tral states.

In the second part of our unified method, we connected the

findings from the change-point analysis to test the hypothesis

to see if there exists any connection or impact between the pol-

icies (NPI) adapted by several states over time and the change

points we have estimated from the change-point analysis of

the COVID-19 outcomes. By using a time-to-event modeling

approach for this context, we created a random variable, which

can represent the lag times between the policies and their asso-

ciated change points. A graphical example is provided for Florida

to illustrate how this random variable can be interpreted as illus-

trated in Figure 12. Once this random variable is observed, our

hypothesis testing problem is then well defined. We tested the

hypothesis on the short-term and long-term impact of policies

on the change of growth rate for COVID-19 confirmed cases

and deaths by choosing several combinations of the lag time in

days. We found that a policy implementation takes on average

about 10–14 days to be effective in changing the growth rate

of COVID-19 outcomes.

As the realizations of a random variable can be characterized

by a probability distribution, we further found that our defined



Figure 7. Visual diagnostics of the goodness

of fit for the random variable Y to the log-

normal model for the confirmed cases

CDF, cumulative distribution function.
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random variable can be modeled by the two-parameter log-

normal distribution as it is commonly used for the time-to-event

data. Once we fitted the log-normal distribution to the data asso-

ciated with our random variable, we were able to visualize how

our log-normal model can be used to estimate, with certain de-

gree of certainty, within how many days we will see an impact

of a policy or NPI on the change point based on the outcomes

of the COVID-19 pandemic. Also, our fitted log-normal model

can be further used as a generative model to illustrate behavioral

patterns of general public policy measures (NPI) on changing the

course of public health in a pandemic situation. For example, our

generative model can be used as a tool to help local govern-

ments decide when to put a policy into effect and how long it

will take its course to run before they can see any significant

impact on public health outcomes.

There are some directions to be considered for future research.

First, our lag-time random variable, when evaluating the time gap

between policy changes and their subsequent change points,

considers only the latest policy change and the first subsequent

change point. This approach could underestimate longer-term as-

sociations between policy changes and their change points. By

extending our model, one could create multiple lag-time random

variables for different policies and therefore could more rigorously

assess the long-term effects of each policy. This extended

approach could also be useful to assess potential impacts of

repeated implementations of the sample policy on COVID-19 out-
Table 7. Parameter e

change point for the c

Parameter Es

m 2.0

S 1.2

Table 6. Goodness-of-fit criteria for the log-normal model for the

confirmed cases

Log-normal Weibull Gamma Gumbel

AIC 2,664.28 2,721.94 2,737.68 3,015.42

BIC 2,672.05 2,729.71 2,745.46 3,023.19
comes. Second, our lag-time log-normal

model does not consider covariates that

could have an impact on lag-time distribu-

tion. Identifying such influential covariates

and incorporating them into a relevant para-

metric or semiparametric model would

seem useful. Third, one could be interested

in incorporating heterogeneity of policy

changes among different groups. To be

specific, school closure, for example, could

differently affect primary, secondary, and

high schools and colleges and also could

be different across regions and locations

within the same state. In addition, the

impact of state-level policies versus local

policies in long-term care facilities could

be further studied, as a substantial portion

of COVID-19 deaths in the United States

have been reported in long-term care facil-
ities. Finally, althoughwe identified five patterns of the USCOVID-

19 trajectory and found geographical similarities within the pat-

terns, a further study is anticipated to investigate what might be

driving the five patterns.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information regarding this study should be requested from the lead

contact, Francesca Dominici (fdominic@hsph.harvard.edu).

Materials availability

This study did not generate any physical materials.

Data and code availability

All codes and data are available at the GitHub repository: https://github.com/

jaechoullee/COVID-19-Policy-and-Changepoints.

Change-point detection for COVID-19 outcomes

Suppose fX1;.; Xng denotes a 7-day moving average series of daily new

COVID-19 confirmed cases over a study period of n days for a given state.

Because the 7-day moving average COVID-19 case series is non-stationary

with a very strong temporal correlation, we use a randomwalk process tomodel

these features presented in the COVID-19 data. In general, random walk pro-

cesses are a stochastic process with a Markov property: the current state is

dependent on the previous state only among all other past states.23 However,

since adopted health policies could influence the rate of change in the number

of new COVID-19 cases, as described below we develop a model that takes

these possible rate changes into account to avoid bias in the model parameter

estimation.24
stimates for the log-normal model with

onfirmed cases

timate (in log scale) Standard error

369 0.0662

569 0.0467
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Figure 8. Cumulative density plot from the log-normal model to

showcase days to decide as a function of cumulative probability

for the confirmed cases

Table 8. Results from the Wilcoxon signed-rank test with four

different choices of d days for the death counts

d (days) P

3 <0.001

7 <0.001

10 0.081

14 0.933
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More specifically, we assume that the rate of change in the 7-day moving

average new COVID-19 case series has changed m times on days t1;.;tm.

To incorporate these rate changes into the COVID-19 data with non-stationary

and strong autocorrelation features, we consider a random walk model with

varying stepwise drifts:

ln Xt = ln Xt�1 +Dt +Zt ; (Equation 1)

where Xt denotes the 7-day moving average of the COVID-19 outcome (either

daily confirmed cases or daily deaths) on day t, Dt represents a time-depen-

dent stepwise drift on day t with multiple changes occurring at times t1;.;

tm, modeled as
12 Patterns 2, 100306, August 13, 2021
Dt =

8><
>:

d1; 1%t<t1;
d2; t1%t<t2;
«; «
dm+ 1; tm%t%n;

and fZtg is a mean-zero Gaussian white noise process with a variance of U2
t

varying at times t1;.;tm:

U2
t =

8>>>>>><
>>>>>>:

u2
1; 1%t<t1;

u2
2; t1%t<t2;

«; «

u2
m+ 1; tm%t%n:

Note that since m change points occurred at times t1;.; tm, the random

walk model in Equation (1) experiences a total m+ 1 different regimes. The

model parameters dj and u2
j are interpreted as the expected value and vari-

ance of day-to-day changes in ln Xt , respectively, during the period in regime

j, for j = 1;.;m+ 1. To elaborate, we reexpress the model in Equation (1) as

ln Xt � ln Xt�1 = Dt + Zt ; (Equation 2)

and, by taking expectation and variance on both sides of Equation (2), we

obtain:

Eðln Xt � ln Xt�1Þ = dj; (Equation 3)
Figure 9. Visual diagnostics of the goodness

of fit of the random variable Y to the log-

normal model for the death cases

CDF, cumulative distribution function.



Table 9. Goodness-of-fit criteria for the log-normal model for

death counts

Log-normal Weibull Gamma Gumbel

AIC 2,130.96 2,173.89 2,186.68 2,421.36

BIC 2,138.21 2,181.13 2,193.93 2,428.61

Figure 10. Cumulative density plot from the log-normal model to

showcase days to decide as a function of cumulative probability

for the death counts
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Varðln Xt � ln Xt�1Þ = u2
j ; (Equation 4)

if day t is in regime j.

We note that the difference in log-transformed daily outcomes, ln Xt �
ln Xt�1, approximates the daily growth rate pt = ðXt � Xt�1Þ=Xt. To elaborate,

the growth rate pt can be reexpressed as Xt = ð1 +ptÞXt�1, which in turn is

equivalent to ln Xt � ln Xt�1 = lnð1 +ptÞ. If the growth rate pt is relatively small

in magnitude as the COVID-19 case, the right-sided term is approximated as

lnð1 +ptÞzpt . Therefore, the use of log-transformed outcomes to the stepwise

drifts random walk model can be effective to model the changes in

growth rates.

If the change-point number m and the change-point times t1;.; tm are a

priori known, we can estimate the random walk model parameters using the

maximum likelihood method. However, becausem and t1;.; tm are unknown

inmany practices as COVID-19 outcomes, we treat these change points as un-

known parameters and estimate them from the data. In addition, although the

starting dates of newly implemented health policies are known, we do not

know the exact dates of actual changes in day-to-day growth rate because

of many factors that are inducing the changes with unknown time lags. Due

to these reasons, we propose estimating the change-point number and times

based on the COVID-19 data.

To estimate the change-point numberm and change-point times t1;.; tm in

the model (Equation 1), we use a GA. The GA is a data-driven search algorithm

that finds an optimal solution for a given target function by implementing the

principle of natural selection. Similar to the GA methods developed by Davis

et al., Li and Lund, and Lee et al.,19–22 our GA method uses a penalized likeli-

hood approach with a penalty based on the minimum description length crite-

rion. Our GA method can successfully detect multiple change points, unlike

some other at-most one-change-point methods used in recent COVID-19

change-point results.17,18 Further, our GA method is distinct from the existing

GA methods in that our GA uses the likelihood function derived from the step-

wise drifts random walk model in Equation (1) to specifically adapt to the non-

stationary and strong temporal correlation features in the COVID-19 data. By

applying the GA method with a stepwise drifts random walk model, we esti-

mate the change points in the 7-day moving average of daily positive cases

for March 8, 2020, to February 28, 2021, and the change points in the 7-day

moving average of daily deaths for March 18, 2020, to February 28, 2021.
Table 11. Contingency table for the relationship between policy
Probabilistic inference on association between NPIs and change

points

To gather evidence regarding a potential association between the impact of a

policy (NPI) on the change point in COVID-19 outcomes, we have created a

random variable Y by using the following definition:

Y = the number of days from the last policy to the next change point:

Note that we ignore the change point without any policy before the previous

change point. Furthermore, we calculate the Y separately from those change

points for the number of daily positive cases and the number of daily deaths.

To be specific, assume a state policy (NPI) is denoted by P and a change point
Table 10. Parameter estimates for the log-normal model with

change point based on death counts

Parameter Estimate (in log scale) Standard error

m 2.1549 0.0784

S 1.3041 0.0554
by C and suppose we find the following sequence of events: P1 P2 P3 C1 C2 P4

C3. Then, the first value of Y is calculated by the number of days between P3

and C1; the second value of Y is the number of days between P4 and C3,

and so on. Figure 12 is an example of how the values of this random variable

Y were computed based on the daily confirmed COVID-19 case data of the

state of Florida. We did this computation for all 50 states and the District of

Columbia to obtain the set of observed values for our defined random variable

Y.

Once the Y values are computed, our first hypothesis testing is as follows:

Test 1

d H0 (null hypothesis): after a policy is implemented, a day-to-day growth

rate change in COVID-19 confirmed cases occurs on average in at

most d days.

d H1 (alternative hypothesis): after a policy is implemented, a day-to-day

growth rate change in COVID-19 confirmed cases occurs on average

in more than d days.

Here, we test the above hypotheses for four different values of d (in the num-

ber of days): 3 (for immediate impact), 7, 10 (for moderate impact), and 14 (for

long-term impact). Overall, the above hypothesis testing scheme will reveal to

us ‘‘if and how long it takes for an NPI to cause significant impact (change

point) on the daily positive case counts.’’

Next, we formulate similar statistical hypotheses but with Y defined based

on the change point for the daily count of COVID-19 related deaths as follows:

Test 2

d H0 (null hypothesis): after a policy is implemented, a day-to-day growth

rate change in the number of COVID-19-related deaths occurs on

average in at most d days.

d H1 (alternative hypothesis): after a policy is implemented, a day-to-day

growth rate change in the number of COVID-19-related deaths occurs

on average in more than d days.

We also test these hypotheses for four different values of d (in the number of

days): 3 (for immediate impact), 7, 10 (for moderate impact), and 14 (for long-
type and growth rate change for the confirmed cases and death

counts

Growth rate for

confirmed cases Growth rate for deaths

Policy type Increase Decrease Increase Decrease

Lockdown 28 198 49 110

Opening 91 44 63 55
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Figure 11. Change in the growth rates for COVID-19 outcomes by

lockdown and reopening policies

Shown are confirmed cases (top) and deaths (bottom).
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term impact). This hypothesis testingwill help us better understand ‘‘if and how

long it takes for an NPI to cause significant impact (change point) on the daily

number of COVID-19 related death counts.’’

Because the data on our Y (the number of days from the last policy to the

next change point for daily positive cases and daily deaths) do not exactly

follow a normal distribution and the sample size is not large enough for the
14 Patterns 2, 100306, August 13, 2021
asymptotic normality, we use a non-parametric test, Wilcoxon test, to test

the hypotheses in tests 1 and 2.

To quantify the uncertainties for our random variable Y, we need to identify

which probability distribution fits the data best so that we can calculate the

probability of impact of a policy decision on the change point of outcome (pos-

itivity and death counts) from the pandemic. It is important to use the probabil-

ity distribution that accurately reflects the nature of the data. There are a few

choices in this situation. From the way we have defined the random variable

Y, the Y values can be treated as time-to-event data. For time-to-event or life-

time data, a common choice is a log-normal distribution; in fact, later we will

justify why the ‘‘log-normal’’ model is more suitable for this problem compared

with other competing models. Therefore, we assume that Y follows a log-

normal distribution with parameters m and s > 0, respectively. The probability

density function (PDF) of Y is hence expressed as

fðyÞ = 1

ys
ffiffiffiffiffiffi
2p

p exp

�
� ðln y � mÞ2

2s2

�

for y > 0.

Note that we have two sets of data on Y, one when we use the positivity

numbers for change point and the other when we use the death counts for

change point. Therefore, we fit two separate log-normal distributions to

each of these separately calculated values of Y. We visually assess the good-

ness of fit by overlaying the histogramwith the PDF. We also produce Q-Q and

P-P plots. For a numerical verification, we compare the log-normal model to a

few other competing models (Gamma, Gumbel, and Weibull) using the two

model selection indices AIC and BIC. The model with the smallest AIC and

BIC values is selected as our best model. In both cases, the log-normal model

gives us the smallest AIC and BIC values compared with all the others. All our

hypothesis testing was performed with a 5% level of significance.
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