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Colorectal cancer (CRC) ranks as the third most prevalent tumor and the second leading cause of 
mortality. Early and accurate diagnosis holds significant importance in enhancing patient treatment 
and prognosis. Machine learning technology and bioinformatics have provided novel approaches for 
cancer diagnosis. This study aims to develop a CRC diagnostic model based on immunohistochemical 
staining image features using machine learning methods. Initially, CRC disease-specific genes were 
identified through bioinformatics analysis, SVM-RFE and Random Forest algorithm utilizing RNA-seq 
data from both GEO and TCGA databases. Subsequently, verification of these genes was performed 
using proteomics data from CPTAC and HPA database, resulting in identification of target proteins 
(AKR1B10, CA2, DHRS9, and ZG16) for further investigation. SVM and CNN were then employed to 
analyze and integrate the characteristics of immunohistochemical images to construct a reliable CRC 
diagnostic model. During the training and validation process of this model, cross-validation along 
with external validation methods were implemented to ensure accuracy and reliability. The results 
demonstrate that the established diagnostic model exhibits excellent performance in distinguishing 
between CRC and normal controls (accuracy rate: 0.999), thereby presenting potential prospects 
for clinical application. These findings are expected to provide innovative perspectives as well as 
methodologies for personalized diagnosis of CRC while offering more precise references for promising 
treatment.
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Colorectal cancer (CRC) is a prevalent malignant tumor, and its incidence is progressively increasing due to the 
changing unhealthy lifestyle habits, dietary patterns, and aging1. It primarily affects individuals over 50 years 
old2. Despite advancements in early screening and treatment methods that have improved patient survival rates, 
CRC remains one of the leading causes of death worldwide3. Many patients are diagnosed at an advanced stage, 
which significantly increases the risk of recurrence and metastasis4. Therefore, timely diagnosis plays a crucial 
role for CRC patients as it enables early detection of the disease’s presence, determination of its type, grading, 
and spread. This provides patients with an opportunity for early treatment interventions that can enhance 
treatment efficacy and improve survival rates. Timely and precisely diagnosis can help prevent tumor progression 
to advanced stages by reducing the complexity and difficulty associated with treatment while alleviating both 
physical and psychological burdens on patients5. Furthermore, accurate diagnosis aids doctors in developing 
personalized treatment plans encompassing surgery, chemotherapy, radiotherapy among other modalities to 
minimize patient discomfort while enhancing their overall quality of life6.

Currently, commonly employed techniques for the diagnosis of CRC encompass colonoscopy, fecal occult 
blood examination, blood marker detection, and imaging examinations such as CT scanning4. Nevertheless, 
these methods possess inherent limitations7. For instance, colonoscopy necessitates patient cooperation and is 
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not universally applicable due to its costliness; fecal occult blood examination may yield false positive or false 
negative outcomes; blood marker detection lacks specificity and can be influenced by other factors; imaging 
examinations fail to accurately differentiate between benign and malignant lesions8. Consequently, despite their 
certain utility in diagnosing CRC, these methods still exhibit constraints. It is imperative to comprehensively 
consider clinical manifestations, risk factors, and medical resources when selecting appropriate diagnostic 
approaches. In clinical practice, a comprehensive evaluation combined with clinical symptoms, colonoscopy 
findings, and histopathological examination results typically serves as the gold standard for diagnosing CRC8.

The field of clinical diagnosis assisted by artificial intelligence is rapidly advancing9. Its primary advantage 
lies in leveraging machine learning and deep learning technologies to analyze vast amounts of medical data, 
including images, genomes, and clinical records, thereby aiding doctors in making quicker and more accurate 
decisions regarding diagnosis and treatment10. Artificial intelligence has demonstrated significant potential 
in tumor screening, disease classification, image recognition, and other domains11. It not only enhances the 
precision and efficiency of diagnoses but also fosters the development of personalized medicine by offering 
patients more precise and tailored treatment plans12. With ongoing technological advancements and increased 
integration into clinical practice, AI-assisted clinical diagnosis will bring about revolutionary changes in 
healthcare delivery while elevating the standard of medical care provided to enhance patients’ quality of life13.

In this study, we successfully identified diagnostic markers for CRC through bioinformatics analysis, SVM-
RFE, and the Random forest method. These markers were systematically analyzed using data mining (TCGA 
and GEO database) and multi-omics analysis (genomics and proteomics), resulting in the identification of a 
group of genes with significant differential expression that play crucial roles in the occurrence and development 
of CRC. This discovery provides new insights into diagnosis possibilities for CRC, offering strong support for 
potential applications in its diagnosis and treatment. To further enhance accuracy and sensitivity in clinical 
practice, we conducted machine learning (SVM and CNN) on immunohistochemical images of target proteins, 
and constructed a comprehensive diagnostic model. Through analyzing large amounts of immunohistochemical 
image data, we successfully established a diagnostic model that comprehensively considers different marker 
expression patterns, providing a more accurate auxiliary tool for diagnosing CRC. This breakthrough is expected 
to bring important progress to clinical practice.

Results
Differentially expressed genes in CRC
We enrolled three datasets (GSE18105, GSE21510, and GSE33114) from the GEO database, which included both 
CRC and normal tissues. To enhance the credibility and stability of our findings, we initially merged these three 
datasets to increase the sample size in our study. Through differential analysis (Fig. 1A and 1B), we identified a 
total of 374 DEGs. Similarly, by performing the same analysis in the TCGA database, we obtained 2,514 DEGs 
encoding proteins (Fig. 1C). By intersecting the results from both databases, we ultimately identified 232 genes 
with consistently altered expression in CRC (Fig. 1D).

Disease-characteristic genes of CRC
In Fig. 2A, the X-axis represents the number of trees, while the Y-axis represents the cross-validation error. 
The three curves in the figure represent errors for the control group, experimental group, and all samples 
respectively. The all-sample error is depicted by a black line. Our objective was to identify the point with minimal 
cross-validation error to determine the corresponding number of trees and genes. In Fig. 2B, gene names are 
represented on the Y-axis, whereas gene importance scores are shown on the X-axis. A higher score indicates 
greater gene importance. We selected genes with a score exceeding 0.5 for further investigation, resulting in a 
total of 30 characteristic genes associated with CRC. To further compare and validate the other machine learning 
methods for identifying disease-related genes, we employed the SVM-RFE algorithm to screen DEGs, resulting 
in a total of 282 candidate genes (Fig. 2C). Subsequently, we identified 26 CRC-specific genes by intersecting 
the sets of the genes obtained from both algorithms, which were then utilized in subsequent research (Fig. 2D).

Revalidation of protein levels
When the aforementioned characteristic genes of CRC were inputted into the CPTAC database, we discovered 
that 6 proteins exhibited consistency with the results of genomics analysis and fulfilled the criteria for subsequent 
analysis. The disparities in protein expression between tumor and normal tissues, as well as across various tumor 
stages, are depicted in Fig.  3A-L. Through validation in the HPA database, we ultimately confirmed that 4 
proteins displaying significantly differential expression would be incorporated into the construction of machine 
learning models via IHC. The immunohistochemical maps illustrating these proteins in both normal tissues 
and bowel cancer tissues can be observed in Fig. 4, while their quantitative outcomes are presented in Table 1.

CRC machine learning model (SVM and CNN) based on immunohistochemical graph 
construction
The schematic diagram of the CRC diagnosis based on machine learning of immunohistochemical pathological 
images is presented in Fig. 5A. The framework for dataset division, model training, and prediction evaluation 
is illustrated in Fig. 5B. Additionally, Fig. 5C displays the ROC curve and binary confusion matrix obtained 
using the immunohistochemical staining images from the HPA database. AKR1B10, CA2, DHRS9, and ZG16 
were utilized as four biomarkers respectively. Among them, DHRS9 exhibited the highest accuracy (0.710) in 
diagnosing CRC compared to others such as ZG16 which had lower accuracy (0.550) and specificity (0.531), 
as shown in Table 2. In order to enhance the sensitivity and specificity, we utilized the diagnostic markers and 
performed joint diagnosis using the SVM algorithm. Based on the ROC curve and binary confusion matrix 
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depicted in Fig. 5D, it is remarkably observed that the model accurately classified all 400 normal colon tissues, 
with only 5 out of 400 colon cancer tissues being misdiagnosed as normal tissues. This resulted in an exceptional 
accuracy and specificity of 0.999 (Table 2, Table S1).

In Figure S1, we further compared the results of CRC diagnosis models based on the same set of IHC images 
using a CNN model. We were surprised to observe that, in contrast to the SVM model’s results, while utilizing a 
single marker, the accuracy rate for diagnosing each marker as a target for diagnosis approached 100% (Figure 
S1 A ~ D, F ~ I). Among the four markers, DHRS9 exhibited the highest accuracy rate (100%), whereas ZG16 
demonstrated the lowest accuracy rate (95%). However, upon considering all four markers collectively, it is 
evident that the diagnostic rate of the CNN is inferior to the combined diagnostic rate of the SVM (Figure S1E, 
J, Table S2). At this juncture, the proposed model introduces a novel approach for diagnosing CRC, showcasing 
the potential of machine learning in analyzing IHC images while providing robust support for clinical diagnosis 
and practice.

Discussion
The highlight of this study lies in the acquisition of a set of characteristic genes associated with CRC through 
multi-omics research and machine learning methods. By leveraging the features extracted from IHC images, 
we have developed a highly robust diagnostic model using machine learning techniques, which significantly 
contributes to the diagnosis of CRC and advances precision medicine. Multi-omics analysis refers to the 
comprehensive utilization of diverse biological data types including genomics, transcriptomics, proteomics, 
metabolomics, etc., aiming to gain a holistic understanding of the complexity and diversity within biological 
systems13. Its advantage lies in its ability to simultaneously consider multiple levels of biological information 

Fig. 1. Differential analysis of genes encoding proteins in CRC. A. Heatmap of the most significantly 
differentially expressed 100 genes in GEO merged CRC cohort; B. Volcano plot of differentially expressed 
genes in GEO merged CRC cohort (|logFC|≥ 2, p value ≤ 0.05); C. Volcano plot of differentially expressed 
genes encoding proteins in TCGA CRC cohort (|logFC|≥ 2, p value ≤ 0.05); D. Veen plot of DEGs encoding 
proteins of CRC patients in GEO and TCGA databases.
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ranging from genes, RNA molecules, proteins to metabolites; thus enabling a more comprehensive and profound 
comprehension of tumor diseases14. In this study, potential characteristic markers for CRC were identified 
through comprehensive analysis and cross-validation across different datasets. These markers may be implicated 
in tumor initiation, progression as well as treatment response; thereby facilitating improved diagnosis and 
treatment outcomes for this disease.

Fig. 3. Validation of differential expression of disease-associated genes at protein level by CPTAC database. 
Expression differences between normal tissues and tumor tissues, A. AKR1B10, B. CA2, C. CEMIP, D. DHRS9, 
E. ITM2C, and F. ZG16; expression differences between normal tissues and each stage of tumor, A. AKR1B10, 
B. CA2, C. CEMIP, D. DHRS9, E. ITM2C, and F. ZG16.

 

Fig. 2. Identification of characteristic genes of CRC by machine learning. A. The construction of Random 
Forest algorithm based on DEGs; B. Identification of CRC characteristic genes based on significance scores; 
C. Identification of CRC characteristic genes based on SVM-RFE; D. The veen diagram of Random Forest and 
SVM-RFE screened genes.
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After conducting comprehensive validation of differential analysis (Fig. 1A−D), employing SVM-RFE and 
Random Forest algorithm (Fig. 2A−D), assessing protein expression levels (Fig. 3A−L), and performing IHC 
analysis (Fig. 4), we ultimately identified four specific markers for CRC, namely AKR1B10, CA2, DHRS9, and 
ZG16. These aforementioned markers exhibited high expression in colon tissues but were either lowly expressed 
or not expressed at all in CRC. It is noteworthy that there is a paucity of literature on the four biomarkers. Under 
physiological conditions, AKR1B10 and DHRS9 belong to the aldosterone reductase family and ketone alcohol 
conversion SDR family respectively15,16; they are involved in intracellular reactions associated with aldosterone 
reduction and ketone alcohol conversion processes which regulate the balance of intracellular metabolites. 
Previous research has demonstrated that apart from participating in the progression of CRC through their own 
metabolic reactions, AKR1B10 can also promote its advancement by influencing autophagy responses as well 
as inflammatory reactions17–19. CA2 is a widely expressed carbonic anhydrase isoenzyme in the human body, 
playing crucial roles in regulating acid–base balance, transporting carbon dioxide, maintaining calcium ion 
homeostasis, protecting the digestive tract and facilitating nervous system function20. Although the molecular 
biological mechanism of CA2 promoting CRC progression remains unknown, several studies have confirmed 
that its expression can significantly inhibit the cancer cell growth21; furthermore, its downregulation represents 
an early event in CRC development22. ZG16 is a protein secreted by the pancreas involved in various biological 
processes such as pancreatic and digestive regulation, immune modulation and intestinal microbial regulation23. 
Meng H et al.'s research has demonstrated that ZG16 mainly contributes to CRC progression through tumor 
immune microenvironment24.

AKR1B10 CA2 DHRS9 ZG16

Normal

Endocrine cells High

Endothelial cells Not detected Not detected Medium Not detected

Enterocytes High

Enterocytes—Microvilli High

Fibroblasts Not detected

Glandular cells Medium Medium High

Goblet cells High

Mucosal lymphoid cells Not detected

Peripheral nerve/ganglion Medium Not detected

Cancer

High

Medium 2 1

Low 7 2

Not detected 10 12 3 8

Table 1. Expression of disease-associated proteins in normal and CRC tissues from HPA data.

 

Fig. 4. Characteristic immunohistochemical images of AKR1B10, CA2, DHRS9, and ZG16 in HPA database.
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# of 
images

AUROC Accuracy Precision Recall Specificity−  + 

AKR1B10 100 100 0.648
(0.644–0.650)

0.600
(0.598–0.602)

0.520
(0.517–0.522)

0.645
(0.642–0.647)

0.532
(0.529–0.534)

CA2 100 100 0.758
(0.755–0.760)

0.685
(0.682–0.687)

0.510
(0.506–0.514)

0.632
(0.628–0.636)

0.665
(0.663–0.667)

DHRS9 100 100 0.865
(0.863–0.866)

0.710
(0.708–0.711)

0.540
(0.537–0.542)

0.899
(0.897–0.900)

0.676
(0.674–0.677)

ZG16 100 100 0.598
(0.596–0.599)

0.550
(0.548–0.551)

0.310
(0.308–0.311)

0.639
(0.636–0.641)

0.531
(0.530–0.532)

All 400 400 0.999
(0.999–0.999)

0.999
(0.999–0.999)

0.999
(0.999–0.999)

0.999
(0.999–0.999)

0.999
(0.999–0.999)

Table 2. Binary diagnostic performance for CRC based on IHC staining images. (95%CI)

 

Fig. 5. Pathological diagnosis of CRC by SVM. (A) Schematic diagram of machine learning-based 
immunohistochemical pathological images diagnosis of intestinal cancer. (B) Framework for partitioning data 
sets, training models and assessing predictions. (C) ROC curves and binary confusion matrices of AKR1B10, 
CA2, DHRS9 and ZG16 biomarkers based on immunohistochemical staining images taken by the HPA 
database, respectively. (D) ROC curves and binary confusion matrices of AKR1B10, CA2, DHRS9 and ZG16 
combined diagnosis based on the SVM algorithm.
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In current clinical practice, IHC combined with the clinical manifestations of patients, imaging, serum 
markers, and colonoscopy serves as the gold standard for diagnosing CRC25,26. Its advantages include high 
specificity and the ability to provide comprehensive information on tissue structure and protein expression, 
facilitating a more thorough understanding of the pathological characteristics27. However, it is important to 
address and resolve technical complexities, specimen quality issues, and repeatability concerns associated with 
IHC28. Additionally, due to its semi-quantitative nature and susceptibility to subjective judgment by operators, 
there may be inherent subjectivity and uncertainty in immunohistochemical results29. Consequently, variations 
between different laboratories or operators can compromise diagnostic repeatability and consistency.

Based on machine learning, SVM or CNN , artificial intelligence can process large-scale medical images and 
biological data, enabling doctors to extract potential lesions and abnormal areas from complex image data30. 
This provides a more comprehensive and objective diagnostic basis while reducing the interference of human 
factors31. Therefore, the application of AI-assistance has brought new opportunities and challenges for tumor 
diagnosis, which can improve medical standards and patient survival rates. The process diagram of the machine 
learning-based diagnosis model is illustrated in Fig. 5A. It can be observed from the flow chart presented in 
Fig. 5B that our classifier’s performance was evaluated using support vector machine (SVM) and a tenfold cross-
validation approach. Furthermore, to demonstrate the superiority of joint judgment over individual biomarkers’ 
judgments, we incorporated features extracted from other samples within the same class (cancer or normal) 
into the current image’s feature set during joint judgment coding. The code primarily iterates through image 
files within a designated folder, reads each image, extracts both brown and Gabor filter features, and ultimately 
concatenates them to form the final feature vector. In each cycle of cross-validation, 9 subsets were selected as 
the training set while the remaining 1 subset was used as the test set. The performance of the classifier in cancer 
detection task was evaluated by calculating the confusion matrix, which included metrics such as accuracy, 
precision, and recall. This process was repeated for each biomarker to individually evaluate their classification 
performance. For the combined biomarker dataset, features were extracted from a single biomarker and then 
connected and input into 10 cross-validation processes to assess the impact of combining multiple biomarkers. 
Finally, the classification results obtained from a single biomarker were compared with those obtained from 
combined biomarkers to validate their superior joint judgment capability. The AUC area under ROC curve and 
diagnostic accuracy, specificity, recall, and predictive rate for each of the 4 individual biomarkers were obtained 
from Fig. 5C and Table S1. According to Fig. 5D and comprehensive evaluation presented in Table 2, it is evident 
that combining all four biomarkers yields significantly better diagnostic outcomes compared to independent 
diagnosis alone. Moreover, when considering accuracy, specificity, recall rate, predictive rate,and AUC area 
together,the combined diagnosis using all four biomarkers can achieve nearly perfect results (close to100%), 
which holds great significance for clinical diagnosis.

Given that the utilized dataset comprises image modalities, we proceeded to reconfigure the diagnostic 
model by employing another deep learning architecture such as a convolutional neural network (CNN) to 
compare its classification accuracy, sensitivity, and specificity with those of the SVM model. CNN offers the 
advantage of automatic feature extraction and processing of image data, enabling it to capture intricate patterns 
within the dataset. Our research findings also validate CNN’s superiority in feature extraction and classification 
performance. When assessing the individual diagnostic efficacy of the four markers separately (refer to Table S1, 
S2), CNN demonstrates nearly superior diagnostic rates compared to SVM across all indicators. However, upon 
comprehensive evaluation of joint diagnostics involving all four indicators, we observed that while both SVM 
and CNN achieved outstanding diagnostic rates approaching 100%, SVM exhibited slightly higher effectiveness 
than CNN. This could potentially be attributed to the relatively small size of our dataset; SVM has demonstrated 
stable performance in handling small sample high-dimensional feature data due to its robust theoretical 
foundation and practical results.

The limitations of this study are as follows: Firstly, the data utilized in this study solely originate from the 
public data platform. To enhance the reliability and validity, future studies should consider incorporating clinical 
samples. Secondly, given the nature of machine learning and data analysis techniques, it is imperative to expand 
the sample size in order to obtain more precise and stable outcomes. Lastly, although this study is based on IHC 
findings without simplifying diagnostic efficiency or steps, there is potential for improvement by collaborating 
with colleagues of chemical materials to update detection procedures and refine the procedure.

In summary, this study utilized multiple databases and conducted multi-omics analysis to identify four novel 
and promising protein markers (AKR1B10, CA2, DHRS9, and ZG16) for colorectal cancer. These markers were 
screened using bioinformatics and machine learning techniques (Random Forest). Furthermore, a CRC diagnosis 
model was constructed based on IHC employing another machine learning method (Support Vector Machine), 
achieving remarkable accuracy and specificity of 0.999. This research provides significant opportunities and 
support for enhancing the comprehensiveness and precision of CRC.

Materials and methods
Data acquisition and difference analysis
We selected three independent datasets (GSE18105, GSE21510, and GSE33114) from the GEO database and 
merged them using the SVA package in R language to construct a GEO CRC cohort. Given that this study will 
be based on proteomics analysis and will build a machine learning model using immunohistochemical images, 
we extracted RNA-seq data of Colon Adenocarcinoma (COAD) from the TCGA database  (   h t t p s : / / p o r t a l . g d c . c a 
n c e r . g o v /     ) . And the protein-coding genes were isolated using the human genome map as a reference to construct 
a TCGA cohort. Subsequently, we utilized the T-test to analyze differences between the two CRC cohorts by 
“limma” package. Genes with p-values ≤ 0.05 and |logFC|≥ 2 were identified as differentially expressed genes 
(DEGs) in CRC. Finally, we obtained the intersection of DEGs exhibiting stable differential expression in both 
databases for further studies.
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Refinement of disease-associated gene screening
We utilized the random forest algorithm to filter DEGs and identify disease-related characteristic genes with 
specific parameter settings (seed = 123,456 and tree = 500). By optimizing cross-validation error, we constructed 
an accurate random forest model.

To further identify DEGs associated with CRC, we also employed the Support Vector Machine-Recursive 
Feature Elimination (SVM-RFE) method. The SVM classifier with a linear kernel was trained on the preprocessed 
dataset. The choice of a linear kernel is standard for SVM-RFE, as it allows the calculation of feature ranking based 
on the weights assigned to each feature by the model. The RFE process was initiated by iteratively removing the 
least significant features (genes) from the model. The final set of selected genes, ranked by their importance, was 
considered as the most informative features for distinguishing between colorectal cancer and control samples.

The genes identified by both methods can be regarded as characteristic DEGs that hold great potential for 
disease diagnosis.

The validation of proteomics
We incorporated disease-associated genes of CRC into both the CPTAC and HPA databases for protein-level 
analysis. In the CPTAC database, we ensured significant differences in target proteins between tumor and 
normal tissues, while also examining differences among different tumor stages, particularly between normal 
tissues and Stage 1 (early colorectal cancer patients). Following the retrieval of all images depicting the target 
protein from the HPA dataset (https://www.proteinatlas.org/) for both colon tissue and colon cancer tissue, we 
will utilize them to construct our subsequent diagnostic model.

Developing a machine learning model based on CRC Immunohistochemistry (IHC)
The Python programming language and multiple libraries are utilized for implementation. Initially, we import 
the following libraries: numpy for efficient processing of arrays and matrices, os for seamless manipulation of 
files and folders, cv2 for advanced image processing capabilities, sklearn for machine learning-related operations, 
and matplotlib for generating informative graphs. This combination of libraries offers robust functionality 
and flexibility, enabling us to effectively process data, perform intricate image processing tasks, implement 
sophisticated machine learning models, and visualize results. Consequently, we successfully develop an analysis 
and diagnosis model specifically tailored to identify characteristic genes associated with colorectal cancer. The 
code iterates through the image files within a designated folder. It reads each image file while extracting both 
brownian features as well as Gabor filter features. Brown channel features are assigned based on the brown 
color in the RGB color space. By creating a mask that identifies pixels falling within this brown range (set to 
white—255), all other pixels are set to black (0). Subsequently, this mask is adjusted to a specified size before 
being normalized. Gabor filter features are obtained by applying the Gabor filter technique to grayscale images. 
Finally, these extracted brownian features along with Gabor filter features are concatenated together forming 
the final feature vector. Additionally,the corresponding labels of each image are stored in an array denoted as 
Y. During each cross-validation cycle,nine subsets from our dataset serve as training sets while one remaining 
subset functions as a test set. The classifier is then trained using the training set, and predictions are made on 
the test set. The performance of the classifier in cancer recognition task is evaluated by calculating the confusion 
matrix and various performance metrics, including accuracy, precision, recall, etc. This process enables us to 
assess the classifier’s generalization ability across different datasets and better evaluate its practical performance.

Given the significant disparities in the overall features of the immunohistochemical images of the four 
protein markers (AKR1B10, CA2, DHRS9, and ZG16), we merged the image features gathered at each occasion 
with those from the previous one for comprehensive assessment. Thus, for the four images, we executed three 
feature fusions. This procedure can guarantee that the features of the four images are thoroughly exploited and 
the optimal comprehensive diagnostic efficacy is attained.

Due to the efficacy in image-based classification tasks, we further utilized a Convolutional Neural Network 
(CNN) model to construct a diagnostic model. The dataset was split into training, and validation sets with a 
ratio of 7:3. The model consisted of several convolutional layers with ReLU activation functions, followed by 
max-pooling layers to reduce the spatial dimensions. A series of fully connected layers were added after the 
convolutional base, culminating in a softmax layer for classification. The model was trained using the Adam 
optimizer with an initial learning rate of 0.001. The categorical cross-entropy loss function was used to measure 
the performance. And the model’s performance was evaluated on the test set using metrics such as accuracy, 
precision, recall, and F1-score. ROC-AUC curves were also plotted to assess the diagnostic ability of the CNN 
model.

Data Availability
The datasets generated during and/or analysed during the current study are available in the GEO dataset  (   h t t p s : 
/ / w w w . n c b i . n l m . n i h . g o v / g e o /     ) and the TCGA dataset (https://portal.gdc.cancer.gov/). The  i m m u n o h i s t o c h e m i s 
t r y images utilized in the study were sourced from the HPA database (https://www.proteinatlas.org/).  A c q u i s i t i o 
n of the images was conducted in compliance with the stipulations outlined in the "License & Citation".
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