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ABSTRACT
Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it 

provides the best chance for cure. We aimed to develop a predictive diagnostic method 
for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance 
(NMR)-based serum metabolomics and self-organizing maps (SOMs). We trained 
and validated the SOM model using serum metabolome data from 104 participants, 
including healthy individuals and early-stage RCC patients. To assess the predictive 
capability of the model, we analyzed an independent cohort of 22 subjects. We then 
used our method to evaluate changes in the metabolic patterns of 23 RCC patients 
before and after nephrectomy. A biomarker cluster of 7 metabolites (alanine, creatine, 
choline, isoleucine, lactate, leucine, and valine) was identified for the early diagnosis 
of RCC. The trained SOM model using a biomarker cluster was able to classify 22 test 
subjects into the appropriate categories. Following nephrectomy, all RCC patients 
were classified as healthy, which was indicative of metabolic recovery. But using a 
diagnostic criterion of 0.80, only 3 of the 23 subjects could not be confidently assessed 
as metabolically recovered after nephrectomy. We successfully followed-up 17 RCC 
patients for 8 years post-nephrectomy. Eleven of these patients who diagnosed as 
metabolic recovery remained healthy after 8 years. Our data suggest that a SOM 
model using a biomarker cluster from serum metabolome can accurately predict early 
RCC diagnosis and can be used to evaluate postoperative metabolic recovery.

INTRODUCTION

Renal cell carcinoma (RCC) accounts for 2–3% of 
all adult malignancies and has a mortality rate greater than 
40% [1]. The incidence of RCC (all stages) is increasing 
yearly [2]. Early diagnosis provides the greatest chance 
for cure. However, more than 30% of RCC patients have 
metastatic disease at the time of diagnosis. This can be 
attributed to the lack of symptoms typically associated 
with early-stage RCC [3]. Clinical symptoms such as pain, 
the presence of a mass, or hematuria are generally not 
sufficient for early diagnosis [4]. Additionally, radiological 
methods for RCC diagnosis such as ultrasound, computed 

tomography, magnetic resonance imaging, and positron 
emission tomography are not always accurate [5, 6]. 
Finally, renal biopsy and histological diagnosis are 
invasive and time-consuming. Therefore, the development 
of new diagnostic strategies is critical for the prevention 
and management of RCC.

Precision medicine is based on the premise 
that variations in genetics, lifestyle, and environment 
between individuals can be used for early diagnosis and 
personalized care, and has shown great potential for cancer 
diagnosis and treatment [7]. Omics-based approaches 
in which a comprehensive set of genes, proteins, or 
metabolites are measured can reveal biological phenotypes 
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at omics levels. These technologies can significantly 
advance precision medicine [8]. Recently, omics-based 
methods have been used to predict and diagnose various 
cancers [9]. For example, genomics- and proteomics-
based approaches have been shown to be important for 
RCC diagnosis and for predicting patient prognosis 
[10, 11]. Metabolomics is a relatively new approach in 
which all low molecular weight metabolites in biological 
samples are analyzed. This approach can provide 
valuable insight into metabolic changes that occur during 
disease processes (e.g., carcinogenesis). We previously 
used NMR-based metabolomics to analyze differences 
in the serum metabolome between RCC patients and 
healthy subjects [12]. We found that this approach could 
discriminate between RCC patients with and without 
metastases and before or after nephrectomy. More 
recently, differences in the plasma metabolome between 
RCC patients and healthy subjects were identified using 
a similar approach [13]. Finally, Lin et al. [14] reported 
that liquid chromatography-mass spectrometry (LC-MS)-
based serum metabolomics could be used to diagnose and 
stage RCC.

Technologies for data-driven prediction and 
diagnosis, especially those based on ‘omics’ data, must 
be able to effectively extract essential information 
from large data sets. Machine learning is a branch of 
artificial intelligence that simulates human learning and 
classification processes [15]. In contrast to conventional 
statistical methods involving multivariate regression 
or correlation analysis, machine learning provides the 
opportunity to learn from past data and then use the 
knowledge to classify new data [15]. In this study, 
we aimed to develop a new tool for the prediction 
and diagnosis of early-stage RCC using NMR-based 
metabolomics and self-organizing maps (SOMs). We 
then used this method to predict and diagnose RCC in an 
additional group of blinded subjects. Finally, we evaluated 
change in metabolic patterns in RCC patients before and 
after nephrectomy, and examined patient quality of life 8 
years post-nephrectomy.

RESULTS

Optimization of SOM architecture

The optimal results for the SOM architecture by 
genetic algorithm (GA) are shown in the bubble plot in 
Figure 1D. This plot demonstrates the relative frequency of 
selection in the GA and the mean value of the optimization 
criterion. Higher values for these two parameters were 
indicative of a better SOM architecture. Each bubble 
represents the SOM architecture, and the bubble size 
and color are proportional to the number of neurons and 
epochs, respectively. Considering model performance 
and structural complexity, a SOM architecture with 8 × 8 
neurons and 350 epochs was selected as the optimal model 

for all metabolites, and 10 × 10 neurons and 50 epochs for 
a biomarker cluster.

Identification of a biomarker cluster for the 
prediction and diagnosis of RCC

The cluster of subjects that was generated based 
on the SOM (including all 16 metabolites and their 
respective weight maps) is shown in Figure 2. Healthy 
subjects and RCC patients were clustered on the left 
and right regions of the SOM, respectively (Figure 2A). 
Higher levels of very low density lipoprotein (VLDL)/
low density lipoprotein (LDL), isoleucine, leucine, valine, 
lactate, alanine, lipids plus N-acetyl cysteine (NAC), 
and creatine were concentrated on the side of the RCC 
patients, while higher choline levels were observed on the 
side of the healthy subjects. However, the weight map for 
several metabolites including glutamine, trimethylamine 
N-oxide (TMAO), taurine, sugars plus amino acids 
(AAs), α-glucose, β-glucose, and poly-UFA, did not show 
a pattern similar to that of the cluster of subjects on the 
SOM shown in Figure 2A. Heat map analysis revealed 
that creatine, lactate, isoleucine, leucine, alanine, and 
valine clustered together (Figure 3A). The correlation map 
also demonstrated a strong positive relationship between 
these six metabolites (Figure 3B). Moreover, there was a 
strong negative correlation between choline and the six 
metabolites. Both alanine and lactate levels were increased 
in RCC patients, which was indicative of an enhanced 
Warburg effect in the cancer cells (Figure 3C). The 
increased creatine, isoleucine, leucine, and valine levels 
in RCC patients as well as the reduced choline levels 
could be responsible for cell proliferation. Importantly, 
following nephrectomy, RCC patients exhibited metabolic 
recovery as indicated by decreases in creatine, lactate, 
isoleucine, leucine, alanine, and valine levels as well 
as an increase in choline levels (Figure 3D). Therefore, 
these seven metabolites are specific for RCC and could 
be used as a biomarker cluster for the prediction and early 
diagnosis RCC.

Prediction and diagnosis of RCC using the SOM 
model and serum metabolome

The SOM (equipped with an optimal architecture) 
was trained on 80% of the subjects. The remaining 20% 
of the subjects were then used for validation of the trained 
SOM model. The predictive accuracy of the SOM model 
based on either all metabolites or the biomarker cluster is 
shown in Figure 4. A subject was classified into a category 
if the prediction score for the specific category was 
sufficiently high. In this study, we used a cutoff value of 
0.80 to establish a diagnosis of RCC, which meant that if 
the SOM prediction score of a subject was below 0.80, the 
diagnosis was uncertain. Cut-off values are typically user-
defined. We achieved a prediction accuracy of 93.48% 
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for healthy subjects and 76.32% for RCC patients in the 
training set using all metabolites (Figure 4A). Using the 
biomarker cluster, we achieved a prediction accuracy of 
91.30% in healthy subjects and 94.74% in RCC patients 
(Figure 4C). We next analyzed a set of 22 additional 
independent subjects in order to evaluate the predictive 
ability of the trained SOM model for RCC. There were two 
subjects who fell below the 0.80 prediction score in the test 
set when all metabolites were included (Figure 4B), while 
the trained SOM model using the biomarker cluster had 
higher predictive ability (Figure 4D). The detailed results 
for RCC prediction and diagnosis using the biomarker 
cluster are shown in Table 1. The results obtained using 
the SOM for the prediction and diagnosis of RCC were in 
agreement with the histological diagnosis for all subjects.

Evaluation of metabolic patterns in RCC 
patients following nephrectomy

To evaluate changes in the metabolic patterns of 
RCC patients before and after nephrectomy, we analyzed 
a set of 23 RCC patients using the trained SOM model 
and biomarker cluster (Table 2). Prior to nephrectomy, 
all RCC patients were assigned to the RCC category, 

which was in agreement with the histological diagnoses. 
Interestingly, the trained SOM model using the biomarker 
cluster assigned all patients to the healthy group post-
nephrectomy (Table 2). These data were indicative of 
metabolic recovery. However, the SOM prediction scores 
for three patients (A2, A5, and A11) were less than 0.80 
(Table 2). Therefore, we could not definitively determine 
metabolic recovery in these patients. After 8 years, patient 
A5 suffered from renal failure, patient A11 died from 
RCC metastasis, and patient A2 was lost to follow-up. 
Follow-up was successful for 17 RCC patients 8 years 
post-nephrectomy, and 11 of the patients who displayed 
metabolic recovery remained healthy (Table 2).

DISCUSSION

Early diagnosis plays a key role in cancer treatment. 
However, the early diagnosis of RCC is challenging 
because it is non-palpable and patients are generally 
asymptomatic. The diagnosis of RCC is established using 
radiological examination, renal biopsy, and histologic 
analysis [16]. Omics-based strategies including genomics 
[17–19], proteomics [20–24], and metabolomics  
[12–14, 25] have the potential to assist RCC prediction 

Figure 1: Development of the SOM model. (A) The 1H NMR spectra from human serum samples used for the development of the 
SOM. The numbers correspond to the metabolites in Table S1; (B) The procedure for RCC prediction and diagnosis using the SOM: (1) 
sample collection and metabolomics analysis, (2) data reduction and variable selection, and (3) cancer prediction and diagnosis. (C) The 
development of the SOM. First, the SOM architecture was optimized using genetic algorithms. Second, the optimized SOM was trained 
and validated using 80% and 20% of the subjects, respectively. Finally, 22 independent subjects were analyzed to further evaluate the 
trained SOM model, and 23 additional subjects analyzed to evaluate metabolic patterns after nephrectomy. (D) The bubble plot of SOM 
architecture optimization by genetic algorithms. Each bubble represents a type of SOM architecture. The size and color of the bubbles are 
proportional to the number of neurons and epochs in the SOM, respectively.
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and diagnosis. Biomarkers indicative of physiological 
changes between normal and disease states are important 
for omics-based approaches to RCC diagnosis and 
treatment [26–28]. Moreover, approaches based on 
multiple biomarkers have improved the robustness of 
cancer prediction and diagnosis compared to single 
biomarker approaches in clinical trials [29]. In this study, 
we identified a biomarker cluster comprised of alanine, 

choline, creatine, lactate, isoleucine, leucine, and valine 
for the prediction and early diagnosis of RCC. 

The most fundamental metabolic change in cancer 
cells is an increase in aerobic glycolysis known as the 
Warburg effect [30]. In normal cells, glucose is first 
metabolized to pyruvate via glycolysis, which then enters 
the TCA cycle. However, in cancer cells, pyruvate is 
transformed to lactate or alanine instead of entering the TCA 

Figure 2: Analysis of the SOM model. (A) Classification and prediction of healthy subjects and RCC patients using the SOM model 
based on all 16 metabolites obtained from the NMR-based serum metabolome: left region, healthy subjects; right region, early-stage RCC 
patients. The weight map for the 16 metabolites in the SOM model: (B) LDL/VLDL; (C) isoleucine; (D) leucine; (E) valine; (F) lactate; (G) 
alanine; (H) lipids+NAC; (I) glutamine; (J) creatine; (K) choline; (L) TMAO; (M) taurine; (N) sugars+AAs; (O) β-glucose; (P) α-glucose; 
(Q) poly-UFA. The deeper the color the higher the weight in the SOM.
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cycle, even under sufficient oxygen conditions. We found 
that RCC patients had higher levels of lactate and alanine 
in serum compared to healthy subjects. In addition, up-
regulation of branched-chain AAs and creatine production 
in cancer cells can provide substrates for energy and 
protein synthesis, which are required for cell proliferation 
[31]. Since choline is involved in the synthesis of cellular 
membranes, a decrease in choline level may be attributed 
to cell proliferation. The levels of these metabolites were 
reversed in RCC patients after nephrectomy indicating that 
they are highly specific for RCC.

Here, we developed a SOM method based on a 
biomarker cluster of seven metabolites to predict and 
diagnose early-stage RCC. Our method could be used to 
identify early-stage RCC patients with 94.74% accuracy. 
To test the generalizability of the approach, a set of 22 
additional independent subjects was analyzed. All of the 
subjects in this independent cohort were classified into 
the correct diagnostic categories. The goal of precision 
medicine is to determine ‘the right treatment, for the right 
patient, at the right time’ [32]. The method we proposed 
here can be used to accurately predict and diagnose 
early-stage RCC, thereby providing effective guidance 
for treatment. Although other linear methods combined 
with metabolomics-based approaches may also enable 
RCC classification [12–14], our method is advantageous 
because it easily accommodates both the linear and 

nonlinear features of metabolic information. Most 
importantly, the SOM was able to learn and store new 
knowledge from new datasets (constant updating) [33]. A 
non-invasive omics-based diagnosis using blood samples 
will be a promising diagnostic tool for early-stage RCC.

We also used the proposed method to evaluate 
changes in the metabolic patterns of RCC patients 
before and after nephrectomy. According to the SOM 
prediction, metabolic recovery to normal patterns 
occurred in all RCC patients after nephrectomy. Using a 
diagnostic criterion of 0.80, only 3 of 23 RCC patients 
were not confidently assessed as metabolically recovered. 
Therefore, our method is also an effective tool for 
evaluating postoperative metabolic status. Both gene  
[34, 35] and protein [36] expression data have been used 
to predict RCC patient survival. In this study, 17 patients 
were successfully followed-up 8 years post-nephrectomy. 
Eleven of the patients who exhibited metabolic recovery 
remained healthy while two patients with prediction scores 
less than 0.80 suffered from renal failure or died from 
RCC metastasis. Thus, our method may also be capable of 
predicting RCC patient survival.

To our knowledge, this is the first approach based 
on a combination of an SOM and a biomarker cluster 
identified using serum metabolomics data for RCC 
prediction and early diagnosis. Although the number of 
samples was limited and further clinical evaluation is 

Figure 3: Metabolic data visualization. Heatmap (A) and correlation (B) analyses of all 16 metabolites obtained from the NMR-
based serum metabolome. Cluster analysis was performed using Ward’s method and Euclidean distance. (C) Changes in metabolite levels 
in RCC patients and their biological effects in cancer cells. (D) Heat map analysis of seven metabolites as a biomarker cluster in RCC 
patients after nephrectomy.
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Figure 4: Accuracy of the SOM model in predicting early-stage RCC. The SOM model based on all 16 metabolites: (A) training 
set; (B) test set. The SOM model based on the biomarker cluster: (C) training set; (D) test set. Black and red points represent healthy 
subjects (N = 46 in the training set; N = 12 in the test set) and RCC patients (N = 38 in the training set; N = 10 in the test set), respectively. 
Red line represents a cutoff value of 0.80 for RCC diagnosis, suggesting that the diagnosis was uncertain only if the prediction score was 
below 0.80.

Table 1: Prediction and diagnosis of RCC using the SOM model and a biomarker cluster

Sample label
SOM prediction score

SOM prediction SOM diagnosis Histological 
diagnosisHa RCCb

P1 1.00 0.00 H H H
P2 1.00 0.00 H H H
P3 1.00 0.00 H H H
P4 1.00 0.00 H H H
P5 1.00 0.00 H H H
P6 1.00 0.00 H H H
P7 1.00 0.00 H H H
P8 1.00 0.00 H H H
P9 1.00 0.00 H H H
P10 1.00 0.00 H H H
P11 1.00 0.00 H H H
P12 0.80 0.20 H H H
P13 0.00 1.00 RCC RCC RCC
P14 0.00 1.00 RCC RCC RCC
P15 0.00 1.00 RCC RCC RCC
P16 0.00 1.00 RCC RCC RCC
P17 0.00 1.00 RCC RCC RCC
P18 0.00 1.00 RCC RCC RCC
P19 0.13 0.87 RCC RCC RCC
P20 0.13 0.87 RCC RCC RCC
P21 0.00 1.00 RCC RCC RCC
P22 0.00 1.00 RCC RCC RCC

aHealthy; bRenal cell carcinoma.
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Table 2: Prediction and diagnosis of RCC after nephrectomy using the SOM model and a biomarker 
cluster

Sample label
SOM prediction score

SOM prediction SOM diagnosis Histological 
diagnosis 8-year follow-up

Ha RCCb

B1 0.00 1.00 RCC RCC RCC -c

B2 0.00 1.00 RCC RCC RCC -
B3 0.00 1.00 RCC RCC RCC -
B4 0.00 1.00 RCC RCC RCC -
B5 0.00 1.00 RCC RCC RCC -
B6 0.00 1.00 RCC RCC RCC -
B7 0.00 1.00 RCC RCC RCC -
B8 0.00 1.00 RCC RCC RCC -
B9 0.00 1.00 RCC RCC RCC -
B10 0.00 1.00 RCC RCC RCC -
B11 0.00 1.00 RCC RCC RCC -
B12 0.00 1.00 RCC RCC RCC -
B13 0.00 1.00 RCC RCC RCC -
B14 0.00 1.00 RCC RCC RCC -
B15 0.00 1.00 RCC RCC RCC -
B16 0.00 1.00 RCC RCC RCC -
B17 0.00 1.00 RCC RCC RCC -
B18 0.12 0.88 RCC RCC RCC -
B19 0.00 1.00 RCC RCC RCC -
B20 0.00 1.00 RCC RCC RCC -
B21 0.00 1.00 RCC RCC RCC -
B22 0.00 1.00 RCC RCC RCC -
B23 0.00 1.00 RCC RCC RCC -
A1 1.00 0.00 H H - H
A2 0.75 0.25 H - - LFd

A3 1.00 0.00 H H - LF
A4 1.00 0.00 H H - H
A5 0.67 0.33 H - - RFe

A6 0.80 0.20 H H - H
A7 1.00 0.00 H H - DMf

A8 0.80 0.20 H H - H
A9 1.00 0.00 H H - H
A10 1.00 0.00 H H - H
A11 0.75 0.25 H - - DM
A12 1.00 0.00 H H - LF
A13 1.00 0.00 H H - H
A14 0.83 0.17 H H - LF
A15 0.83 0.17 H H - H
A16 1.00 0.00 H H - H
A17 1.00 0.00 H H - H
A18 1.00 0.00 H H - H
A19 0.83 0.17 H H - LF
A20 1.00 0.00 H H - RF
A21 0.80 0.20 H H - LF
A22 1.00 0.00 H H - DM
A23 1.00 0.00 H H - DM

aHealthy; bRenal cell carcinoma; cNo data; dLost to follow-up; eRenal failure; fDeath from metastasis. A1-A23: RCC patients 
after nephrectomy; B1-B23: RCC patients before nephrectomy.
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necessary, we believe that our method can be used as a 
diagnostic tool for early-stage RCC. Ultimately, this 
method could enable RCC diagnosis using a simple 
blood test. We will use this approach in our hospital as 
a reference for RCC diagnosis to improve the robustness 
and accuracy. Additionally, we plan to build a RCC 
metabolite database and establish a standard procedure 
for the predictive diagnosis of RCC.

MATERIALS AND METHODS

Sample collection

Blood samples were collected from 68 healthy 
subjects and 58 patients with early RCC after clinical 
examination between 2006 and 2007. Participants 
who were not treated with any medications for the 
previous 3 months fasted for 12 h and then had blood 
drawn (approximately 5 mL) from the antecubital vein. 
Serum samples were separated following centrifugation 
at 1,024 g for 10 min at 4ºC and stored at –80ºC until 
NMR metabolomics analysis. RCC was diagnosed by a 
pathological investigation and graded according to the 
Union for International Cancer Control (UICC) tumor-
node-metastasis (TNM) staging system [37]. RCC without 
metastases (T1–2, limited to the kidney) was categorized 
as early-stage. The characteristics of all participants are 
shown in Table 3. Serum samples from 23 RCC patients 
were also collected 6 months after nephrectomy in order to 
evaluate changes in metabolic patterns. In 2015, an 8-year 
follow-up was conducted by phone to examine RCC 
patient quality of life after nephrectomy. This study was 
approved by the Ethics Committee of Shanghai Jiao Tong 
University School of Medicine.

NMR-based metabolomics analysis

Serum samples were thawed and vortexed, and 200 μL  
aliquots mixed with 400 μL of 0.2 M phosphate buffer to 
minimize pH variations. The mixture was centrifuged at 
12,000 g for 10 min at 4°C, and 500 μL of the supernatant 
mixed with 100 μL D2O (field frequency lock) in a 5 mm 
NMR tube for NMR analysis. Proton NMR spectra were 
acquired at 25°C using a Varian Unity INOVA 600 NMR 
spectrometer with a triple resonance probe and z-axis 

pulsed field gradient (Bruker BioSpin, Rheinstetten, 
Germany). Standard one-dimensional (1D) PRESAT 
spectra were recorded using a single 90° pulse sequence 
and 1D spin-echo spectra acquired using the CPMG pulse 
sequence. The main acquisition parameters included: 
data points, 32 K; relaxation delay, 4 sec; spectral width, 
10,000 Hz; acquisition time, 1.64 sec per scan; exponential 
line-broadening function, 0.3 Hz.

NMR spectra were preprocessed using phase and 
baseline corrections in the Topspin 3.0 software (Bruker 
BioSpin, Rheinstetten, Germany). NMR spectra were then 
referenced to the methyl signal of lactate at 1.33 ppm. 
The ‘icoshift’ procedure was performed to align all NMR 
spectra in MATLAB (R2012a, Mathworks Inc., Natick, 
MA, USA) [17, 38]. For dimensionality reduction, the 
spectral region from 0.4–10.0 ppm excluding the residual 
water signals from 4.4–5.2 ppm was subdivided and 
integrated to binned data with a size of 0.04 ppm. The 
NMR signals were carefully evaluated to exclude poorly 
aligned peaks and merged peaks derived from the same 
metabolites. The 1H NMR spectra from human serum 
samples are shown in Figure 1A. A total of 16 metabolite 
signals were prepared and assigned as shown in Table S1 
based on previously reported data [39, 40] and the human 
metabolome database [41]. Two-dimensional 1H-1H COSY 
and TOCSY experiments for several representative samples 
were performed in order to confirm the assignments.

SOM development

A SOM is a type of artificial neural network [33] that 
can learn from complex and high-dimensional data and 
project the information into a two-dimensional visual map. 
The SOM theory is derived from simulations of human 
brain function. For example, various sensory impressions 
have been mapped within the brain via neuronal systems. 
Here, a SOM was developed to predict and diagnose early-
stage RCC based on serum metabolomics (Figure 1B). The 
procedure for SOM development is shown in Figure 1C. 
All data were auto-scaled and randomly divided into two 
subsets: a training set (80%) and validation set (20%). 
Next, genetic algorithms were used to optimize the most 
suitable the SOM architecture, which included the number 
of neurons and epochs [42] (Figure 1D). A hexagonal 
topology and cross-validation with venetian blinds (n = 10) 

Table 3: Participant characteristics
Case Na TNM featureb Gender (male) Age (years)

Healthy 68 - 34 52.5 ± 15.1
RCCc (without metastasis) 58 T1a (N = 20): < 4 cm, limited to the kidney 8 53.0 ± 11.5

T1b (N = 20): 4–7 cm, limited to the kidney 10 52.3 ± 12.9
T2 (N = 18): > 7 cm, limited to the kidney 12 58.7 ± 9.4

Nephrectomy 23 T1 (N = 13)
T2 (N = 10) 18 53.3 ± 10.1

aNumber of subjects; bRefer to Edge et al. [37]; cRenal cell carcinoma.
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were selected. The number of neurons and epochs was set 
from 4–16 and 50–400, respectively, for optimization. The 
optimal SOM architecture was then trained and validated 
using 80% and 20% of the subjects, respectively. An 
independent cohort consisting of 22 subjects was used to 
test the predictive capability of the trained SOM model 
for early RCC. Finally, postoperative changes in metabolic 
patterns before and after nephrectomy were evaluated in 
an additional cohort of 23 RCC patients. The SOM was 
developed using the Kohonen and CP-ANN toolbox [43] 
in MATLAB (R2012a, Mathworks Inc., Natick, MA, 
USA). In addition, heat map and correlation analyses were 
performed using MetaboAnalyst 3.0 [44].
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 5. Lechevallier E, André M, Barriol D, Daniel L, 
Eghazarian C, De Fromont M, Rossi D, Coulange C. Fine-
needle percutaneous biopsy of renal masses with helical CT 
guidance 1. Radiology. 2000; 216:506–510.

 6. Dechet CB, Zincke H, Sebo TJ, King BF, Leroy AJ, 
Farrow GM, Blute ML. Prospective analysis of 
computerized tomography and needle biopsy with 
permanent sectioning to determine the nature of solid renal 
masses in adults. J Urol. 2003; 169:71–74.

 7. Friedman AA, Letai A, Fisher DE, Flaherty KT. Precision 
medicine for cancer with next-generation functional 
diagnostics. Nat Rev Cancer. 2015; 15:747–756.

 8. Chen R, Snyder M. Promise of personalized omics to 
precision medicine. Wiley Interdiscip Rev Syst Biol Med. 
2013; 5:73–82.

 9. Moshkovskii S, Pyatnitsky M, Lokhov P, Baranova A. 
OMICS for tumor biomarker research. Biomark Cancer. 
2015; 3–30.

10. Jones J, Pantuck AJ. Genomics and proteomics in renal cell 
carcinoma: diagnosis, prognosis, and treatment selection. 
Curr Urol Rep. 2008; 9:9–14.

11. Zacchia M, Vilasi A, Capasso A, Morelli F, de Vita F, 
Capasso G. Genomic and proteomic approaches to renal 
cell carcinoma. J Nephrol. 2011; 24:155–164.

12. Gao H, Dong B, Liu X, Xuan H, Huang Y, Lin D. 
Metabonomic profiling of renal cell carcinoma: high-
resolution proton nuclear magnetic resonance spectroscopy 
of human serum with multivariate data analysis. Anal Chim 
Acta. 2008; 624:269–277.

13. Zira AN, Theocharis SE, Mitropoulos D, Migdalis V, 
Mikros E. 1H NMR metabonomic analysis in renal cell 
carcinoma: a possible diagnostic tool. J Proteome Res. 
2010; 9:4038–4044.

14. Lin L, Huang Z, Gao Y, Yan X, Xing J, Hang W. LC-MS 
based serum metabonomic analysis for renal cell carcinoma 
diagnosis, staging, and biomarker discovery. J Proteome 
Res. 2011; 10:1396–1405.

15. Cruz JA, Wishart DS. Applications of machine learning in 
cancer prediction and prognosis. Cancer Inform. 2006; 2:59.

16. Ljungberg B, Cowan NC, Hanbury DC, Hora M, 
Kuczyk MA, Merseburger AS, Patard JJ, Mulders PF, 
Sinescu IC. EAU guidelines on renal cell carcinoma: the 
2010 update. Eur Urol. 2010; 58:398–406.

17. Furge KA, Lucas KA, Takahashi M, Sugimura J, Kort EJ, 
Kanayama HO, Kagawa S, Hoekstra P, Curry J, Yang XJ, 
Teh BT. Robust classification of renal cell carcinoma based 
on gene expression data and predicted cytogenetic profiles. 
Cancer Res. 2004; 64:4117–4121.

18. Arai E, Ushijima S, Tsuda H, Fujimoto H, Hosoda F, 
Shibata T, Kondo T, Imoto I, Inazawa J, Hirohashi S, 
Kanai Y. Genetic clustering of clear cell renal cell carcinoma 
based on array-comparative genomic hybridization: its 
association with DNA methylation alteration and patient 
outcome. Clin Cancer Res. 2008; 14:5531–5539.

19. Wulfken LM, Moritz R, Ohlmann C, Holdenrieder S, 
Jung V, Becker F, Herrmann E, Walgenbach-Brünagel G, 
von Ruecker A, Müller SC, Ellinger J. MicroRNAs in renal 
cell carcinoma: diagnostic implications of serum miR-1233 
levels. PloS One. 2011; 6:e25787.



Oncotarget59198www.impactjournals.com/oncotarget

20. White NM, Masui O, DeSouza LV, Krakovska O, Metias S, 
Romaschin AD, Honey RJ, Stewart R, Pace K, Lee J, 
Jewett MA, Bjarnason GA, Siu KW, et al. Quantitative 
proteomic analysis reveals potential diagnostic markers 
and pathways involved in pathogenesis of renal cell 
carcinoma. Oncotarget. 2014; 5:506–518. doi: 10.18632/
oncotarget.1529.

21. Won Y, Song HJ, Kang TW, Kim JJ, Han BD, Lee SW. 
Pattern analysis of serum proteome distinguishes renal 
cell carcinoma from other urologic diseases and healthy 
persons. Proteomics. 2003; 3:2310–2316.

22. Rogers MA, Clarke P, Noble J, Munro NP, Paul A, Selby PJ, 
Banks RE. Proteomic profiling of urinary proteins in renal 
cancer by surface enhanced laser desorption ionization 
and neural-network analysis identification of key issues 
affecting potential clinical utility. Cancer Res. 2003; 
63:6971–6983.

23. Chinello C, Gianazza E, Zoppis I, Mainini V, Galbusera C, 
Picozzi S, Rocco F, Galasso G, Bosari S, Ferrero S, 
Perego R, Raimondo F, Bianchi C, et al. Serum biomarkers 
of renal cell carcinoma assessed using a protein profiling 
approach based on ClinProt technique. Urology. 2010; 
75:842–847.

24. Huang Z, Zhang S, Hang W, Chen Y, Zheng J, Li W, Xing J, 
Zhang J, Zhu E, Yan X. Liquid chromatography–mass 
spectrometry based serum peptidomic approach for renal 
clear cell carcinoma diagnosis. J Pharm Biomed Anal. 2014; 
100:175–183.

25. Kim K, Aronov P, Zakharkin SO, Anderson D, Perroud B, 
Thompson IM, Weiss RH. Urine metabolomics analysis for 
kidney cancer detection and biomarker discovery. Mol Cell 
Proteomics. 2009; 8:558–570.

26. Maroto P, Rini B. Molecular biomarkers in advanced renal 
cell carcinoma. Clin Cancer Res. 2014; 20:2060–2071.

27. Rini BI, Campbell SC. Urinary biomarkers for the detection 
and management of localized renal cell carcinoma. JAMA 
Oncology. 2015; 1:212–213.

28. Sanchez-Espirdion B, Tannir NM, Matin SF, Karam JA, 
Huang M, Wood CG, Wu X, Gu J. Detection of recurrent 
renal cell carcinoma biomarkers by metabolite ratios. 
Cancer Res. 2015; 75:1827.

29. Rodríguez-Enríquez S, Pacheco-Velázquez SC, Gallardo-
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