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Abstract: The ferroelectric domain surface charge dynamics after a cubic-to-tetragonal phase tran-
sition on the BaTiO3 single crystal (001) surface was directly measured through scanning probe
microscopy. The captured surface potential distribution shows significant changes: the domain
structures formed rapidly, but the surface potential on polarized c domain was unstable and reversed
its sign after lengthy lapse; the high broad potential barrier burst at the corrugated a-c domain wall
and continued to dissipate thereafter. The generation of polarization charges and the migration
of surface screening charges in the surrounding environment take the main responsibility in the
experiment. Furthermore, the a-c domain wall suffers large topological defects and polarity variation,
resulting in domain wall broadening and stress changes. Thus, the a-c domain wall has excess energy
and polarization change is inclined to assemble on it. The potential barrier decay with time after
exposing to the surrounding environment also gave proof of the surface screening charge migration
at surface. Thus, both domain and domain wall characteristics should be taken into account in
ferroelectric application.

Keywords: ferroelectric domain; domain wall; surface charge; phase transition

1. Introduction

The development of ferroelectric materials has promoted promising applications
in non-volatile storage devices [1–3], sensors and actuators [4,5], and infrared detector
systems [6,7]. The ferroelectric domain structure is the fundamental execution unit of ferro-
electrics [8]. Below the Curie temperature [9], ferroelectrics have spontaneously polarized
domains and their ability to switch with the external field is the most important feature in
ferroelectric physics [10,11]. Surface charges can reflect the underlying domain polarity
characteristics [12]. Thus, temperature and surface charges affect the polarization dynamics
and domain structures. Studying the change of ferroelectric domain performance with
temperature has great scientific and engineering significance, for as electronic components,
ferroelectrics always work in a certain temperature field environment [13–15].

To figure out the nature of ferroelectric properties, it is necessary to perform nanoscale
or microscale imaging of the local domain structure. Such studies should pay special
attention to domains and domain walls, for their static and dynamic behaviors determine
the stability of ferroelectrics [16,17]. Thus, it is important to use direct imaging techniques
to study the characteristics of domain structure [18–20]. Scanning probe microscopy (SPM),
which allows the high-resolution and nondestructive imaging for domain structures and
observation of their dynamic behaviors on the micro and nanoscale, has been used [21–24].
The research of ferroelectric surface science using SPM has provided deep insight into the
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structure and dynamics of ferroelectrics [25–27]. Among the various SPM techniques, the
Kelvin probe SPM (SPKFM: Scanning Kelvin Probe Force Microscopy) can reflect the surface
electrostatic forces, and is used to visualize and detect the distribution and the dynamics of
the polarized charges on ferroelectric surfaces [28,29]. As such, during the experiment, the
SKPFM was used to measure the surface charge dynamics of the ferroelectric domain in
situ. Based on converse piezoelectric effect, the piezoelectric response force microscopy
(PFM: Piezo-response force microscope) utilizes a conductive probe to detect the local
deformation of the sample in response to an external excitation voltage applied to the tip,
thereby providing valuable information of ferroelectric domain structures [30]. Thus, in
the experiments, PFM was also introduced to characterize the domain structure and the
surface charge dynamics [31].

Compared with other ferroelectrics, BaTiO3 has a lower Curie temperature of 120 ◦C [32],
which is suitable and convenient for the study domain evolution during phase transition
in the actual experimental process [13,14]. In this article, we introduced the SKPFM study
of domain structures and dynamic behaviors of BaTiO3 single crystal after a cubic-to-
tetragonal phase transition. In the experiments, the c domain surface potential reversal and
high broad potential barriers at a-c domain walls were observed. This phenomenon was
captured around the polarized c domains, whose spontaneous polarization vector points
upward or downward to the (001) surface [13]. Thus, the c domain spontaneous polariza-
tion charge assembled at the top (001) surface immediately after the phase transition; in the
meantime, the surface screening charge moved to the surface to compensate the charged
surface. The decay of the potential barrier confirms the surface screening charge migra-
tion. The topological defect around the a-c domain wall caused the boundary to widen
and the stresses/strains to change, which provided excess energy for capturing surface
charges. Therefore, polarization charges and the surface charges should be considered
fundamentally in ferroelectric research and application.

2. Materials and Methods

A single crystal of (001) orientation BaTiO3 with dimension of 5 × 5 × 1 mm3 was
used during the experiment. The (001) surface was mechanically ground using sandpaper
and polished using diamond lapping pastes and silica colloidal suspension (0.05 mm),
whereby surface roughness of less than 3 nm was achieved. Then, the sample was cleaned
by ultrasonication in deionized water for 100 s. After that, the sample was placed on
a heating plate and the temperatures were controlled by heating the plate during the
experiments. The Lakeshore 335 Temperature Controller was utilized to drive the heating
plate, and the temperature of the heating plate can be controlled from ambient to 250 ◦C
with an accuracy of ±0.5 ◦C. In the experiment, the heating rate was maintained at 100 ◦C
per minute.

A Bruker Nanoscope V SPM system (Dimension V, Bruker, Santa Barbara, CA, USA)
was used to characterize the domain structure and dynamics of BaTiO3 single crystal
surface with a conductive tip (NSG01/W2C from NT-MDT, W2C-coated) with a resonance
frequency of 150 kHz in ambient conditions. Surface potential measurements (SKPFM)
are based on tapping mode, and the tip was operated in a 100 nm tip-surface lift height
with an AC voltage of 3 V amplitude at a frequency of 135 kHz. The scan rate was set to
0.8 Hz at 512 lines per frame. Thus, it took approximately 12 min to complete a whole
image scanning.

In this work, to measure the surface charge dynamics of BaTiO3 domain structure after
a cubic-to-tetragonal phase transition, the sample was treated as follows: the crystal was
placed in ambient at room temperature (RT) at first, then heated from RT to 135 ◦C (above
the TC at 120 ◦C). The crystal was kept at 135 ◦C for 30 min for equilibration, and then
cooled to 90 ◦C at a rate of 100 ◦C/min. In other words, the crystal structure underwent a
process of changing from the tetragonal to cubic phase and then cooling to the tetragonal
phase. Finally, new domain structures were formed in the crystal. In the meantime, the
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SKPFM was used to detect the domain structure and surface charge dynamics by surface
potential and AFM topography signals.

3. Results and Discussion

The phase transition of BaTiO3 crystal leads to the surface morphology and surface
charge distribution change that observed in the SPM images (Figure 1). Figure 1a displays
the surface topography of the sample with a 40 nm Z scale at 135 ◦C. Above TC, BaTiO3
single crystal was in cubic phase and there is no spontaneously polarized domain inside
the crystal. No fluctuation and charge were on the surface. Thus, no domain contrast
was observed in the topography image above the TC. Meanwhile, the surface potential
distribution was zero, as shown in Figure 1b. After cooling to 90 ◦C, the crystal was
in tetragonal phase and domain structures were formed in the sample. Each domain
polarization can be distinguished, and the distinct changes of both the ferroelectric domain
pattern and the surface charge were observed. The corrugated topography image acquired
at 90 ◦C show the 90◦ a-c domain structure, as marked in Figure 1c. The straight vertical
line was attributed to the 90◦ a-c domain wall, which was the surface topological defect
caused by the lattice parameters change on each side, showing the change in structure
integrity and the asymmetry of lattice mismatch. The surface potential distribution of
the sample changed significantly, as shown in Figure 1d. The potential distribution with
distinct contrast presented the characteristics of bright, dark, and intermediate. For BaTiO3,
the polarization vector in the c domain points either downward to the bottom or upward
to the top (001) surface, producing a negative (c− domain) or positive (c+ domain) charge
on the surface. In the SKPFM images, dark and bright contrasts correspond to the negative
and positive regions, respectively. Thus, the region displayed as dark is attributed to the c−

domain, and the region displayed as bright is attributed to the c+ domain. The c+ and c−

domain walls are curved in the surface potential image (0.6 V Z scale) with no topological
mismatch at the boundary. The measured surface potential value of the c+ and c− domains
are +180 mV and −250 mV, respectively. The a domain is parallel to (001) surface, thus, no
charge generates on the surface; the surface potential is zero, showing the intermediate
contrast in between the bright (c+ domain) and dark (c− domain) areas, as shown in
Figure 1d. In addition, the surface potential features changed significantly not only in the
domains, but also at the domain wall regions. Bright and dark potential barriers connected
to the adjacent c− and c+ domains burst at the a-c domain wall area in Figure 1d. The
potential height at the domain wall can reach the value of 300 mV, and the domain wall
width was up to 2 µm, broader than the domain wall polarization [21].

The captured surface potential distribution was unstable and changed fast during
the mapping (Figure 2). The c domain surface potential inversed its sign with scanning;
that is, the original bright c+ domains apparently became negative, and the dark negative
c− domains turned into positive stripes. The dark regions completely replaced the bright
regions. The domain potential reversal was quite fast, which was observed only during
the first 10 min. The high potential stripes were acquired at the 90◦ a-c domain wall, but
gradually decayed with time with both the height and the width continued to decrease.
The relaxation of the high potential barrier decayed quite fast during the initial 20 min,
and then slowed down, as shown in Figure 3. After 70 min, the domain and domain
wall surface potential equilibrium state were achieved. The domain structure with the
bright, dark and intermediate regions was obtained, and corresponded to the initial c−, c+

and a domain areas, respectively. The overall change in the surface potential dynamics is
summarized in Figure 2.
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Figure 1. Phase transitions from cubic (135 °C) to tetragonal (90 °C). AFM topography (a) and sur-
face potential map (b) of the (001) BaTiO3 surface acquiring at 135 °C which is above the Curie tem-
perature of BaTiO3 at 120 °C with a 40 nm Z scale and the roughness was 0.68 nm. AFM topography 
image with a 200 nm Z scale (c) and surface potential mapping with a 0.6 V Z scale (d) acquired 
after cooling to 90 °C showing typical a-c domain structures. 

 
Figure 2. The c+ and c− domain potential versus time showing an inversion of the potential sign, the 
inserted images are subsequent scans of the same area showing domain potential reversal and the 
decay of potential barrier. (The arrows point to the initial c+ domain data points.) 
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Figure 1. Phase transitions from cubic (135 ◦C) to tetragonal (90 ◦C). AFM topography (a) and surface
potential map (b) of the (001) BaTiO3 surface acquiring at 135 ◦C which is above the Curie temperature
of BaTiO3 at 120 ◦C with a 40 nm Z scale and the roughness was 0.68 nm. AFM topography image
with a 200 nm Z scale (c) and surface potential mapping with a 0.6 V Z scale (d) acquired after cooling
to 90 ◦C showing typical a-c domain structures.
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Figure 2. The c+ and c− domain potential versus time showing an inversion of the potential sign, the
inserted images are subsequent scans of the same area showing domain potential reversal and the
decay of potential barrier. (The arrows point to the initial c+ domain data points.)

The simultaneous observation of domain surface potential reversal and the domain
wall potential barriers has not yet been reported. The newly formed c domain surface
potential was unstable and has reversed its sign. High broad potential barriers burst
around the a-c domain wall, and gradually decayed with exposure to the surrounding
environment. The surface charge dynamics are associated with the polarized c domain re-
gions. For BaTiO3 single crystal, the c domain surface gathers the polarization charges [10].
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Thus, the observed surface potential instability may be attributed to surface polarization
charges motion.
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Figure 3. The intensity of 90◦ a-c domain wall potential change over time.

When the ferroelectrics are below the Curie temperature, domains would maintain
spontaneous polarization and generate charges on the surface [8]. Initially, the ferroelectric
surface is in a completely unscreened state [29,33], and the surface potential image reflects
the intrinsic polarization characteristics of the ferroelectric domain structures. The surface
potential of ferroelectric domains in an unscreened state is determined by the characteristic
of surface polarization charges σ, given by σ = P · n, where P is the polarization vector and
n is the unit perpendicular to the top surface [9]. The energy of the unscreened surface is
theoretically 3.49 eV [34]; thus, polar molecules, free electrons or space charges, collectively
referred to as screening electronics, tend to be adsorbed onto the polar c domain surface to
neutralize the high energy [13]. With the presence of screening species, the surface screening
charge density increases until the polarization charges are completely screened [35]. Thus,
the ultimate polarization state of the ferroelectric surface after a long-term lapse depends
on the interaction between the spontaneous polarization and the screening charge with
the opposite sign [36]. As such, the sign of the surface potential measured by SKPFM is
eventually reversed. The high broad potential barrier at the corrugated a-c domain wall
indicates the presence of charges and provides a model of charge accumulation to the
wall [13]. The decay of the surface barrier also clarifies the characteristics of surface charge
migration [37]. Therefore, the role and properties of domain walls cannot be ignored in
ferroelectric performance [38–41].

To further understand the local domain wall surface potential distribution, a selected
area SKPFM variable temperature measurement was carried out, including a large-scale
scan (22 µm × 22 µm) and a selected zoom-in area (6 µm × 6 µm). Figure 4a shows the
surface potential map of the large-scale domains at 80 ◦C. The square in Figure 4a is the
selected zoom-in area showing a typical a-c domain structure with the bright, dark and
intermediate contrast on the surface potential image. Then, after cooling to 60 ◦C, the
surface potential map of the selected zoom in area was captured immediately (Figure 4b).
Potential barriers burst at both the 90◦ a-c domain wall and the 180◦ c-c domain wall. A
cross-section profile was drawn to characterize the potential barrier location and height
in Figure 4c. The potential barrier aligns with the 90◦ a-c domain wall and the 180◦ c-c
domain wall; in addition, the height of 90◦ a-c domain wall was much higher compared
with that of 180◦ c-c domain wall. Thus, it indicates that the corrugated 90◦ a-c domain
wall is inclined to attract more charge to the surface, which seems to be a natural trap for
charges. Meanwhile, the observed potential barriers decay gradually at 60 ◦C.
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To fully analyze the local surface charge effects, the surface dynamics of ferroelectric
a domain with temperature various was also studied. The 90◦ a-b domain structures are
composed of the a domain with its polarization vector parallel to the (100) direction and
the b domain with its polarization vector parallel to the (010) direction. Thus, the polar
charges only accumulated on the (100) and (010) surfaces, and no polarization charge
generates at the observed (001) surface. The polarization vectors of the a domains and
b domains are connected end-to-end and perpendicular to each other to minimize the
system energy, as shown in the schematic of Figure 5d. The surface topography and
potential distribution of the 90◦ a-b domains on the BaTiO3 (001) surface are shown in
Figure 5a,b, respectively. The roughness of the surface was measured to be 1.07 nm. It
can be determined that the a-b domain structure cannot be distinguished with no contrast
and no corrugation at the surface. Furthermore, the PFM was introduced to characterize
the a-b domain structure and the surface charge dynamics. In the experiments, a 10 V AC
signal with a 15 kHz frequency was applied to the tip to induce surface displacement. The
a-b domain structure could be clearly distinguished from the PFM image in Figure 5c. The
sample was heated to 110 ◦C at 5 ◦C/min and kept for 30 min to reach equilibrium, after
which PFM images and surface potential images were captured, as shown in Figure 6a,b.
After cooling to 90 ◦C at 100 ◦C/min, PFM images and the surface potential images were
acquired in situ, as seen in Figure 6c,d. No obvious change in surface appearance or surface
charge was observed. In other words, the in-plane polarized a-b domain structure has no
potential on the (001) surface. Thus, the potential barrier induced by thermal variation
has a significant relationship with the surface polarization charges. Only when there are
polarization charges on the surface will potential barriers appear at domain walls.

As the temperature changes, high and broad potential barriers were observed at the
a-c domain wall and the c-c domain wall but not at the a-b domain wall. The charge
accumulation at the domain walls around the c domains may be related to the asymmetry
of the charge distribution around the domain wall [42]. The discovery of enhanced local
conductivity at ferroelectric domain walls was also reported [43,44]. The domain wall acts
as a trap or a path for charges [13]. The polarized c domain surface charge is inclined
to accumulate near the c+-c− domain walls and a-c domain walls. Meanwhile, the a-b
domain wall has no polarization charge on the surface and no charge traps.
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Figure 5. (a) AFM topography map of the 90◦ a-b domain structure at the (001) plane with a 40 nm Z
scale and the roughness was 1.07 nm. (b) Surface potential map of the observed 90◦ a-b domain zone
showing no contrast and no charge. (c) In-plane PFM map of the same area showing a typical 90◦

a-b domain structure. (d) Schematic of the measured a-b domain zone connected head to tail and
perpendicular to each other.
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In addition, domain walls show large topological asymmetry. The a-c domain walls
are connected by domains with a 90◦ orientation, resulting in lattice mismatch. Thus,
the domain wall exhibits a corrugated angle [45]. Separating domains with opposite
polarizations, the c-c domain wall has no lattice mismatch [46]. Studies have also found
that the 90◦ a-c domain wall of BaTiO3 crystal is wider than the 180◦ c-c domain wall [40].
To a certain extent, the broadening of the 90◦ a-c domain wall can absorb more charges; on
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the other hand, it also inhibits the movement of surface charges, resulting in an increase in
surface potential [47]. Furthermore, domain walls produce large strains associated with
the lattice arrangement. When the polarization directions around the domain wall change
abruptly, the inhomogeneous stresses and/or strains emerge at the vicinity of the domain
wall [45]. In the 180◦ c-c domain wall, the strain transitions smoothly from one spontaneous
polarization value to the opposite one. Whereas, in the a-c domain wall, the tilted domain
wall polarization causes large strains to sustain the domain patterns [48]. The broadened
and highly stressed a-c domain wall has different physical properties from the smooth
transition c-c domain wall, resulting in asymmetry in domain wall charge accumulation and
distribution. During the thermal variation, the surface polarization charge accumulation
occurs with the change of surface free energy ∆E =

(
Ewall + Echarge − Ewall,charge

)
> 0.

Compared with the c-c domain wall, the a-c domain wall has instantaneous excess free
energy [49]. Thus, the a-c domain wall can attract more surface charges, resulting in a
high potential barrier around it. As the charged surface is exposed to the surrounding
environment, the screening species migrates onto the surface to neutralize the surface
charges, leading the high potential barriers’ decay with time [36].

Thus, after a cubic-to-tetragonal phase transition, the observed c domain surface
potential reversal and the high potential behavior at the domain wall are significantly
affected by multiple coupling effects: the dynamics of the c domain surface potential
reversal is attributed to the interaction between polarization charge and surface screening
species. The observed potential barrier at the a-c domain wall is closely associated with
the accumulation of the adjacent c domain polarization charges due to the asymmetry of
the physical structure characteristics as well as domain wall topological defects and strain
changes (Figure 7).
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4. Conclusions

In the paper, the ferroelectric domain surface charge dynamics of a (001) BaTiO3 single
crystal after a cubic-to-tetragonal phase transition were studied using the SKPFM method.
A significant change in the BaTiO3 domain surface potential after thermal variation was
found. The captured c domains’ surface potential distribution showed a large unstable
amplitude and reversed its sign with SKPFM scanning. Bright and dark high potential
barriers burst on the corrugated a-c domain walls, with its sign opposite to the adjacent
c domain, but were not stable and declined continually with time. The surface potential
dynamics are relative to that expected from polarization orientation on BaTiO3 and the
surface screening charge mobility in ambient. The captured potential barrier at the corru-
gated a-c domain wall not only depends on the migration charges on polarized c domain
surface, but is also aided by the width of the domain wall broadening and an increase in
stress/strain across the wall.
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