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Ekaterina Krymovaa,1 , Benjaḿın Béjara, Dorina Thanoub , Tao Suna , Elisa Manettic , Gavin Leea , Kristen Namigaic, Christine Choirata ,
Antoine Flahaultc , and Guillaume Obozinskia

Edited by David Donoho, Stanford University, Stanford, CA; received July 15, 2021; accepted June 6, 2022

Since the beginning of the COVID-19 pandemic, many dashboards have emerged as
useful tools to monitor its evolution, inform the public, and assist governments in
decision-making. Here, we present a globally applicable method, integrated in a daily
updated dashboard that provides an estimate of the trend in the evolution of the number
of cases and deaths from reported data of more than 200 countries and territories, as well
as 7-d forecasts. One of the significant difficulties in managing a quickly propagating
epidemic is that the details of the dynamic needed to forecast its evolution are obscured
by the delays in the identification of cases and deaths and by irregular reporting. Our
forecasting methodology substantially relies on estimating the underlying trend in the
observed time series using robust seasonal trend decomposition techniques. This allows
us to obtain forecasts with simple yet effective extrapolation methods in linear or log
scale. We present the results of an assessment of our forecasting methodology and discuss
its application to the production of global and regional risk maps.
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It is of utmost importance for governments and decision makers in charge of the healthcare
system response to anticipate the evolution of the current COVID-19 pandemic (1).
When accurate and reliable, predictions can be very informative in defining appropriate
policy measures and interventions, such as lockdown and containment measures, border
closures, quarantines, school openings, and physical distancing. They are also useful
for predicting hospital surge capacity, in order to manage hospital resources (2). Given
that the pandemic is affected by these measures, testing policies, the appearance of
new variants, the diffusions across borders, etc., long-term forecasts are difficult, and
their usefulness remains unclear (3), whereas accurate short-term forecasts provide useful
actionable information. Nevertheless, even short-term forecasts are far from trivial, as
recently evidenced by (4), where a simple baseline appears to be not so easy to beat on
a 1-wk horizon.

In this work, we propose a general methodology to produce forecasts on a 1-wk horizon,
which is applicable to close to 200 countries, and as many states/regions or provinces.
An additional challenge to achieve this goal is that the quality of the reported data
varies significantly from country to country. This translates into different fluctuations
and irregularities that can be observed in the reported time series (5). Many countries
do not report on a daily basis or delay their reports to particular days of the week. In
particular, seasonal patterns with a weekly cycle are observed for many countries. In
several countries, for example, in Switzerland, the number of reported cases shows a
significant decline during or immediately after the weekend, which is probably due to
the fact that, on those days, fewer patients get tested and/or that the reporting is less
active and thus delayed. Also, it is important to note that, as illustrated in the data from
Spain in Fig. 1A, seasonal patterns are nonstationary and can actually change in time, in
particular, if the reporting policies change. Furthermore, delays in reporting, changes in
death cause attribution protocols, and changes in testing policies lead to abrupt corrections
that introduce backlogs on some days, such that a number of daily cases or deaths which are
anomalously high or even negative are reported. To take into account these peculiarities,
we propose a forecasting methodology that relies on estimating the underlying trend
with a robust seasonal trend decomposition method and on using simple extrapolation
techniques to make a forecast over a week.

We apply the proposed algorithms to produce daily updated forecasts available on our
public dashboard at https://renkulab.shinyapps.io/COVID-19-Epidemic-Forecasting/ (6).
Since the early phases of the pandemic, we delivered trend estimates and forecasts
of the evolution of the number of cases and deaths over a horizon of 1 wk for 192
countries at the national level. We subsequently added regional trends and forecasts for
several countries, namely, Switzerland (cantonal), Canada (province level), the United
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Fig. 1. Green bars correspond to daily cases. Blue bars show the forecast for the next 7 d. The red line shows the estimated trend smoothed together with the
forecast. (A) JHU daily cases for Spain with forecasts starting from September 10, 2020, with a negative observation in June 2020 (not shown in the plot), visible
outliers, and seasonality patterns in reporting starting from July. Daily cases in the last 3 mo preceding December 3, 2021, for (B) Brazil, (C) Kansas, (D) China,
and (E) Germany. Shown are the observed number of cases (green), estimated trend (red), and trend forecast for the following week (blue).

States (state level), and France (departmental level). These fore-
casts were produced daily, including on Sunday and on holidays.
Our dashboard provides, as well, today, calibrated probabilistic
forecasts in the form of prediction intervals and the effective re-
production number based on our trend estimate via the method of
(7), together with risk maps that assign to each country a color cor-
responding to its current epidemiological status (see Discussion).

The forecasting methodology presented in this paper was put
into production already in September 2020 and has therefore
been producing results on the dashboard since then. Our forecasts
were available during the whole period of the pandemic and
reported on the platforms of the European and US COVID-
19 Forecast Hubs. Besides that, based on our estimated effective
reproduction number (R-eff) and our forecasts, epidemiologists
and global health experts from the Institute of Global Health have
been providing recommendations to the European governments
via the High-Level European Expert Group for the stabilization of
COVID-19 of the World Health Organization and, additionally,
to the Swiss National Science Taskforce for COVID-19 since its
inception.

Related Work

The problem of forecasting the evolution of the COVID-19
pandemic has attracted the attention of many researchers, insti-
tutions, and individuals across the globe. As a result, a significant
number of dashboards have appeared that monitor and/or make
predictions about the evolution of the pandemic based on past
observations. All these efforts are also being leveraged to build
ensemble predictive models for different regions in the world.
For instance, the United States Center for Disease Control and
Prevention provides ensemble predictions for the United States at

the state level in the US COVID-19 Forecast Hub (8). Similarly,
the German and Polish COVID-19 Forecast Hub (9) provides en-
semble predictions at the regional level for Germany and Poland.
In March 2021, the European Centre for Disease Prevention
and Control (ECDC) launched a European COVID-19 Forecast
Hub (10) to provide short- and long-term ensemble forecasts for
Europe. The considered modeling approaches rely on different
data sources used (cases or/and death data, tests data, hospital
data, mobility data, etc.) and aim at forecasting horizons ranging
from 1 wk to several months. Epidemiological compartmental
models or models inspired by them are among the most popular
ones for the forecasting task, for example, the model by Insti-
tute for Health Metrics and Evaluation (11), YYG-ParamSearch
(12), UMass-MechBayes (13), IEM Health-CovidProject (14),
and USC-SIkJalpha (15). Such models [e.g., structured SEIR
(16)] split the population into different groups (age, demograph-
ics) and states (susceptible, infected, etc.) and model the transition
dynamics of the population between the different states over time.
The different parameters of the models can be deterministic or
random, or be allowed to vary in time. Other approaches use
statistical regression [e.g., UMich-RidgeTfReg (17) and LANL
(18)], curve fitting [e.g., RobertWalraven-ESG (19)], and deep
learning [e.g., GT-DeepCOVID (20)] to learn a predictor from
past observations, or time series (e.g., ARIMA; e.g., MUNI-
ARIMA) (21) to learn a representation describing the evolution of
the dynamics of the observed measurements, for example, CMU
TimeSeries (22, 23). Some models make strong assumptions on
the transmission dynamics (24) or specific assumptions on the
effect of different policies, for example, (25-27). These are just a
few selected references, and the list is by no means exhaustive. For
a more complete list of recent related literature, we refer the reader
to (4, 28–31).
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Our approach differs from most of the other existing ap-
proaches, in two ways. First of all, given that the usefulness of long-
term (e.g., several weeks or months) forecasts has been subject
to debate, because of the complexity of the phenomenon and
the impossibility of taking into account a number of important
factors, we consider, like (32), “that short-term projections are
the most that can be expected with reasonable accuracy.” We
thus focus on the prediction of short-term (1 wk to 2 wk ahead)
forecasts of daily numbers for deaths and cases. Second, instead of
building, directly, a forecasting model, our approach implements,
first, a trend estimation model from daily cases/deaths observa-
tions that makes few or no assumptions about the underlying
dynamics, doesn’t require estimating a large number of parameters
(as opposed to, e.g., SEIR-type), and is therefore more robust and
easier to apply at a more global scale. Our forecast is then obtained
from the trend estimated via a simple extrapolation scheme. Our
trend estimates are of independent interest, and we further use
them to provide an independent estimate of the R-eff, which is an
important measure for decision-making.

Results

Trend Estimation. To model a potentially quickly varying sea-
sonal pattern on a weekly horizon and suppress the influence of
outliers, we implemented a piecewise trend estimation method
based on a robust Seasonal Trend decomposition procedure using
LOESS (locally estimated scatterplot smoothing) (33), which is
further referred to as STL. It is a filtering procedure for decom-
posing time series into trend, seasonal, and residual components,
which is furthermore robust to outliers. Specifically, the raw daily
observations are modeled as

xt = τt + δt + rt ,

where τt is a slowly changing trend, δt is a possibly slowly chang-
ing seasonal component, and rt is a residual. Since the magnitude
of the seasonal term can reasonably be expected to be proportional
to the trend, allowing for the seasonal component to change
with time is relevant here, especially since, as discussed, reporting
patterns change in time in several time series. To obtain a more
quickly adaptive algorithm, we use STL to produce separate trend
estimates on overlapping windows of 6 wk and recombine them
using weighted averaging. Outliers identified as a by-product of
the STL procedure are removed, the corresponding counts are
redistributed in recent history, and the trend estimation procedure
is run one more time on the cleaned data (see Materials and
Methods for more details).

Fig. 1 illustrates the behavior of our trend estimation procedure
for different countries that represent a certain diversity. In the cases
of Germany and Brazil (Fig. 1B and E), the weekly seasonal effect
is quite significant and clearly nonstationary, in particular between
December 22, 2020 and January 3, 2021. For China (Fig. 1D),
no particular seasonal effect can be identified, and several outliers
seem to cooccur with the peak of the wave. The state of Kansas
(Fig. 1C ) illustrates an example of a fairly irregular seasonal effect.
In all these cases, the trend estimation proposed appears to be
robust to outliers and to changes in seasonality or lack thereof,
and adapts to the regularity of the underlying trend. Beyond
a qualitative evaluation of the trend estimation, a quantitative
evaluation is difficult because of the lack of any ground truth,
especially since the underlying dynamics of the trend in various
countries and provinces are quite different. To some extent, the
trend estimation proposed can be validated quantitatively via
the forecasting algorithm which relies on it, since the quality of
the forecast depends on the quality of the estimation of the trend.

Fig. 2. Illustration of the probabilistic forecast as a collection of nested
intervals (red shaded regions) for the forecast of the number of cases in the
United States.

Forecasting. To predict cases and deaths 1 wk ahead, we propose
to simply extrapolate, linearly, the daily trend, which was obtained
with the above trend estimation algorithm (Fig. 1) either on the
original or on the log scale, by preserving the most recent slope
of the estimated trend. In the case of a decreasing trend slope, the
extrapolation is carried out in log scale to prevent undershooting.
For the case of an increasing trend, the extrapolation is performed
in linear scale to prevent overshooting. To forecast the number of
deaths, some models have been using lagged cases as input. Given
the diversity of situations in different territories, and the fact that
the relation between deaths and cases was sometimes quite unclear
or changing in a short amount of time, we used the same simple
forecasting approach as for cases. See SI Appendix for a discussion
and references.

Following the recommendations of (4) and the requests of
different forecast hubs, we also produced probabilistic forecasts
for the weekly counts, in the form of a collection of 23 quantiles
corresponding to the levels 0.05k for k = 1, . . . , 19 and the
extreme levels α= (0.001, 0.025, 0.975, 0.99). These quantiles
are estimated from quantile estimates of appropriately normal-
ized errors of our forecast on a recent history, that are extrap-
olated for extreme levels using a tail model. See Fig. 2 and
SI Appendix, Figs. S12–S14 for illustrations, and see Materials and
Methods for more detail.

Evaluations. We evaluate our forecasts of the number of new
cases in two ways, first, by comparing them with the forecasts
obtained by several methods submitted to the European COVID-
19 Forecast Hub (10) and, second, by comparing our forecast with
a baseline on a larger set of countries, namely, the naive forecast
(used on several hubs) that assumes that the weekly number
of cases remains constant over the following week. To obtain
interval forecasts, quantiles of the baseline predictive distribution
are estimated from symmetrized observed errors of the baseline as
in the US and European COVID-19 Forecast Hubs (4, 34).

The comparison is made in terms of mean absolute error
(MAE) and average weighted interval score (WIS) (35) (see
Materials and Methods). We also provide some details on the
performance of our deaths forecasts in SI Appendix, section A.

To compare our method to the baseline, we compute the
relative improvement in MAE (RMAE), the relative improve-
ment in median absolute error (RmedianAE), and the relative
improvement in average WIS (RWIS). The relative improvement
is positive when the proposed forecasting method has a smaller
error than the baseline. It can be thought of as a rate of decrease
in error with respect to the baseline.

European Countries, European Hub. In order to compare the
performance of our method with other methods, we used the
data available at the European COVID-19 Forecast Hub. The
methods submitted to the Hub are aggregated in order to
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Fig. 3. Histograms for the average WIS (in x axis) of 1-wk-ahead forecasts for the 31 European countries.

obtain a EuroCOVIDhub-ensemble method, and a baseline
(EuroCOVIDhub-baseline) is available. The weekly forecasts can
be submitted once a week. Between April 1 and December 15,
2021, 43 submissions are available for both the EuroCOVIDhub-
ensemble and the EuroCOVIDhub-baseline. We included, in
our comparison, five other methods whose forecasts were all
available for all 31 countries included in the hub, on a common
large subset of 32 wk (i.e., 75% of all weeks). These methods
are MUNI-ARIMA, IEM Health-CovidProject, USC-SIkJalpha,
RobertWalraven-ESG, ILM-EKF (36). In order to obtain results
comparable across different countries, we report the ratio of the
MAE (or average WIS) of each method to the MAE (or average
WIS) of the EuroCOVIDhub-baseline, following the reporting
standards (37) of the hub (SI Appendix, section A).

The results show that the proposed method (SDSC ISG)
performs well for most of the countries; for example, see
the histogram of average WIS in Fig. 3 (for MAE, see
SI Appendix, Fig. S1). It is clear that, in terms of average WIS,
the performance of our method is one of the best ones and is close
to the performance of the ensemble method and MUNI-ARIMA.

Additionally, we ranked the methods, according to their
performance, from one to seven, where one corresponds to
the method with the smallest value of MAE or average WIS.
The results can be summarized as follows: For average WIS, our
method outperforms all other methods (including the ensemble)
for 8 countries, it ranks second or best for 16 of them, and
it is among the top three for 25 countries; for MAE, it ranks
first for 9 countries, second or best for 18, and within the
top three for 25. More details can be found in SI Appendix,
section A and Tables S1 and S2. Additionally, we used our
methodology to perform 2-wk-ahead forecasts and obtained sim-
ilar results (SI Appendix, Tables S3 and S4 and Figs. S2 and S3).
Given that our forecast is based on a simple extrapolation of our
trend estimate, this suggests that the trend estimate is accurate
even on the boundary of the period where data are available.

Global Comparison with a Baseline. For countries that report
new cases with irregular delays, it is difficult to know whether the

discrepancy between the forecast and reported weekly numbers is
due to errors of the forecast or the fact that the reported numbers
actually do not reflect accurately the current number of new cases.

We, therefore, present the main evaluation of our forecasting
strategy on a restricted set of 80 countries, which report suffi-
ciently frequently with a relatively low number of outliers. These
countries were selected based on a set of criteria that are indepen-
dent from our trend estimation and forecast methodology (see
Materials and Methods). Nevertheless, we present the evaluation
on the full list of countries in SI Appendix, section A. We use the
data provided by Johns Hopkins University (38) after April 1,
2020, which corresponds approximately to the date after which
all countries started reporting regularly.

For the 80 selected countries, we performed a retrospective
analysis from April 1, 2020 until December 15, 2021. For each
day in this period, we forecast the total number of cases over
the week following that day, using our methodology, and forecast
the baseline using the data that were available at that date (and
thus without corrections made a posteriori). As ground truth, we
used the weekly data available on January 10, 2022. We evaluate
our forecast by reporting, for each country, the RMAE, the
RmedianAE, the relative improvement in coverage, and RWIS.
The detailed evaluation results for the full list of considered
countries can be found in SI Appendix, section A. In Fig. 4, Left,
we display a scatter plot of the relative improvement in terms of
RMAE and RWIS of our proposed forecast methodology over the
baseline for the subset of 80 regularly reporting countries and for
the 1-wk-ahead forecast. As can be seen, our method outperforms
the baseline in both metrics for most of the selected countries. The
same RMAE and RWIS values are displayed in Fig. 4, Right for 30
countries with either large populations or large population density,
where the impact of the pandemic is potentially more important
in terms of scale.

Out of the 80 countries, 72 (i.e., 90%) show an improvement
in MAE, 66 (82.5%) show an improvement in median AE, 71
(88.75%) show an improvement in WIS, and 68 countries show
an improvement in both MAE and WIS. Only five countries do
not show an improvement in either of these criteria. We also
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Fig. 4. (Left) Scatter plot of RMAE and RWIS on 1-wk-ahead forecast for the selected subset of 80 countries, with points in red corresponding to the 30 countries
with either larger populations or larger population density included in (Right) the bar plot.

measure the coverage of the estimated prediction intervals, where
our forecast is more accurate than the baseline for 66 countries.
There are 53 out of 80 countries for which our method shows an
improvement in all four metrics (MAE, median AE, average WIS,
and coverage). This is the case, for example, for the United States,
where the improvement in MAE and WIS over the baseline is
25%. We note that, in the work of (4), which compares forecasting
algorithms focusing on US data, only 6 algorithms out of 23
achieve an improvement of more than 20% in MAE over the
baseline [for forecasts on horizons of 1 wk to 4 wk; see table 2
in (4)].

The countries for which our method did not perform better
than the baseline typically have long plateaus that the baseline ben-
efits from, or/and have quickly changing seasonality patterns and
direction of the trend, where the simple and robust baseline makes
smaller errors. We analyzed how the AE varies as a function of the
growth rate of the trend and evaluated to what extent, as soon
as the trend is not flat, our method produces improved forecasts
compared to the baseline (SI Appendix, section F and Fig. S4).
Our method outperforms the baseline predictor when the growth
rate is larger than 3% in absolute value, which shows that the
proposed forecast is informative as soon as the trend is not flat.

Discussion

The comparisons with the forecasts submitted to the European
COVID-19 Forecast Hub and the baseline demonstrate that the
proposed forecasting methodology performs well. It should be
noted that, as a forecasting method, the considered baseline is
uninformative in the sense that it does not attempt to characterize
the evolution of the curve. Despite this, as reported in (4), it
is not easy to outperform this type of baseline in terms of pure
predictive accuracy. Thus, any forecasting method characterizing
the evolution of the curves which improves over this baseline
can be useful. Our forecasts are available in the US COVID-19
Forecast Hub, European COVID-19 Forecast Hub, and German
and Polish COVID-19 Forecast Hub.

Apart from producing forecasts and estimates of prediction
intervals, the trend estimates that we obtain are of independent
interest. We use them, in particular, to produce a stable estimate
of the R-eff. The R-eff measures the expected number of people
that can be infected by an individual at any given time (39) and has
been used as a key indicator in this pandemic. Since its estimation
requires, essentially, solving a deconvolution problem (7), it is

quite sensitive to the irregularities in the data. In the original paper
(7), the authors use LOESS smoothing in order to decrease the
influence of the irregularities. In our case, we propose to apply the
deconvolution based on our piecewise robust STL trend estimate.

Finally, we use our estimates of the R-eff together with our
forecasts to produce global daily risk maps according to the
following scheme: If the number of tests as reported in Our
World in Data is available and is above 10,000 per 1 million
individuals, we compare the prediction for the number of weekly
cases per 100,000 and R-eff with corresponding thresholds to
color code the map. Green is assigned if the number of weekly
cases per 100,000 inhabitants is below 30, orange is assigned if it
is above 30 and the epidemic curve is descending (R-eff < 0.9),
and red is assigned if it is above 30 and the epidemic curve
is ascending or plateauing (R-eff > 0.9). Other organizations
use similar thresholds for the cumulative rate per 100,000. For
instance, our choice of a threshold coincides with the upper
value of the third level (out of seven) in the ECDC map of the
geographic distribution of COVID cases. The value of the R-eff
is not taken into account in the risk assessment (color code) of a
country when the incidence numbers are low, since its estimation
becomes less reliable. Besides, it theoretically converges to one at
the end of an epidemic, and, in such a regime, it is no longer an
indicator of the severity of the pandemic. As a consequence, if
no test data are available, or the number of tests is below 10,000
per 1 million population, the region is colored in gray, meaning
that the data are missing/unreliable, and no risk assessment can
be made. An example of a risk map is given in Fig. 5. These maps
are useful for comparing the levels of epidemic activity between
countries based on a discrete color code. These comparisons can be
insightful, especially if the R-eff and different nonpharmaceutical
interventions of countries are taken into account.

The fact that our model makes minimal assumptions about the
data is an advantage in making it applicable to a large number
of countries and regions. But there are, of course, downsides.
In particular, our models only take into account a fairly limited
amount of information, and, in particular, no indicators of mobil-
ity, prophylactic measures, or lockdowns are taken into account.
Our models can, however, detect the effect of changes of behavior,
which can be quite informative for decision makers. For example,
when Ireland faced a second wave and the decision of lockdown
was made on the October 21, 2020, our models predicted ex-
ponential growth for the seven following days. However, almost
the day after, the curve broke, and, on October 25, the R-eff was
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Fig. 5. Snapshot of world risk map from March 25, 2022.

clearly below one, with a descending epidemic trend. That could
not be attributed to the lockdown measures only 4 d after they
were taken.

Conclusion

We have proposed a methodology for trend estimation and short-
term forecasts of the evolution of the number of COVID-19 cases
and deaths, which is broadly applicable to a large number of
different countries, states, and regions. Beyond its use to produce
forecasts, our trend estimation method is of independent value, as
it aims at providing a clear view of the current local evolution of
the trend. Estimating the recent behavior of the trend is important
as a tool to assess the current epidemic situation and to be able,
subsequently, to analyze the effect of various measures. We use, in
particular, our trend estimate to produce our own estimates of the
R-eff curves, which are, in turn, used to produce risk maps. For the
forecast, our evaluation shows that 1) the methodology performs
well compared to several methods submitted to the European
COVID-19 Forecast Hub and 2), for the 80 selected countries
in which we can reliably use weekly data as ground truth, we
outperform the baseline in a large fraction of countries.

Materials and Methods

Preprocessing. Before applying the trend estimation model to the data, we
remove negative values corresponding to reassessment of the counts, while
making sure that the cumulative counts are preserved by appropriately scaling
our estimates. We infer which zero counts on a given day correspond to missing
reports, and we eventually impute the counts corresponding to these missing
reports. The corresponding procedures are detailed in SI Appendix, section B.

STL. Our trend estimation algorithm leverages the STL proposed in (33). STL
consists of an iterative procedure that alternates between the estimation of the
seasonal and trend components, each of them being estimated using a LOESS
model, as well as the reestimation of importance weights associated with each
observation for robust estimation. More precisely, the algorithm consists of two

nested loops: The inner loop comprises several steps involving moving average
and LOESS nonparametric regressions (40) in order to estimate the seasonal
and trend components for the current set of robustness weights. The importance
weights are then updated in the outer loop, based on the residuals after the
update of the seasonal and trend components. The procedure is repeated for a
number of iterations.

Trend Estimator. First, we smooth with STL separately all intervals of 6 wk that
are starting every 3 wk from the end of the time series (so that each interval is half
overlapping with the previous one). In the absence of outliers (which should be
detected by the robust STL procedure), each trend estimate computed on a 6-wk
interval is rescaled to account for the same total number of counts as the observed
data, and, to obtain the final trend estimate, on each disjoint 3-wk interval defined
from the end of the time series, we compute a pointwise weighted combination
of the two overlapping trend estimates computed on this interval. In the presence
of outliers, these are first identified by our method and redistributed in the past.
After that, the same procedure as explained before is applied to the corrected
data. For further details, we refer to SI Appendix, section C.

Probabilistic Forecast. We produce probabilistic forecasts under the form of
a collection of 23 quantiles for the predicted average daily counts, which pro-
duce, as well, a collection of nested prediction intervals of the form [qα, q1−α].
These quantiles are estimated based on empirical quantiles of the retrospec-
tive deviations of the daily forecast fh,t from the actual weekly rolling mean
x̄t+h = (1/7)

∑3
k=−3 xt+h+k for horizons h = 1, . . . , H and 19 levels α=

0.05, 0.10, . . . , 0.95, normalized by
√

ft,h, namely, the scaled errors

(̄xt+h − ft,h)/
√

ft,h.

The length of the history for estimation of the 19 quantiles was set to 40 + H
days. The normalization by

√
ft,h, which performed better than ft,h or one, is

motivated by a Poisson error distribution model. For the lowest/highest levels
(α= 0.01, 0.025, 0.975, 0.99), we extrapolated the quantiles based on an expo-
nential tail model whose scaling parameter is estimated from the other estimated
19 quantiles. Finally, we shift all quantiles q̃αi ,h on the scaled errors by a constant
to enforce that q̃0.5,h = 0. This is motivated by the fact that we expect our forecast
to be close to the conditional best median forecast. The prediction quantiles are
finally of the form qαi ,h = ft,h + q̃αi ,h

√
ft,h, where ft,h is the current forecast. See

Fig. 2 and SI Appendix, Figs. S12–S14 for an illustration.
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Similarly, for the weekly total number of cases/deaths k weeks ahead,
k = {1, 2}, the ground truth can be computed as Xt+4+7(k−1) =∑7

h=1 xt+h+7(k−1), and the point forecast is just Ft,4+7(k−1) =∑7
h=1 fh,t+7(k−1). The probabilistic forecast can be computed using the same

approach as above by replacing x̄t+h with Xt+4+7(k−1) and replacing ft,h with
Ft,4+7(k−1). In that case, the horizon is in weeks instead of days.

Evaluation Metrics for Point Forecasts. If x̄t = (1/7)
∑3

k=−3 xt+h+k is, as
before, the rolling mean of the number of daily new cases over a week and ft is
the corresponding point forecast (which we identify with the median forecast), the
absolute error of ft is AE(ft) = |ft − x̄t|. We consider, as evaluation metrics, the
MAE and the median absolute error over the evaluation period. Given a baseline
bt = x̄t−7, the RMAE is defined as

RMAE = (MAE(b)− MAE(f))/MAE(b).

Similarly, one can define RmedianAE.

Evaluation Metrics for Probabilistic Forecasts. Following the methodology
presented in (4), we evaluate our probabilistic forecasts using proper scoring
rules defined for forecasts taking the form of a collection of quantiles or equiv-
alently of nested intervals, namely, the WIS.

The interval score (24) at level α ∈ (0, 1) for the interval [�, u] and observa-
tion ξ is defined as

ISα([�, u], ξ) = u − �+
2
α

[
(�− ξ)1{ξ < �}+ (ξ − u)1{ξ > u}

]
,

where 1{·} is one if the condition is satisfied and is zero otherwise. The WIS
(24) is a proper scoring rule for probabilistic forecast, which is defined as follows:
for a number of levels A = {α1, . . . , αK},αi ∈ [0, 0.5) and the corresponding
estimated quantiles of the predictive distribution P, defined as qα = inf{q |
P(Ξ≤ q)≥ α) for the level αi ∈ {α1, . . . , αK , 0.5, 1 − αK , . . . , 1 − α1},
where Ξ is the random variable associated with the observation ξ, as follows:

WIS(P, A, ξ) = |ξ − q0.5|+
K∑

k=1

αkIS2αk ([qk , q2K+2−k], ξ).

The average WIS is defined as the mean of the WIS for the predictive quantiles
of distributions Pt constructed to predict x̄t over the times t in the estimation
interval; that is, MWIS = (1/T)

∑T
t=1 WIS(Pt , A, x̄t). Relative improvement in

MWIS (RWIS) is defined in similarly as RMAE.

Selection of Countries with More Reliable Data. For our main results, we
kept 80 countries whose reports of cases are sufficiently frequent and have only
a few missing values and a limited number of outliers. We proceeded as follows.
First, we excluded 52 countries that reported cases on less than 70% of the days,
since these countries have either a very small number of cases or are reporting
very irregularly, and, among the remaining countries, the 39 countries for which
more than five consecutive days were missing. Then, we performed robust outlier
detection (described in SI Appendix, section D) to estimate the number of outliers
in each time series, and we excluded the 20 countries with the largest number
of outliers among the remaining ones. It is important to note that the selection
criteria proposed here are independent of our trend estimation and forecast
methodology.

Data Availability. Code and evaluations are accessible at (41). We use the
data, which is publicly available in COVID-19 Data Repository by the Center for
Systems Science and Engineering (CSSE) at Johns Hopkins University (38, 42).
The forecasts of models submitted to European Covid-19 Forecast hub (10) used
in comparisons for horizons 1 and 2 wk are stored in (43).
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bCenter for Intelligent Systems, École Polytechnique Fédérale de Lausanne, 1015 Lausanne,
Switzerland; and cInstitute of Global Health, Faculty of Medicine, University of Geneva, 1202
Geneva, Switzerland

1. T. P. Velavan, C. G. Meyer, The COVID-19 epidemic. Trop. Med. Int. Health 25, 278–280 (2020).
2. C. S. Lutz et al., Applying infectious disease forecasting to public health: A path forward using

influenza forecasting examples. BMC Public Health 19, 1659 (2019).
3. J. P. A. Ioannidis, S. Cripps, M. A. Tanner, Forecasting for COVID-19 has failed. Int. J. Forecast. 38,

423–438 (2022).
4. E. Y. Cramer et al., Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality

in the United States. Proc. Natl. Acad. Sci. U.S.A. 119, e2113561119 (2022).
5. C. O. Wilke, C. T. Bergstrom, Predicting an epidemic trajectory is difficult. Proc. Natl. Acad. Sci. U.S.A.

117, 28549–28551 (2020).
6. Swiss Data Science Center; Institute of Global Health, COVID-19 daily epidemic forecasting.

https://renkulab.shinyapps.io/COVID-19-Epidemic-Forecasting. Accessed 7 July 2022.
7. J. S. Huisman et al., Estimation and worldwide monitoring of the effective reproductive number of

SARS-CoV-2. medrxiv [Preprint] (2022). https://doi.org/10.1101/2020.11.26.20239368. Accessed 7
July 2022.

8. US Center for Disease Control and Prevention, COVID-19 Forecast Hub. viz.covid19ForecastHub.org.
Accessed 31 November 2021.

9. J. Bracher et al., German and Polish COVID-19 Forecast Hub.
https://kitmetricslab.github.io/ForecastHub/forecast. Accessed 29 August 2021.

10. European Centre for Disease Prevention and Control, European COVID-19 Forecast Hub.
https://covid19ForecastHub.eu. Accessed 1 July 2022.

11. IHME COVID-19 Forecasting Team, Modeling COVID-19 scenarios for the United States. Nat. Med. 27,
94–105 (2021).

12. Y. Gu, COVID-19 projections using machine learning. https://covid19-projections.com. Accessed 30
July 2021.

13. G. C. Gibson, N. G. Reich, D. Sheldon, Real-time mechanistic Bayesian forecasts of COVID-19 mortality.
medRxiv [Preprint] (2020). https://doi.org/10.1101/2020.12.22.20248736.

14. IEM Health, COVID-19 projection dashboard. https://iem-modeling.com. Accessed 1 March 2022.
15. A. Srivastava, T. Xu, V. K. Prasanna, Fast and accurate forecasting of COVID-19 deaths using the SIkJα

model. arXiv [Preprint] (2020). arXiv:2007.05180. Accessed 7 July 2022.
16. L. J. Allen, F. Brauer, P. Van den Driessche, J. Wu, Mathematical Epidemiology (Lecture Notes in

Mathematics, Springer, 2008), vol. 1945.
17. S. Corsetti et al., COVID-19 collaboration. https://gitlab.com/sabcorse/covid-19-collaboration.

Accessed 1 August 2021.
18. L. Castro, G. Fairchild, I. Michaud, D. Osthus, COFFEE: Covid-19 forecasts using fast evaluations and

estimation. arXiv [Preprint] (2021). https://doi.org/10.48550/arxiv.2110.01546. Accessed 1 May
2022.

19. R. Walraven, COVID-19 data analysis. rwalraven.com/COVID19/https://gitlab.com/sabcorse/
covid-19-collaboration. Accessed 1 April 2022.

20. A. Rodriguez, et al., “Deepcovid: An operational deep learning-driven framework for explainable
real-time covid-19 forecasting” in Proceedings of the AAAI Conference on Artificial Intelligence. (AAAI,
Vol. 35. No. 17, 2021).

21. A. Kraus, D. Kraus, COVID-19 global dashboard. https://krausstat.shinyapps.io/covid19global.
Accessed 1 April 2022.

22. CMU Delphi Team, CMU Delphi Covid-19 Forecasts. https://github.com/cmu-delphi/covid-19-forecast.
Accessed 1 April 2022.

23. G. Ahmad et al., Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2
cases. PLoS One 16, e0252147 (2021).

24. M. Castro, S. Ares, J. A. Cuesta, S. Manrubia, The turning point and end of an expanding epidemic
cannot be precisely forecast. Proc. Natl. Acad. Sci. U.S.A. 117, 26190–26196 (2020).

25. P. Keskinocak, B. E. Oruc, A. Baxter, J. Asplund, N. Serban, The impact of social distancing on COVID19
spread: State of Georgia case study. PLoS One 15, e0239798 (2020).

26. J. C. Lemaitre et al., A scenario modeling pipeline for COVID-19 emergency planning. Sci. Rep. 11,
7534 (2021).

27. A. L. Bertozzi, E. Franco, G. Mohler, M. B. Short, D. Sledge, The challenges of modeling and forecasting
the spread of COVID-19. Proc. Natl. Acad. Sci. U.S.A. 117, 16732–16738 (2020).

28. J. Friedman et al., Predictive performance of international COVID-19 mortality forecasting models.
Nat. Commun. 12, 2609 (2021).

29. J. Bracher et al., A pre-registered short-term forecasting study of COVID-19 in Germany and Poland
during the second wave. Nat. Commun. 12, 5173 (2021).

30. J. Bracher et al., National and subnational short-term forecasting of COVID-19 in Germany and Poland,
early 2021. medRxiv [Preprint] (2021). https://doi.org/10.1101/2021.11.05.21265810. Accessed 1
May 2022.

31. E. L. Ray et al., Ensemble forecasts of coronavirus disease 2019 (Covid-19) in the U.S. medRxiv
[Preprint] (2020). https://doi.org/10.1101/2020.08.19.20177493. Accessed 1 May 2022.

32. N. P. Jewell, J. A. Lewnard, B. L. Jewell, Predictive mathematical models of the COVID-19 pandemic:
Underlying principles and value of projections. JAMA 323, 1893–1894 (2020).

33. R. Cleveland, W. Cleveland, I. Terpenning, STL: A seasonal-trend decomposition procedure based on
LOESS. J. Off. Stat. 6, 3–73 (1990).

34. E. L. Ray, R. Tibshirani, COVID-19 forecasthub – COVIDhub-baseline.
https://zoltardata.com/model/302. Accessed 1 May 2022.

PNAS 2022 Vol. 119 No. 32 e2112656119 https://doi.org/10.1073/pnas.2112656119 7 of 8

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112656119/-/DCSupplemental
http://viz.covid19ForecastHub.org
https://kitmetricslab.github.io/ForecastHub/forecast
https://covid19ForecastHub.eu/
https://covid19-projections.com
https://iem-modeling.com
https://gitlab.com/sabcorse/covid-19-collaboration
https://doi.org/10.48550/arxiv.2110.01546
http://rwalraven.com/COVID19/
https://gitlab.com/sabcorse/covid-19-collaboration
https://gitlab.com/sabcorse/covid-19-collaboration
https://krausstat.shinyapps.io/covid19global
https://github.com/cmu-delphi/covid-19-forecast
https://zoltardata.com/model/302
https://doi.org/10.1073/pnas.2112656119


35. J. Bracher, E. L. Ray, T. Gneiting, N. G. Reich, Evaluating epidemic forecasts in an interval format. PLOS
Comput. Biol. 17, e1008618 (2021).

36. European Centre for Disease Prevention and Control, European Covid-19 Forecast Hub: Community.
https://covid19ForecastHub.eu/community.html. Accessed 1 April 2022.

37. European Centre for Disease Prevention and Control, European Covid-19 Forecast Hub: Reports.
https://covid19ForecastHub.eu/reports.html. Accessed 1 April 2022.

38. E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time. Lancet
Infect. Dis. 20, 533–534 (2020).

39. E. Mahase, Covid-19: What is the R number? BMJ 369, m1891 (2020).

40. W. Cleveland, S. J. Devlin, Locally weighted regression: An approach to regression analysis by local
fitting. J. Am. Stat. Assoc. 83, 596–610 (1988).

41. Swiss Data Science Center and Institute of Global Health, SDSC ISG-TrendModel.
https://github.com/ekkrym/CovidTrendModel. Accessed 7 July 2022.

42. Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, COVID-19 Data
Repository. https://github.com/CSSEGISandData/COVID-19. Accessed 24 March 2022.

43. European forecast hub team, independent teams, European Covid-19 Forecast Hub: Submitted
forecasts. https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/tree/main/
data-processed. Accessed 24 March 2022.

8 of 8 https://doi.org/10.1073/pnas.2112656119 pnas.org

https://covid19ForecastHub.eu/community.html
https://covid19ForecastHub.eu/reports.html
https://github.com/ekkrym/CovidTrendModel
https://github.com/CSSEGISandData/COVID-19
https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/tree/main/data-processed
https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/tree/main/data-processed
https://doi.org/10.1073/pnas.2112656119

