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Abstract

INTRODUCTION: People with Down syndrome (DS) have a 75% to 90% lifetime risk

of Alzheimer’s disease (AD). AD pathology begins a decade or more prior to onset

of clinical AD dementia in people with DS. It is not clear if plasma biomarkers of AD

pathology are correlated with early cognitive and functional impairments in DS, and

if these biomarkers could be used to track the early stages of AD in DS or to inform

inclusion criteria for clinical AD treatment trials.

METHODS: This large cross-sectional cohort study investigated the associations

between plasma biomarkers of amyloid beta (Aβ)42/40, total tau, and neurofila-

ment light chain (NfL) and cognitive (episodic memory, visual–motor integration, and
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visuospatial abilities) and functional (adaptive behavior) impairments in 260 adults

with DSwithout dementia (aged 25–81 years).

RESULTS: In general linear models lower plasma Aβ42/40 was related to lower visu-

ospatial ability, higher total tau was related to lower episodic memory, and higher NfL

was related to lower visuospatial ability and lower episodic memory.

DISCUSSION:Plasmabiomarkersmayhave utility in trackingADpathology associated

with early stages of cognitive decline in adults with DS, although associations were

modest.

KEYWORDS

adaptive behavior, adults, cognitive performance, functional abilities, neurofilament light chain,
plasma amyloid beta, plasma total tau, trisomy 21

Highlights

1. Plasma Alzheimer’s disease (AD) biomarkers correlate with cognition prior to

dementia in Down syndrome.

2. Lower plasma amyloid beta 42/40was related to lower visuospatial abilities.

3. Higher plasma total tau and neurofilament light chain were associated with lower

cognitive performance.

4. Plasma biomarkers show potential for tracking early stages of AD symptomology.

1 INTRODUCTION

Adults with Down syndrome (DS) have a 75% to 90% likelihood of

developing Alzheimer’s disease (AD), with an average age of clinical

dementia onset in the mid-50s.1,2 DS is characterized by the full or

partial triplication of chromosome 21, which includes the amyloid pre-

cursor protein (APP) gene. The overexpression of APP is posited to be

a driver of the near-universal presence of AD pathology in individuals

with DS by the fourth decade of life.3–6 As in autosomal dominant AD7

and sporadic late onset AD,8 AD pathology begins a decade or more

prior to the onset of clinical dementia in DS.9,10 To advance clinical

AD interventions in DS, there is a need to identify biomarkers of early

disease progression that correspond to initial cognitive or functional

impairments and could predict time to dementia onset. Blood biomark-

ers are appealing given that they areminimally invasive and of low cost

relative to neuroimaging and cerebrospinal fluid (CSF) biomarkers.11

The AT(N) framework was developed to stage biomarkers of AD

progression in autosomal dominant and sporadic late onset AD.12 In

this framework, the aggregation of amyloid beta (Aβ; A) is followed by
the accumulation of tau (T) and then neurodegeneration (N).12,13 This

framework has shown utility for modeling the progression of biomark-

ers of AD pathology in DS.14 In DS, neuroimaging-derived positron

emission tomography (PET), magnetic resonance imaging (MRI), and

CSF biomarkers indicating elevated Aβ, tau, and presence of neu-

rodegeneration have been shown to be associated with clinical AD

dementia status.15,16 In addition, prior to clinical dementia onset,

biomarkers of AT(N) have been shown to be correlated with early

cognitive decline in DS.17 For example, higher neocortical PET Aβ ([C-
11]Pittsburgh compoundB)was reported tobeassociatedwith a faster

rate of decline per year in episodic memory, visual attention, and visu-

ospatial performance.18,19 Recent work has also shown that change in

CSF and PET biomarkers of Aβ have a similar trajectory in DS as has

been found in autosomal dominant AD.20–22

Less is known about the ability of blood-based AT(N) biomarkers

to predict the time course of unfolding of AD clinical symptomology

in DS. In non-DS populations, plasma biomarkers of Aβ40 and 42, tau,

and neurofilament light chain (NfL) distinguish individuals with versus

without a clinical status of AD dementia.23,24 A combination of plasma

Aβ42/40, phosphorylated tau (p-tau)217, and NfL also predicted cog-

nitive decline and progression toADdementia over a 6-year interval.24

In DS, higher plasma total tau and NfL were reported to be able to

distinguish adults with DS with and without clinical AD dementia.15,25

However, to date, only a handful of studies have examined whether

plasma AD biomarkers correlate with early cognitive or functional

impairment prior to dementia onset. Lower plasma Aβ42 and Aβ42/40
was associated with cognitive decline over a 2-year interval26 and

conversion to AD over a 4-year interval;27,28 however, other studies

reported thathigherplasmaAβ42concentrationswereassociatedwith
AD dementia in people with DS.28,29 Plasma biomarkers of neurode-

generation inDS research have focused onNfL, a non-specificmeasure

of neuroaxonal injury.30 Cross-sectionalmodels of age trajectories sug-

gest that plasma NfL increases early in the progression toward AD,

aligning in time with decreases in CSF Aβ and increases in CSF p-tau

and plasma tau in DS.10,31 In a sample of 24 teens and adults with
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RESEARCH INCONTEXT

1. Systematic review: Blood-based biomarkers can distin-

guish individuals with Down syndrome (DS) with versus

without a clinical status of Alzheimer’s disease (AD)

dementia. Yet, few studies have examined the association

between plasma AD biomarkers and early cognitive and

functional impairments prior to dementia in DS.

2. Interpretation: Our findings identified an association

between plasma biomarkers of amyloid beta 42/40, total

tau, and neurofilament light chain and cognitive perfor-

mance in adults with DSwithout dementia.

3. Future directions: Longitudinal studies are needed to

examine changes in cognition and functional ability over

time in relation to change in plasma AD biomarker levels.

Incorporating additional plasma biomarkers and estab-

lishing thresholds for different stages of disease progres-

sion is an important next step in establishing utility of

plasma biomarkers for predicting time to dementia onset

in DS.

DS (aged 16–57 years), higher plasma NfL was associated with decline

across 1 year in overall everyday living skills.32

The current study investigated whether plasma Aβ42/40, total
tau, and NfL were associated with AD-related cognitive and func-

tional impairments prior to dementia onset in DS. Analyses involved

260 adults with DS without dementia from the Alzheimer Biomarker

Consortium–Down Syndrome (ABC-DS). In line with prior research in

DS,15,25,26 a lower plasma Aβ42/Aβ40 ratio and higher total tau and

NfL concentrations were hypothesized to be associated with lower

cognitive performance and functional ability.

2 METHODS

2.1 Participants

Participants were 260 adults with DS, aged 25 to 81 years old, who

participated in a baseline study visit from the multisite ABC-DS.33

Informed consent or assent was obtained prior to study activities.

Inclusion criteria for the broader study were age ≥ 25 years, genetic

confirmation of DS (trisomy 21, mosaicism, or translocation), and no

conditions that precluded brain imaging. A research team involving a

psychologist, physician, and at least one other team member deter-

mined AD diagnostic status in a case consensus meeting that used

information from cognitive testing, caregiver report, physical examina-

tion, and medical history (see Handen et al. for details on consensus

process).33 ADdiagnostic status categories included cognitively stable,

mild cognitive impairment–Down syndrome (MCI-DS), AD dementia,

and unable to determine. The current study included cognitively sta-

ble (n = 219) and MCI-DS (n = 41) groups (total n = 260). Adults with

DSwith a diagnostic status of ADdementia or unable to be determined

were excluded. Table 1 displays participant demographics.

2.2 Procedures

During a multiday visit, participants completed a battery of directly

administered cognitive assessments and a blood draw analyzed for

Aβ40, Aβ42, total tau, and NfL concentrations. A study partner accom-

panied the participant to the study visit and completed a series of

measures including theVineland-3 comprehensive caregiver interview,

which assesses everyday functional abilities. A full listing of ABC-DS

procedures is described in Handen et al.33

2.3 Measures

2.3.1 Cognitive performance

Three assessments were selected that have been shown to measure

cognitive domains affected early in the course of dementia in DS.34,35

These tests measured episodic memory (modified Cued Recall Test

[mCRT]), visual–motor integration (Beery-Buktenica Developmental

Test of Visual-Motor Integration Sixth Edition [VMI]), and visuospatial

abilities (Block Design with Haxby extension). Rigorous training and

certification processes ensured standardization of administration and

scoring of measures across sites.33

The mCRT36 measures episodic memory. The task involves learn-

ing the names of 12 black-and-white line drawings of simple objects

along with an associated semantic cue (e.g., “fruit” for the picture of

grapes). Participants are then asked to freely recall as many items as

possible and are provided the semantic cue for items not recalled. The

total score is the sum of items remembered in the free recall and cued

recall conditions over three trials (maximum score of 36). The mCRT

total score is reliable andhighly sensitive toADdementia clinical status

in adults with DS (area under the curve= 0.955).34,36

The VMI37 assesses integration of visual and motor abilities. Geo-

metric forms are presented in a workbook and participants are

required to copy each shape or design, with figures becoming increas-

ingly more complex. The VMI has excellent test–retest reliability

(α = 0.94) and shows decline in individuals that corresponds with

dementia onset in people with DS.35

Visuospatial construction was assessed with the Wechsler Mem-

ory Scale Fourth Edition (WISC-IV) Block Design subtest and Haxby

extension,38,39 a downward extension of theWISC-IV. Participants are

asked to re-create various set designs of blocks (from easy to more

challenging) with scores based on accuracy of block placement/design

within a time limit. Among people with DS, the WISC-IV Block Design

subtest has excellent test–retest reliability (α = 0.94)35 and perfor-

mance is sensitive to presence of AD dementia.40 A total visuospatial

construction score was obtained by adding the raw scores from the

WISC-IV and the Haxby extension.



4 of 10 SCHWORER ET AL.

TABLE 1 Descriptive statistics for participant demographics and plasma biomarkers.

M (SD)/ n (%)

Total sample (n= 260) Cognitively stable (n= 219) MCI-DS (n= 41) χ2 or t value

Chronological age 43.74 (9.51) 42.14 (9.06) 52.27 (7.10) −7.99**

Sex, n (%) male 144 (55.4%) 115 (52.5%) 29 (70.7%) 4.64*

Race

White 249 (95.7%) 211 (96.3%) 38 (92.7%) 6.48*

Black 3 (1.2%) 1 (0.5%) 2 (4.9%)

Asian 3 (1.2%) 2 (0.9%) 1 (2.4%)

Unreported 5 (1.9%) 5 (2.3%) –

Ethnicity

Non-Hispanic 248 (95.4%) 207 (94.5%) 41 (100%) 2.36

Hispanic 12 (4.6%) 12 (5.5%) –

Down syndrome type

Trisomy 21 223 (85.8%) 189 (86.3%) 34 (82.9%) 2.45

Mosaicism 9 (3.5%) 6 (2.7) 3 (7.3%)

Translocation 18 (6.9%) 16 (7.3%) 2 (4.9%)

Unreported 10 (3.8%) 8 (3.7%) 2 (4.9%)

Lifetime ID level

Mild 141 (54.2%) 123 (56.2%) 18 (43.9%) 4.22

Moderate 97 (37.3%) 76 (34.7%) 21 (51.2%)

Severe 22 (8.5%) 20 (9.1%) 2 (4.9%)

Cognitive/functional measures

mCRT 29.02 (9.17) 31.17 (7.01) 17.51 (10.75) 7.84**

VMI 15.79 (3.58) 16.19 (3.43) 13.68 (3.69) 4.24**

Block Design (with Haxby) 24.24 (11.14) 25.49 (10.30) 17.59 (13.12) 3.65**

Vineland-3 ABC 47.47 (18.54) 49.48 (18.42) 36.73 (15.39) 4.17**

Plasma biomarkers

Plasma Aβ42/40 0.034 (0.004) 0.034 (0.004) 0.033 (0.005) 1.45

Plasma total tau (pg/mL) 2.29 (0.77) 2.21 (0.70) 2.73 (0.97) −3.96**

PlasmaNfL (pg/mL) 16.92 (10.72) 15.31 (9.73) 25.92 (11.62) −6.09**

Abbreviations: ABC, Adaptive Behavior Composite; Aβ, amyloid beta; ID, intellectual disability; mCRT, modified Cued Recall Test; MCI-DS, mild cognitive

impairment–Down syndrome; NfL, neurofilament light chain; SD, standard deviation; VMI, visual motor integration.

*P< 0.05.

**P< 0.01.

2.3.2 Functional ability

TheVineland-3ComprehensiveCaregiver Interview41 is an informant-

based assessment of functional behavior across three domains: com-

munication, daily living skills, and socialization. An overall Adaptive

Behavior Composite (ABC) is calculated from the three domain scores.

Caregivers respond using a three-point Likert scale to indicate if the

adult with DS could independently complete daily functional activi-

ties often, sometimes, or never. Vineland-3 ABC standard scores have

a mean of 100 (standard deviation [SD] = 15). The communication

domain includes receptive, expressive, and written language. The daily

living skills component comprises personal, domestic, and community

subdomains. Socialization evaluates interpersonal relationships, play

and leisure, and coping skills. The Vineland-3 is commonly used in

studies including adults with DS42 and has high internal consistency

(α= 0.90–0.98) and test–retest reliability (r= 0.76–0.89).41

2.3.3 Plasma biomarkers

ABC-DS blood collection and processing methods were harmonized

across all eight ABC-DS clinical sites. Blood was collected into a 10 mL

ethylenediaminetetraacetic acid tube, then centrifuged for 10minutes

at 2000 × g at 4◦C. The plasma fraction was aliquoted in 0.25 mL
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units to individual 0.5 mL siliconized cryovials and stored at −80◦C at

local ABC-DS clinical performance sites. The vials were shipped from

the local ABC-DS sites on dry ice via overnight courier to the Insti-

tute for Translational Research at theUniversity of North TexasHealth

Science Center for analysis. International samples were shipped using

World Courier with dry ice replenished throughout shipping to ensure

samples remained frozen. Assays were run using single-molecule array

(Simoa) technology on the HD-1 analyzer with commercially available

kits (Quanterix). Frozen samples were thawed, vortexed, and spun at

10,000 × g for 5 minutes. Next, the supernatant was transferred to

a 96-well plate and processed according to kit procedures. The time

in storage from blood draw to analysis for all samples was < 3 years.

Detailed plasma assay information can be found in Petersen et al.25

2.3.4 Sociodemographic data

Participant age and biological sex were reported by the study part-

ner. DS was established by blood karyotyping (trisomy 21, mosaicism,

or translocation). Lifetime intellectual disability (ID) level was coded

based on standardized IQ scores derived by the Stanford–Binet, Fifth

Edition abbreviated battery IQ ormedical records that documented IQ

or intellectual level from testing during early adulthood (i.e., age ≥ 21

years) and prior to MCI-DS. ID level was coded: mild (1), moderate (2),

or severe/profound (3) based on IQ standard scores (mild: 50–69,mod-

erate: 35–49, and severe/profound: < 35) or estimated age equivalent

scores (mild: 9–14 years, moderate: 4–8 years, and severe/profound:≤

3 years).

2.3.5 Analysis plan

Dependent variables were examined for normality using qq plots, his-

tograms, and descriptive statistics. The mCRT required a reversed

natural log transformation due to skewness (ln [36 – total score]

+1; skewness after transformation = 0.26). Participant character-

istics, cognition/functional measures, and plasma biomarkers of the

cognitively stable and MCI-DS groups were compared using t tests

and chi-squared tests (as appropriate). Pearson correlations, Kruskal–

Wallis tests, and point biserial correlations (as appropriate) were used

to examine the association between sociodemographic variables and

primary variables of interest (cognitive skills, functional abilities, and

plasma AD biomarkers). Sociodemographic variables (biological sex,

age, and ID) that were significantly associated with primary variables

were controlled for in subsequent analyses. Site differences were also

controlled for inmodels in linewith best practice formultisite research.

Generalized linear models, controlling for any relevant sociodemo-

graphic and site effects, were then conducted in SAS version 9.4

to examine the associations among plasma Aβ42/40, total tau, and
NfL and cognitive and functional ability measures (mCRT, VMI, Block

Design, and Vineland-3 ABC). Secondary analyses were conducted to

examine models in the cognitively stable group only (excluding those

with MCI-DS) to further understand how plasma AD biomarkers were

associated with cognitive and functional ability before any cognitive

decline was detectable.

3 RESULTS

Review of histograms and descriptive data indicated significant (i.e., ≥

3 SDs from mean) outliers in the plasma biomarkers. This resulted in

removal of two (1.0%) plasma Aβ42/40 cases, four (1.5%) plasma total

tau cases, and three (1.2%) plasma NfL cases. Participants in the MCI-

DS group were older, had lower scores on the cognition/functional

measures, and higher values for two of the plasma biomarkers (plasma

total tau and NfL; Table 1). Cognitive scores (mCRT, VMI, Block

Design) and functional ability scores (Vineland-3 ABC) were signif-

icantly associated with age and lifetime ID level (Table 2). Plasma

NfL was also associated with age. Additionally, there were signifi-

cant differences in biological sex for the mCRT and plasma total tau,

such that on average females scored 1.90 points higher than males

on the mCRT and total tau concentrations were higher in females

compared to males (0.19 mean difference). There were no other sig-

nificant differences identified based on biological sex (Table 2). Thus,

all subsequent analyses controlled for age, ID level, biological sex, and

site.

Table 3 shows the results of the generalized linear models exam-

ining the associations among plasma Aβ42/40, total tau, and NfL and

cognitive and functional ability measures (mCRT, VMI, Block Design,

and Vineland-3 ABC), controlling for age, ID level, biological sex,

TABLE 2 Demographic variable Pearson correlations, Kruskal–Wallis tests, and point biserial correlations with cognitive skills, functional
ability, and plasma AD biomarkers, n= 260.

mCRT VMI Block design Vineland-3 ABC PlasmaAβ42/40 Plasma total tau PlasmaNfL

Chronological age −0.46** −0.30** −0.22** −0.28** −0.11 0.12 0.64**

Lifetime ID levela 18.56** 43.67** 49.27** 62.22** 2.19 5.82 0.83

Biological sexb 0.14* −0.01 −0.06 0.05 0.05 0.13* −0.01

Abbreviations: ABC, Adaptive Behavior Composite; Aβ, amyloid beta; AD, Alzheimer’s disease; ID, intellectual disability; mCRT, modified Cued Recall Test;

NfL, neurofilament light chain; VMI, visual motor integration.

*P< 0.05.

**P< 0.01.
aKruskal–Wallis test used due to categorical variable.
bPoint biserial correlations used due to dichotomous variable.
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TABLE 3 General linear model results predicting cognitive skills and functional abilities in adults with DS prior to dementia, n= 260.

β Estimate [95%CI]

mCRTa VMI Block Design Vineland-3 ABC

Site (vs. site 1)

Site 2 0.279 [−0.188, 0.746] −1.603 [−3.236, 0.030] −5.227** [−10.083,−0.370] −11.568** [−19.033,−4.103]

Site 3 0.048 [−0.388, 0.485] −0.604 [−2.131, 0.922] −0.540 [−5.078, 3.999] −12.463** [−19.439,−5.487]

Site 4 0.842** [0.438, 1.246] −1.757 [−3.169,−0.344] −7.332** [−11.533,−3.131] −4.451 [−10.908, 2.007]

Site 5 0.793 [−0.506, 2.092] −0.281 [−4.827, 4.265] 3.357 [−10.162, 16.877] 8.097 [−12.682, 28.876]

Site 6 0.132 [−0.271, 0.535] −0.686 [−2.096, 0.723] 0.119 [−4.073, 4.311] 0.879 [−5.564, 7.322]

Site 7 −0.003 [−0.365, 0.359] 0.283 [−0.984, 1.549] −1.466 [−5.233, 2.301] −1.480 [−7.270, 4.310]

Age 0.042** [0.027, 0.057] −0.072** [−0.126,−0.019] −0.147 [−0.307, 0.013] −0.383** [−0.628,−0.137]

Lifetime ID level (vs. mild)

Moderate 0.405** [0.164, 0.647] −1.732** [−2.576,−0.887] −6.590** [−9.101,−4.078] −16.127** [−19.987,−12.267]

Severe/profound 1.081** [0.663, 1.498] −4.280** [−5.741,−2.820] −15.994** [−20.337,−11.650] −28.125** [−34.802,−21.449]

Biological sex (vs. male) −0.236* [−0.465,−0.008] −0.316 [−1.114, 0.482] −1.760 [−4.134, 0.614] 0.558 [−3.091, 4.207]

Plasma Aβ42/40 7.339 [−18.406, 33.085] 57.615 [−32.458, 147.689] 280.604* [12.726, 548.482] 122.718 [−289.009, 534.444]

Site (vs. site 1)

Site 2 0.268 [−0.187, 0.724] −1.567 [−3.212, 0.078] −5.452** [−10.354,−0.549] −12.400** [−20.115,−4.685]

Site 3 0.091 [−0.331, 0.513] −0.743 [−2.267, 0.781] −2.185 [−6.726, 2.356] −13.148** [−20.294,−6.001]

Site 4 0.824** [0.430, 1.218] −1.798 [−3.221,−0.375] −7.643** [−11.883,−3.403] −4.680 [−11.352, 1.992]

Site 5 0.996 [−0.276, 2.269] −0.269 [−4.863, 4.325] 3.731 [−9.961, 17.422] 8.126 [−13.419, 29.670]

Site 6 0.151 [−0.254, 0.557] -0.827 [−2.291, 0.637] 0.223 [−4.140, 4.586] 0.761 [−6.104, 7.627]

Site 7 0.027 [−0.327, 0.381] 0.200 [−1.077, 1.477] −1.803 [−5.609, 2.003] −1.672 [−7.661, 4.317]

Age 0.038** [0.023, 0.053] −0.077** [−0.131,−0.024] −0.136 [−0.296, 0.024] −0.289* [−0.541,−0.038]

Lifetime ID level (vs. mild)

Moderate 0.378** [0.141, 0.614] −1.777** [−2.630,−0.923] −6.507** [−9.051,−3.964] −15.185** [−19.187,−11.183]

Severe/profound 0.983** [0.572, 1.395] −4.154** [−5.640,−2.668] −15.491** [−19.919,−11.063] −27.074** [−34.042,−20.107]

Biological sex (vs. male) −0.284* [−0.511,−0.058] −0.247 [−1.065, 0.570] −1.578 [−4.014, 0.858] 0.596 [−3.238, 4.430]

Plasma total tau 0.271** [0.125, 0.417] −0.102 [−0.631, 0.427] −0.559 [−2.135, 1.016] −1.673 [−4.152, 0.806]

Site (vs. site 1)

Site 2 0.263 [−0.201, 0.728] −1.651* [−3.276,−0.026] −5.211** [−10.045,−0.377] −13.454** [−21.231,−5.677]

Site 3 −0.034 [−0.465, 0.397] −0.562 [−2.070, 0.947] −0.724 [−5.211, 3.764] −13.377** [−20.597,−6.157]

Site 4 0.781** [0.377, 1.185] −1.857* [−3.269,−0.444] −6.953** [−11.155,−2.751] −5.702 [−12.463, 1.058]

Site 5 0.497 [−0.810, 1.805] 0.072 [−4.501, 4.645] 8.885 [−4.717, 22.487] 7.738 [−14.146, 29.622]

Site 6 0.109 [−0.290, 0.508] −0.730 [−2.127, 0.667] 0.242 [−3.912, 4.397] 0.244 [−6.440, 6.928]

Site 7 −0.038 [−0.399, 0.322] 0.320 [−0.941, 1.581] −1.020 [−4.770, 2.731] −2.162 [−8.196, 3.872]

Age 0.031** [0.013, 0.049] −0.065* [−0.128,−0.001] 0.023 [−0.165, 0.212] −0.318* [−0.622,−0.015]

Lifetime ID level (vs. mild)

Moderate 0.373** [0.135, 0.610] −1.704** [−2.535,−0.874] −6.332** [−8.802,−3.862] −15.358** [−19.332,−11.383]

Severe/profound 1.041** [0.629, 1.452] −4.190** [−5.630,−2.750] −14.967** [−19.250,−10.685] −27.989** [−34.879,−21.099]

Biological sex (vs. male) −0.238* [−0.465,−0.011] −0.259 [−1.053, 0.534] −1.449 [−3.808, 0.911] 0.411 [−3.385, 4.207]

PlasmaNfL 0.015* [0.001, 0.028] −0.012 [−0.060, 0.036] −0.228** [−0.371,−0.086] 0.047 [−0.182, 0.277]

Abbreviations: ABC, Adaptive Behavior Composite; Aβ, amyloid beta; CI, confidence interval; DS, Down syndrome; ID, intellectual disability; mCRT, modified

Cued Recall Test; NfL, neurofilament light chain.

*P< 0.05.

**P< 0.01.
aReversed natural log transformation, positive coefficient means an inverse relationship.
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F IGURE 1 A, Plasma Aβ42/40 and Block Design. B, Plasma total
tau andmCRT. C, PlasmaNfL and Block Design. D, PlasmaNfL and
mCRT. Aβ, amyloid beta; mCRT, modified Cued Recall Test; NfL,
neurofilament light chain

and site. Lower plasma Aβ42/40 was related to lower Block Design

performance, higher plasma total tauwas significantly related to lower

mCRT performance, and higher plasma NfL was significantly associ-

ated with lower Block Design and mCRT performance. Figure 1 shows

partial correlation graphs adjusted for site, age, lifetime ID, and biolog-

ical sex for all significant associations between the plasma biomarkers

and cognitivemeasures.

Secondary analyses were then conducted using the same gener-

alized linear models described above but conducted with only the

participants with a clinical status of cognitively stable (n= 219). When

examining the cognitive stable group only, there was a significant neg-

ative association between plasma NfL and Block Design (F = 4.652,

P= 0.032).

4 DISCUSSION

The current study drew on a large cohort of adults with DS with-

out dementia and found that plasma biomarkers of Aβ42/40, total
tau, and NfL had associations with cognitive abilities, after adjusting

for age, lifetime ID level, and biological sex, and controlling for site

effects. Higher plasmaAβ42/40was related to higher visuospatial per-
formance (Block Design), higher plasma total tau was associated with

lower episodic memory performance (mCRT), and higher plasma NfL

was related to both lower visuospatial performance (BlockDesign) and

episodic memory performance (mCRT). Impairments in these cogni-

tive domains have been shown in prior work to be among the earliest

observed in the progression toward AD dementia in DS and in longitu-

dinal studies the rate of decline in these cognitive domains has been

shown to be similar for people with DS with mild versus moderate

ID.18,34,43,44 These findings build on recent efforts to establish imag-

ing, CSF, and plasma AT(N) biomarkers related to early symptomology

(i.e., cognitive and functional impairments) in the progression toward

clinical dementia in people with DS.10,18,19,32,45,46

The MCI-DS group had significantly higher mean levels of plasma

total tau and NfL than the cognitively stable group, and significantly

lower cognitive scores. The relation between our plasma biomarkers

and cognitive impairments was driven by differences between adults

with DS with a clinical status of cognitively stable versus MCI-DS,

as only the association between higher plasma NfL and lower visu-

ospatial performance remained significant when adults with MCI-DS

were excluded from analyses. This finding could signal that a higher

NfL captures visuospatial ability differences unrelated to early AD

pathology, in line with the idea that elevated plasma NfL is a non-

specific biomarker that has been linked to several neurodegenerative

conditions.30 Alternatively, cross-sectional evidence from other large

DS cohort studies10 has suggested that plasma NfL increases could be

part of the early trajectory toward AD dementia in DS. Future lon-

gitudinal research is needed to fully understand when and if early

NfL changes have predictive value in understanding AD disease pro-

gression. In contrast to NfL, our cross-sectional findings suggest that

associations between plasma Aβ42/40 and total tau and cognitive

impairments may not be evident until individuals with DS progress to

MCI-DS.

Our findings also suggest that impairments in visuospatial ability

and episodic memory may be among the earliest in the progression

to AD dementia in DS, given their association with plasma biomark-

ers prior to onset of AD dementia. Prior work from the ABC-DS cohort

identified episodicmemory, and to a lesser extent visuospatial declines,

to be closely associated with PET biomarkers of Aβ.18 In the cur-

rent study, higher plasma total tau was associated with lower episodic

memory when examining adults with DS with a clinical status of cogni-

tively stable and MCI-DS, which also mirrors prior work showing that

biomarkers of PET tau are associated with episodic memory declines

prior to AD dementia in DS.19 Functional ability has previously been

found to be related to concentrations of plasma Aβ in young adults

with DS.47 However, we did not find significant associations between

plasma markers and the Vineland-3, and functional declines are not

consistently described as being part of the early unfolding of AD in

adultswithDS,9 albeit functional behavior is not always given sufficient

attention.

The strength of the association between plasma Aβ42/40, total tau,
and NfL and cognitive and functional impairments was modest. These

modest associations may reflect that adults with DS are only expected

to experience subtle cognitive impairments in the early stages of AD

progression, prior to clinical dementia. PET imaging biomarkers of Aβ
and tau have similarly been found to have meaningful but modest

associations with cognitive performance prior to dementia onset in

adults with DS.18,19 As shown in Figure 1, there were cases in which

low cognitive performance did not correspond with plasma Aβ42/40,
total tau, and NfL values that would indicate risk for AD. For example,

although overall performance on theBlockDesignwas lower for adults
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with DS who had higher plasma NfL, there were individuals who had

similarly low Block Design scores with low plasma NfL (Figure 1C).

While this variance in test scores may be attributed to limitations of

cognitive testing or the overall ID levels of adults withDS, another pos-

sible interpretation is that a single plasma biomarker (Aβ42/40, total
tau, or NfL) alone is unlikely to be sufficient as an inclusion criterion

or targeting engagement for clinical AD trials. Additional plasma AD

biomarkers should be explored in future studies, as recent findings

identify plasma p-tau217 as an accurate indicator of PET Aβ and tau

brain pathology.48

This study has several strengths, including a large cohort of adults

withDSanduseofwell-establishedmeasuresof cognitiveperformance

and functional skills in the DS population. There were also limita-

tions that should be considered when interpreting results. First, the

study designwas cross-sectional and future studieswould benefit from

examining additional timepoints todetermine changes in cognition and

functional abilities over time and in relation to plasma AD biomarker

levels. Second, the study relied on caregiver report of functional abil-

ities and although the Vineland-3 is the gold standard for assessing

functional abilities in individuals with ID, there may have been varia-

tion in the amount of time each caregiver spent with the adult with

DS that affected the accuracy of responses. Additionally, the partici-

pants in the study were primarily White and non-Hispanic and future

studies should investigate the relation between plasmaADbiomarkers

and cognition/functional ability in a sample that ismore representative

of the population of adults with DS. Future studies should incorporate

imaging biomarkers of AD (e.g., PET Aβ and tau; MRI hippocampal vol-

ume) to corroborate and better understand their connection to plasma

Aβ42/40, tau, and NfL. Studies are also warranted that investigate

alternative plasma tau assays such as p-tau181 or p-tau217, as these

biomarkers have recently been found to distinguish adults with DS

with versus without clinical AD dementia.48,49 It is important to note

that participants with plasma biomarker values that were ≥ 3 SD from

the sample mean were removed from analyses. However, these values

may reflect valid data points, as sample and individual assay confidence

intervalswerewithin acceptable ranges. An understanding of expected

variability in these biomarkers using largerDSpopulations is needed to

guide future plasma biomarker research. Finally, in a recent DS study,

plasma NfL differed by biological sex;50 however, biological sex differ-

ences were only found with plasma total tau in the current analyses. It

is not clear if this difference is due to differences in age range of study

participants or other factors, but should be examined in future studies

and samples.

In conclusion, plasma AD biomarkers are low burden and low cost

relative to neuroimaging and CSF biomarkers11 and thus are appealing

for use in future clinical AD intervention trials in DS. Our cross-

sectional findings suggest that plasmaAβ42/40, total tau, andNfL have
modest associations with early impairments in episodic memory and

visuospatial ability prior to the onset of AD dementia and beyondwhat

would be expected with age and lifetime ID level. Future longitudi-

nal studies should determine whether these plasma biomarkers have

utility in predicting timelines of within-person cognitive declines and

transition to clinical dementia in people with DS.
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