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Abstract: Brain organoids have emerged as a novel model system for neural development, neu-
rodegenerative diseases, and human-based drug screening. However, the heterogeneous nature
and immature neuronal development of brain organoids generated from pluripotent stem cells
pose challenges. Moreover, there are no previous reports of a three-dimensional (3D) hypoxic brain
injury model generated from neural stem cells. Here, we generated self-organized 3D human neural
organoids from adult dermal fibroblast-derived neural stem cells. Radial glial cells in these human
neural organoids exhibited characteristics of the human cerebral cortex trend, including an inner
(ventricular zone) and an outer layer (early and late cortical plate zones). These data suggest that
neural organoids reflect the distinctive radial organization of the human cerebral cortex and allow for
the study of neuronal proliferation and maturation. To utilize this 3D model, we subjected our neural
organoids to hypoxic injury. We investigated neuronal damage and regeneration after hypoxic injury
and reoxygenation. Interestingly, after hypoxic injury, reoxygenation restored neuronal cell prolifera-
tion but not neuronal maturation. This study suggests that human neural organoids generated from
neural stem cells provide new opportunities for the development of drug screening platforms and
personalized modeling of neurodegenerative diseases, including hypoxic brain injury.

Keywords: human brain organoid; cerebral cortex; brain ischemia model; neural stem cell; reoxy-
genation

1. Introduction

Brain ischemia is a serious disease accounting for 5.5 million annual deaths world-
wide [1]. This condition leads to insufficient oxygen supply or cerebral hypoxia, inducing
the death of brain tissues, cerebral infarction, or ischemic stroke [2]. Ischemic stroke is
a cause of long-term disability and is associated with very high rehabilitation costs [3,4].
Because it consumes oxygen at a high rate, the entire central nervous system is very sensi-
tive to changes in oxygen concentration [5]. During hypoxia, the brain resorts to a major
adaptive mechanism that allows it to survive. Low oxygen tolerance is thought to stimulate
brain plasticity through a combination of energy conservation and improved homeostatic
control of subsequent hypoxic damage [6]. During hypoxic injury, modulation works
together with plasticity and its supporting function. The mechanisms underlying plasticity
and modulation may point to new strategies for preventing and treating hypoxic injuries
that may become the focus of clinical studies [7–9]. The human body’s ability to adapt to
hypoxia has been rigorously investigated [10]. However, the study duration and severity
of hypoxia induced in these previous studies were not consistent with what is observed
under pathological conditions; therefore, the adaptive response may be different from
that reported in these studies. Thus, understanding the cellular mechanism of hypoxic
resistance requires more than extrapolation from physiological conditions and can yield
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unique treatment goals [6]. Recent studies on brain ischemia have paid increasing attention
to ethical issues and have used models with minimal involvement of animals [11]. The
use of animals models will undoubtedly improve the odds of identifying and developing
effective therapeutics [12]. However, the results of these studies cannot determine whether
these drugs can treat neurodegenerative diseases in humans or therapeutic studies [13].

In stem cell therapy, neural stem cells (NSCs) have great potential for regenerative
treatment of neurodegenerative diseases. Recent studies have shown that mouse and
human somatic cells are directly converted to functional and expandable induced NSCs
(iNSCs), which have all of the key properties of primary NSCs [14]. Since the directly
transformed neuronal population is heterogeneous and cannot proliferate, the induction
of NSCs is desirable for obtaining a sufficient number of cells with a relatively safe and
homogeneous population of cells. This technique provides an attractive alternative to
current-induced pluripotent stem cell (iPSC) technology, as the tumorigenic potential of
iNSCs may be significantly lower than that of iPSCs [15]. The direct lineage conversion of
differentiated cells into neurons (i.e., induced neurons) or expandable pluripotent iNSCs
without passage through the pluripotent phase has been achieved. iNSCs can provide
sufficient amounts of neurons and have many uses, such as disease modeling and drug
screening [16]. However, there are limitations to stem cell differentiation in monolayer
culture. The interaction of the cells with the plastic surface overcomes the interaction
between cells or the interaction of cells with the extracellular matrix [17]. The stiffness
of plastic plates is not physiologically relevant, and many cells that separate from organs
or tumors become flat when they are cultured in monolayers, changing their growth rate
and differentiation status. Unsurprisingly, drug screening tests in monolayer cell culture
produce different results from those performed in three-dimensional (3D) cell culture [18].
Cells in 3D culture show more complex cell–cell interactions and diversity, reach the later
stages of development, and exhibit better function than cells in 2D culture. 3D-cultured
cells are called organoids and can be used to more accurately model the cytoarchitecture
of organs [19].

Organoids derived from human pluripotent stem cells are widely expected to fill
the remaining gaps between animal models and humans, as stem cells derived from
humans are the main sources of cultured organoid [20,21]. The development of research
platforms using organoid models takes less time than the establishment of animal models.
Since human organoids can be generated within weeks or months with a high success
rate, organoids derived from patients can be used in the field of personalized medicine
to provide compelling personal data, such as information about individualized mutant
profiles or drug reactions [22]. While initially identifying incubation conditions for new
tissue types is somewhat complex, it is relatively easy for researchers to process large
numbers of organoid lines simultaneously [23]. In particular, 3D human brain organoids
recapitulate both the anatomy and development of the human cortex [24,25].

Brain organoids generated from pluripotent stem cells offer an alternative research
model. For several years, organoid methods have been reported, including the quick
reaggregation (SFEBq) method for generating 3D cerebral cortex tissue from pluripotent
stem cells using serum-free cultures of floating embryoid body-like aggregates [26]. Sub-
sequently, dissolved Matrigel successfully supports the growth of 3D cortical forebrain
tissues from floating SFEBq aggregates [27,28]. 3D brain structure can also be supported by
embedding embryoid bodies in pure Matrigel droplets [29,30]. The addition of Matrigel to
neural-derived embryonic bodies supports the formation of polarized neuroepithelium
with the basal surface facing the environment, such as the external extracellular matrix, and
provides the epithelium with support to undergo subsequent morphogenic changes [26].
In vivo, the polarized neuroepithelium of the neural plate folds into itself, forming a round
neural tube, a pseudostratified neuroepithelium surrounding a lumen filled with apical
fluid [31,32]. The fold of this neural plate has not yet been replicated in organoids, but Ma-
trigel supports the creation of several neural tube-shaped shoots in which neuroepithelial
cells are organized in three dimensions around a large apical lumen. When the cortical
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region of the organoid is compared to a monolayer rosette, the 3D culture system shows a
higher level of spatial configuration, exhibiting a ventricular zone, subventricular zone,
and intermediate zone, as well as neurons with primitive inside-out layering that develop
into deep early-born neurons. The development of this structure is then followed by the
generation of later-born neurons that develop layers and ostensibly move into the regions
that contain deep early-born neurons [33]. In the body, developing cortical neurons are
radially arranged in dense bands called cortical plates. Despite an organoid’s ability to
produce basic mobile cortical neurons, adding dissolved Matrigel during the neurogenic
stage of organoid development is very important for the production of cortical plates. This
may be because the cell substrate of the pial basal membrane, which is produced in a
number of nonneural intermediate follicles and does not exist in organoids, is important
for proper movement and localization within the nerve plate [34].

In this study, we develop neural organoids from iNSCs because of their self-organization
capacity and report a protocol not involving embryoid bodies of different stages or neu-
ral induction, which are essential for iPSCs. Instead, we focus on providing conditions
for neuroepithelial growth and the environment necessary for neural differentiation and
development. These self-organized human neural organoids recapitulate the structure of
the human cerebral cortex. Furthermore, we suggest a method for inducing hypoxic brain
injury in 3D-cultured neural organoids. In the cortical plate-like domains of hypoxic neural
organoids, both cellular components and neuronal maturation were impaired after reoxy-
genation. These findings were recapitulated in a 3D culture model of hypoxic brain injury
and suggest that this human neural organoid platform is valuable for studying proliferation
and maturation underlying injury to the developing human cortex.

2. Materials and Methods
2.1. Culture of Human induced Neural Stem Cells (iNSCs)

The human iNSC lines used in this study were directly reprogrammed from human
adult fibroblasts and validated using standardized methods as previously described [15].
In brief, two retroviral factors, SOX2 and HMGA2, were transduced into human dermal
fibroblasts. After expansion of these cells, the culture medium was changed to the NSC
maintenance medium containing a 1:1 mixture of StemPro NSC SFM (# a1050901, Gibco,
Waltham, MA, USA) and ReNcell medium (#SCM005, Sigma-Aldrich, Rowville, Victoria,
Australia) comprising 100X GlutaMAX (#35050-061, Gibco), 5 ng/µL FGF-2 (#PHG0261,
Gibco), and 5 ng/µL EGF (#PHG0311, Gibco) was used. After neural induction, NSC-like
colonies were collected and transferred to a neurosphere culture condition. To establish an
iNSC line, cells were cultured as neurospheres and grown as attached cells on PLO/FN-
coated dishes, repeatedly. For the passaging, iNSCs were detached with 1 mL StemPro
Accutase (#GIB-A11105-01, Gibco) for 3 min, and neurospheres were collected from six-
well cell culture plates (#140675, Thermo Fisher Scientific, Waltham, MA, USA). After
5 min, the supernatant was discarded, and 1 mL StemPro Accutase was added. The cells
were collected and cultured as free-floating neurospheres in uncoated six-well plates or as
monolayers in poly-L-ornithine (#K-P4957-C110, Sigma-Aldrich) and fibronectin (#356008,
Corning)-coated six-well plates for ~40 passages.

2.2. Generation of Human Neural Organoids from iNSCs

To generate human neural organoids, neurospheres were embedded in 20 µL Ma-
trigel (#354234, Corning, Corning, NY, USA) on day 7. Neurospheres in the droplet were
transferred to 60-mm ultra-low attachment culture dishes (#3261, Corning) containing
cerebral organoid differentiation medium (CODM). The CODM consisted of a 1:1 mix-
ture of Neurobasal-A (#10888022, Thermo Fisher Scientific) and DMEM/F-12 (#11320082,
Gibco), 0.656% insulin (#12585014, Gibco), 1% GlutaMAX (#35050-061, Gibco), 0.5% MEM
non-essential amino acids (#11140050, Gibco), 0.0035% 2-mercaptoethanol (#M3148, Sigma-
Aldrich), 0.5% N-2 (#GIB-17502-048, Thermo Fisher Scientific), and 1% B-27 minus vitamin
A (#GIB-12587-010, Thermo Fisher Scientific). The CODM was replaced every other day.
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On day 21, polarized neuroepithelium-like structures were transferred to spinner flasks
(#3152, Corning) containing CODM comprising 1% B-27 (#GIB-17504-044, Thermo Fisher
Scientific). The CODM was replaced every other day for 35 days. To generate mature
human neural organoids, the CODM was replaced every other day for 84 days, and the
cells were cultured with agitation.

2.3. Sample Preparation

Neural organoids were fixed with 4% paraformaldehyde in phosphate-buffered saline
(PBS) for 20 min at room temperature. They were washed three times with PBS and then
immersed in a 30% sucrose solution overnight. The neural organoids were embedded
in 15% sucrose with 7.5% gelatin and slowly frozen in liquid nitrogen in a deep freezer
overnight.

2.4. Hematoxylin and Eosin Staining

Cryosectioned tissues on silane-coated slides (#5126-20F, Muto, Hongo, Bunkyo-ku,
Tokyo, Japan) were washed with running water for 10 min. The slides were stained with
hematoxylin (#HX73999849, Merck, Darmstadt, Germany) for 5 min 30 s and then washed
with running water for 10 min. Next, the slides were stained with eosin (#3200-2, Muto) for
20 s and dipped three times in distilled water. The stained slides were dipped in 70, 80, 90,
and 100% ethanol (#64-17-5, DUKSAN, Ansan-si, Korea) three times each for dehydration.
The stained slides were incubated in xylene (#1330-20-7, DUKSAN) for 1 h. The stained
slides were sealed with Canada balsam (#8007-47-4, Junsei, Chuo-ku, Tokyo, Japan) and
dried overnight at room temperature.

2.5. Immunohistochemistry

Slides were washed with 1% acetic acid in PBS comprising 0.025% Triton-X 100
(#X100, Sigma-Aldrich) (PBST) for 20 min. The slides were blocked with blocking solution
consisting of 5% normal goat serum in PBST for 1 h. Primary antibodies diluted in
blocking solution were applied to the slides overnight at 4 ◦C. Secondary antibodies
were diluted in PBST and applied to the sections for 1 h at room temperature. Alexa
Fluor 488 (#A11001, Invitrogen, Waltham, MA, USA)-, 555 (#A21428, Invitrogen)-, and
594 (#A11012, Invitrogen)-conjugated secondary antibodies were used at a 1:500 dilution.
DAPI (# D21490, Invitrogen) was diluted 1:1000 in PBST and applied to the slides for
10 min. Finally, the stained slides were mounted with fluorescent mounting medium
(#S302380, Dako, Santa Clara, CA, USA) and dried overnight at room temperature. Three
images of each slide were captured using a confocal microscope (Eclipse TE200, Nikon,
Shinagawa, Tokyo, Japan). The list of antibodies used for immunostaining is provided in
Supplementary Table S1.

2.6. Analysis of Cell Composition

Neural organoids were immunostained for phospho-vimentin (p-vimentin), SOX2,
TBR1, TBR2, and TUJ1. The cortical plates of neural organoids were imaged with a confocal
microscope. All TBR1- TBR2-, TUJ1-positive, and double-positive nuclei were individually
marked using the “cell counter” plugin in ImageJ. For quantification of organoid cell
differentiation, neural organoids were immunostained for SOX2 and p-Vimentin on day
35. Three images of cortical structures from each slide were captured randomly using
a confocal microscope. The list of antibodies used for immunostaining is provided in
Supplementary Table S1.

2.7. Hypoxic Brain Injury Modeling

Neural organoids were exposed to low-oxygen conditions on day 84. The neural
organoids were cultured in CODM and transferred to a hypoxic chamber containing 1%
oxygen for 48 h. After 48 h, the neural organoids were transferred to a chamber containing
21% oxygen and 5% CO2 and cultured in CODM for another 24 h (for reoxygenation).
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2.8. Statistical Analysis

All values are reported as the mean ± standard deviation (SD) unless otherwise
indicated. Statistical analyses were conducted using two-tailed Student’s t-test or ANOVA
followed by Newman–Keuls post hoc test for multigroup comparisons using GraphPad
Prism version 5.0 (GraphPad Software, San Diego, CA, USA). Statistical significance is
defined in the figure legends.

3. Results
3.1. Generation of Three-Dimensional (3D) Human Neural Organoids Derived from iNSCs

For 3D culture, we first attempted to generate neurospheres from previously estab-
lished iNSCs [15]. After seven days, we obtained round neurospheres with a length of
894.1 ± 40.8 µm (Figure 1Ab and Supplementary Figure S1A). As reported in previous
studies, the absence of a basement membrane normally leads to a lack of proper orientation
and failure of continuous epithelium formation [28]. Therefore, we embedded neurospheres
in Matrigel droplets and maintained them in differentiation CODM (Figure 1Aa). On day
21, we observed outgrowth of neuroepithelial buds with a length of 1446.3 ± 153.5 µm out-
side of the neurospheres (Figure 1Ac and Supplementary Figure S1A). We transferred the
neurospheres to a spinner flask to efficiently provide oxygen and nutrients. On day 35, the
length of the buds of the neurospheres in spinning flasks increased to 3569.8 ± 815.5 µm
(Figure 1Ad and Supplementary Figure S1A).

To further analyze the size of the neurospheres, we measured the cross-sectional area. The
cross-sectional areas on days 7, 21, and 35 were 594,962± 32,874µm2, 1,062,422 ± 132,914 µm2,
and 9,077,934 ± 977,968 µm2, respectively (Figure 1B). Interestingly, the cross-sectional area
significantly increased from day 21 to 35. On days 21 and 35, we identified neurospheres
on the basis of morphology (Supplementary Figure S1B,C). On day 35, approximately 60%
of neurospheres were identified as 3D neural organoids, as determined by the presence of
an expanded neuroepithelium (Figure 1C and Supplementary Figure S1Ca), whereas ap-
proximately 40% of neurospheres were not neural organoids, as determined by their globule
morphology (Figure 1C and Supplementary Figure S1Cb).

Next, we analyzed the 3D neural organoids. First, the neural organoids were stained
with hematoxylin and eosin. The cell density inside the neural organoids was different
from that inside the neurospheres (Figure 1D). This finding indicated that iNSCs were
stimulated to undergo neural differentiation and subsequent differentiation into specific
cell types in the neural organoids. To further investigate the neural tube-like structures
in the organoid cross-sections, we stained large continuous cortical tissues within the
organoids with the immature neuron marker neuron-specific class III beta-tubulin (TUJ1)
and the radial glia cell marker SOX2 (Figure 1E). We found that the 3D neural organoids
showed not only an increase in size but also expansion of neuroepithelial morphology. The
neural organoids consisted of an organized apical progenitor zone surrounded by basally
located neurons.
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Figure 1. Description of the culture system for three-dimensional (3D) structured human neural organoids derived from
induced neural stem cells (iNSCs). (A) Schematic overview of the neural organoid generation protocol including a time
point of neural organoid culture (a), a neurosphere in a droplet on day 7 (b), an expanded neuroectoderm on day 21 (c), and
a neural organoid on day 35 (d). Scale bars, 1 mm. (B) Quantification of the cross-section area on days 7, 21, and 35. Each
group n = 10 organoids, mean ± SD, *** p < 0.001, n.s. not statistically significant versus static. (C) Quantification of neural
organoids on day 35, structured organoid-containing cortex tissue-like structure and folding surface. Globules organoid
not folded and contained circle shapes. n = 109 organoids, mean ± SD. (D) Hematoxylin and eosin staining image of a
whole neural organoid on day 35. Scale bars, 1 mm. The inset shows a magnified view in the red square. Scale bars, 200 µm.
(E) Confocal image shows immature neuron marker TUJ1 (green), radial glia cell marker SOX2 (red), and nuclei (blue) in
the neural organoid on day 35. Scale bars, 200 µm. The inset shows a magnified view in the red square. Scale bars, 800 µm.
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3.2. Neural Organoids Recapitulated the Structure of the Human Cerebral Cortex

In the developing vertebrate brain, elongated bipolar radial glial cells are located at
the apical surface of the ventricular zone of the cerebral cortex. These cells migrate through
the intermediate zone to the outer cortical plate. Via this inside-out process, early-born
neurons occupy the inner layers, while late-born neurons migrate out toward the edge and
occupy the superficial cortical layers [35]. In a previous mouse study, the orientation bias
of the mitotic spindle was approximately 63% vertical, 33% oblique, and 3% horizontal
at E13.5 [36]. In human fetal neocortical tissue, there was an increase in the percentage
of horizontally/obliquely oriented mitotic spindles and a decrease in the percentage of
vertically oriented mitotic spindles throughout the period of peak neurogenesis in the
primate neocortex [37].

Here, we analyzed the organization of the cortical region within neural organoids
using layer-specific markers (Figure 2A). First, we sectioned neural organoids and found
PAX6-enriched apical progenitor zones surrounded by TUJ1-enriched basally located neu-
rons (Figure 2B). To investigate cortical development, we stained organoid cross-sections
with both the radial glial cell marker SOX2 and the mitotic marker p-vimentin (Figure 2C).
After determining the mitotic spindle orientation, we determined that the percentage of
vertically oriented mitotic spindles was 47.6%, which is similar to the orientation bias
observed in other mammals (Figure 2D). Furthermore, we identified abundant horizon-
tally/obliquely oriented mitotic spindles (52.4%; obliquely oriented: 29.8%; horizontally
oriented: 22.6%). These measurements are consistent with the previously described trend
in human fetal neocortical tissue, suggesting that neural organoids recapitulate aspects of
cortical development. To further characterize the mature neuronal cells in the outer cortical
plate, we stained organoid cross-sections with mature neuron markers. The immuno-
histochemical data revealed the presence of NeuN- and microtubule-associated protein
2 (MAP2)-positive mature neurons in the outer layer of neural organoids (Figure 2E).
Then, we stained the cortical plate with the markers TBR1, CTIP2, SATB2, and Reelin
(Figure 2F–H). The data indicated that the localization of these ventricular zone- and corti-
cal plate-specific markers in neural organoids and radial glial cells was similar to that in
humans. Furthermore, they suggested that neural organoids recapitulate the structure of
the human cerebral cortex.
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Figure 2. Characterization of neural organoids by layer-specific markers. (A) Schematic illustration for the ventricular zone
(VZ; green) and cortical plate (CP; red) of neural organoids with layer-specific markers. (B) Confocal images show radial
glial cells marker PAX6 and immature neuron marker TUJ1 in the ventricular zone-like neural organoid area on day 35.
Scale bars, 200 µm. (C) Confocal images Scheme 2 and a mitotic marker phospho-Vimentin (p-Vim) in ventricular zone-like
and cortical plate-like neural organoid area on day 35. Scale bars, 200 µm. (Right) The insets show a magnified view in three
red squares. Scale bars, 100 µm. (Under) Schematic illustration for the neural tube-like zone (red) and cortical plate (green).
(D) Quantification of vertical (top, left), oblique (middle, left), and horizontal (bottom, left) division planes with dividing
p-Vimentin expressing cells in neural organoid. n = 84 cells, mean ± SD. (E–H) Confocal images show cortical layer-specific
markers. NeuN (green) and MAP2 (red) (E). Scale bars, 250 µm. The inset shows a magnified view in the red square. Scale
bars, 200 µm. TUJ1 (green) and TBR1 (red) (F), SOX2 (red) and CTIP2 (green) (G), SATB2 (red) and reelin (green) (H) in
neural organoid on day 35. Scale bars, 200 µm.
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3.3. Neuronal Composition in Developing Neural Organoids

As differentiation and development have been proven to take place in the adult
human brain [38], we confirmed that these processes occur in long-term-cultured neural
organoids. We observed that the size of the organoids did not change between day 35 and
day 84 (Supplementary Figure S1A). Then, we stained organoid cross-sections with the
intermediate progenitor marker TBR2 and the immature neuron markers TBR1 and TUJ1;
we analyzed changes in the cortical projection neuron lineage in neural organoids on days
35 and 84. We measured the expression of the intermediate progenitor marker TBR2 and
determined that the percentage of TBR2-positive cells was 10% on day 35, whereas it was
3% on day 84 (Figure 3A,C). Furthermore, the number of TUJ1-positive cells increased from
9% on day 35 to 29% on day 84. These cellular component data indicated a diminished
population of intermediate progenitors in the upper layers.

Figure 3. Analysis of the cell composition of developing neural organoids on days 35 and 84. (A,B) Confocal images
showing TUJ1-, TBR2-, and TBR1-positive cell populations in whole neural organoids on day 35. Neurons in the outer
layers of neural organoids were counted in three randomly captured confocal images (red squares). Scale bars, 1 mm. The
intermediate progenitor marker TBR2 (red), the immature neuron marker TUJ1 (green), the immature neuron marker TBR1
(red), TBR2-/TUJ1-positive cells (yellow), and nuclei (blue) are shown. n = 3 in each group. (C,D) Confocal images showing
TUJ1-, TBR2-, and TBR1-positive cell populations in whole neural organoids on day 84. Scale bars, 1 mm. TBR2 (red), TUJ1
(green), TBR1 (red), TBR2-/TUJ1-positive cells (yellow), and nuclei (blue) are shown. n = 3 in each group.
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Next, we measured the percentage of cells expressing the immature neuron mark-
ers TUJ1 and TBR1, which are specifically expressed in post-mitotic cortical projection
neurons. The number of TUJ1-positive cells decreased from 10% on day 35 to 7% on day
84 (Figure 3B,D). However, the number of TBR1-positive cells increased from 5% on day
35 to 12% on day 84. Additionally, the percentage of TBR1- and TUJ1-coexpressing cells
was found to be 2% on day 35 but 18% on day 84. The percentage of TBR1-positive cells
exhibited a similar increase in the cortical plate. These data indicated that long-term-
cultured neural organoids could lead to the development of cortical projection neurons in
the cortical plates.

3.4. Optimization of a Hypoxic Brain Injury Model in Human 3D Neural Organoids

For the hypoxic brain injury model, we exposed organoids to oxygen and/or glucose
deprivation to model ischemia-like conditions in vitro. We first attempted to deprive the
organoids of glucose in the culture medium for two days. However, there was no difference
in the size or morphology of the neural organoids in the presence and absence of glucose
(Supplementary Figure S2A,B). Then, we induced glucose-oxygen deprivation for two days.
Unfortunately, glucose-oxygen deprivation led to severe damage, including a decrease in
size to 2,427,867 ± 506,927 µm2 and loss of layer structures and gene expression of TUJ1
and PAX6 (Supplementary Figure S2A,B). Furthermore, reoxygenation could not reverse
these severe effects on neural organoids.

Next, we studied neural organoids that were cultured under low-oxygen conditions (1%)
on day 84 (Figure 4A). After a two-day deprivation period, the size of the neural organoids
significantly decreased from 7,455,279 ± 1,363,005 µm2 to 5,154,914 ± 1,406,272 µm2 under
hypoxic conditions (Figure 4B). Moreover, the neural organoids showed a change in shape in
phase-contrast images (Figure 4C). This hypoxic damage could also be observed in organoid
cross-sections after hematoxylin and eosin staining (Figure 4D). In contrast to glucose-oxygen
deprivation, exposure of neural organoids to one day of reoxygenation following exposure
to hypoxia restored the organoid size to 6,710,929 ± 1,432,501 µm2. However, the layered
structures of neural organoids exposed to reoxygenation were not fully restored on day 86,
as determined by hematoxylin and eosin staining (Figure 4D). Moreover, immunostaining
for the radial glial cell marker PAX6 and immature neuron marker TUJ1 showed diminished
staining in inner structures as well as a diminished number of stained neuronal cells in neural
organoids exposed to reoxygenation. These staining data indicated a lack of ventricular zone
and cortical plate layers in neural organoids after reoxygenation.
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Figure 4. Hypoxic brain injury modeling in human 3D neural organoids on day 84. (A) Schematic overview of the
hypoxic brain injury protocol, including oxygen deprivation up to day 2 (red arrow) followed by reoxygenation up to day
1 (blue arrow). (B) Quantification of the cross-section area (µm2). Control (CTL; black); oxygen deprivation (OD; red);
reoxygenation (reoxy; blue). n = 5 organoids in each group; mean ± SD; * p < 0.05, ** p < 0.01, n.s. not statistically significant
versus the control. (C) Representative phase-contrast images of wild-type organoids (control; CTL), organoids subjected to
oxygen deprivation (OD), and organoids subjected to reoxygenation (reoxy). Scale bars, 1 mm. (D) Hematoxylin and eosin
staining image of CTL, OD, and reoxy organoids. Scale bars, 1 mm. (E) Confocal images of staining for an immature neuron
marker (TUJ1) and radial glia cell marker (PAX6) in CTL organoids, organoids subjected to OD, and organoids subjected to
reoxy. Scale bars, 1 mm.
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3.5. Impaired Cellular Components in the Cortical Plate-Like Domains of Hypoxic Neural
Organoids after Reoxygenation

To determine the effect of oxygen in the hypoxic human brain injury model, we first
performed cell death analysis using by immunostaining with apoptotic markers. Both
pro-apoptotic markers c-Cas3 and c-PARP were expressed at the level of approximately 5%
in a normal condition, whereas their expression level in a condition of oxygen deprivation
was elevated to 16.1% and 18.4%, respectively (Figure 5A–D). In contrast, the anti-apoptotic
marker Bcl-2 showed a significant increase after oxygen deprivation and a significant
increase following a reoxygenation (Figure 5E,F). Second, we investigated the nuclear
localization of hypoxia-inducible factor-1 alpha (HIF1a), a key oxygen-labile protein in
the hypoxia pathway. Immunohistochemical analysis revealed the percentage of HIF1a-
expressing cells significantly increased to 6.3% under hypoxic conditions and significantly
decreased to 1.4% after reoxygenation (Figure 5G,H). In contrast, the percentage of Ki67-
positive cells (28.3%) did not change significantly under hypoxic conditions but significantly
increased to 65.5% after reoxygenation (Figure 5I). These data showed that reoxygenation
significantly increased cell proliferation in neural organoids damaged by exposure to
hypoxia.

Next, we investigated the transcriptional changes associated with exposure to hypoxia
by performing Real-time-PCR. After oxygen deprivation, the radial glia cell marker SOX2
and the development neuron marker SATB2 were significantly downregulated, whereas the
expression level of EMX1 gene was not changed (Supplementary Figure S2C–E). Interest-
ingly, we could observe that the expression level of such genes was significantly increased
immediately by reoxygenation. The dorsal forebrain progenitor marker EMX1 was in-
creased approximately 2.5-fold compared to a Control (Supplementary Figure S2E). As an
overlap of the hypoxia-induced differential expression of brain-related regulatory genes in
neural organoids, we investigated neuronal maturation in the cortical plate-like domains by
immunocytochemistry in organoid cross-sections with the intermediate progenitor TBR2
and the projection neuron marker TBR1 (Figure 5J). Unlike the percentage of HIF1a-positive
cells, the percentage of TBR2-positive cells significantly decreased from 31.4% to 9.2% un-
der hypoxic conditions but significantly increased to 33.8% after reoxygenation (Figure 5K).
However, the percentage of TBR1-positive cells significantly decreased from 21.1% to 9.6%
under hypoxic conditions and significantly decreased from 9.6% to 0% after reoxygenation
(Figure 5L). These data indicated that after hypoxic brain injury, reoxygenation could
induce neuronal cell proliferation but not neuronal maturation.
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Figure 5. The hypoxic brain injury model recapitulated brain injury and disruption of neuronal cell development after
reoxygenation. (A–D) Tiled confocal images of staining for apoptotic markers C-cas3 (A) and C-parp (C) in CTL organoids,
organoids subjected to OD, and organoids subjected to reoxy. Scale bars, 200 µm. Quantification of C-cas3 (B) and C-parp
(D)-positive cell populations in CTL organoids, organoids subjected to OD, and organoids subjected to reoxy. n = 3 in each
group; mean ± SD; ** p < 0.01, n.s. not statistically significant versus the control. (E,F) Tiled confocal images of staining for
the anti-apoptotic marker bcl-2 (E) in CTL organoids, organoids subjected to OD, and organoids subjected to reoxy. Scale
bars, 200 µm. Quantification of markers bcl-2 (F)-positive cell populations in CTL organoids, organoids subjected to OD,
and organoids subjected to reoxy. n = 3 in each group; mean ± SD; * p < 0.05, n.s. not statistically significant versus the
control. (G) Tiled confocal images showing staining for a key oxygen-labile protein in the hypoxia pathway, HIF1a, and
the proliferation marker Ki67 in wild-type organoids (control; CTL), organoids subjected to oxygen deprivation (OD), and
organoids subjected to reoxygenation (reoxy). Scale bars, 200 µm. A magnified view is shown in the red square. Scale bars,
100 µm. (H,I) Quantification of HIF1a- (H) and Ki67-positive (I) cell populations in CTL organoids, organoids subjected
to OD, and organoids subjected to reoxy. n = 3 in each group; mean ± SD; * p < 0.05, ** p < 0.01, n.s. not statistically
significant versus the control. (J) Tiled confocal images of staining for the intermediate progenitor marker TBR2 and
immature neuron marker TBR1 in CTL organoids, organoids subjected to OD, and organoids subjected to reoxy. Scale bars,
200 µm. (K,L) Quantification of TBR2 (K)- and TBR1 (L)-positive cell populations in CTL organoids, organoids subjected to
OD, and organoids subjected to reoxy. n = 3 in each group; mean ± SD; * p < 0.05, ** p < 0.01, n.s. not statistically significant
versus the control.
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4. Discussion

Analysis of organoid formation can provide important information concerning hu-
man development and organ regeneration and can highlight the value of basic biological
research in addition to the potential applications of phosphorus in pharmaceutical drug
experiments and molecular medicine. The potential of organoids to better complement
existing model systems than basic biological research, medical research, and drug discovery
studies, and to be investigated in environments that are physiologically relevant to humans
is increasingly being recognized [23].

As is well-known, ischemic stroke occurs when an artery that supplies blood to
the brain is blocked. In infants, Hypoxic-ischemic encephalopathy, also known as birth
asphyxia, can arise from oxygen deprivation, which leads to prematurity of the human
brain. Conventional modeling of hypoxia is limited to cell differentiations on plastic
surface in a monolayer culture. Recently, the technical difficulties were overcome, and the
3D organoid cultures emerged as a novel model system. This 3D cell culture technique
enables to resemble the developing human brain including the interaction of cells with the
extracellular matrix. In the low oxygen condition, human neural organoids revealed the
expected nuclear localization of the HIF-1a protein. As expected, this hypoxia-inducible
factor was destabilized by reoxygenation.

In this study, we generated self-organized human neural organoids from adult dermal
fibroblast-derived iNSCs. These 3D human neural organoids recapitulated developing
human cortical plate-like domains. Remarkably, we generated 3D brain organoids from
human NSCs cultured in vitro in an attached monolayer under spinning conditions, which
is very useful for neurodegenerative disease modeling. Based on our results, we suggest
that human neural organoids could mimic the features of the human cerebral cortex and
that oxygen deprivation could induce hypoxic brain injury accompanied by disruption of
neuronal cell components. Furthermore, it seems that reoxygenation leads to increased neu-
ronal cell proliferation but cannot restore neuronal maturation in human neural organoids.
However, glucose-oxygen deprivation led to severe damage, so that reoxygenation could
not reverse these severe effects on neural organoids. The glucose deprivation could not lead
to a significant decrease in size of neural organoids, whereas the low oxygen led to a signif-
icant decrease in size of neural organoids to 5,154,914 ± 1,406,272 µm2 (Supplementary
Figure S2B). Remarkably, the glucose-oxygen deprivation could lead to a dramatic decrease
in size of neural organoids to 2,427,867 ± 506,927 µm2. Therefore, the reoxygenation could
not restore the decreased size to a normal range of 7,455,279 ± 1,363,005 µm2. In addition,
these phenomena have been observed in loss of layer structures and gene expression of
TUJ1 and PAX6 in organoid cross-sections.

In terms of stem cell biology, TUJ1, TBR2, and TBR1 are expressed sequentially in the
cortical projection neuron lineage [39]. TUJ1-enriched neurons indicate the initiation of
cortical development from neural stem cells, whereas intermediate progenitors express
TBR2 and then TBR1. An analysis of maker distribution across the ventricular zone/sub
ventricular zone/cortical plate can be considered cortex-specific ‘transit-amplifying cells’
with a finite life span that arises from proliferating and differentiating stem cells [40].
The subsequent transition from intermediate progenitor cells to projection neurons is
characterized by the downregulation of TBR2 and an upregulation of TBR1, which are
specifically expressed in post-mitotic cortical projection neurons.

Nevertheless, we need to generate more complex human cortex organoids with a cen-
tral nervous system and blood vessels. In a recent study, cerebral organoids were implanted
into nonobese diabetic/severe combined immunodeficient mice for vascularization [41].
The researchers developed an efficient in vivo engraftment model of human pluripotent
stem cell-derived brain organoids in a physiological tissue environment. The transplanted
organoids were easily integrated into the mouse brain, showed a gradual temporal differ-
entiation pattern of nerve cells, developed a functional vasculature system, and produced
mature and functional human brain tissue in vivo that responded to physiological stim-
uli triggered by anesthesia. The organoids showed unprecedented axonal growth. The
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researchers used photogenetics to demonstrate functional synaptic connectivity between
the transplanted organoids and the host brain [41,42]. Another recent study used ETV2
gene-overexpressing iPSCs to generate brain organoids with blood vessels in a circular
culture system [43]. Reprogramming ETV2-induced endothelial cells (ECs) from organoids
is an efficient way to generate vascularized human cortical organoids (vhCOs). Networks
similar to functional vascular structures allow us to investigate brain development and
disease mechanisms, making them very useful platforms [44–46]. This vhCO model system
shows that neural and EC interactions are capable of more physiological expression than
the brain, reducing the cellular arthrosis and hypoxic state of internal tissues containing
typical blood-free organoids [43].

In addition, our neural organoid system does not consist of immune cells. The
inflammatory component of encephalopathy in humans is not captured here [47]. Organoid
models could incorporate microglia and other cells to study their contributions to human
encephalopathy [48]. hCS derivation and maintenance are pursued at atmospheric oxygen
levels. Our model does not include cortical circuits [49]. Therefore, future studies could use
assembly organoid models that combine dorsal and ventral forebrain organoids to model
migration [50]. Similarly, forebrain organoids, including oligodendrocytes, astrocytes,
and neurons, can be subjected to the hypoxia model we describe to assess myelination
defects [51].

In conclusion, our study indicated that this method can be used to model human
neural development and neurodegenerative diseases, and provides a new platform for
screening drugs for clinical trials for brain ischemia. This model will be useful for studying
a variety of neurodegenerative diseases and neural development in the human brain. We
exposed neural organoids to low-oxygen concentrations in vitro and found a decrease in
the number of a specific group of cortical progenitors that are thought to contribute to
expanding the human cerebral cortex. This model recapitulates not only human cortical
development and differentiation of NSCs but also the development of the human brain
after hypoxic injury.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
409/10/2/234/s1, Figure S1: Neurosphere, neuroectoderm, and 3D structured neural organoid
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organoids, Table S1: List of Antibodies.
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Abbreviations

CODM cerebral organoid differentiation medium
CP cortical plate
CTL control
ECs endothelial cells
hCS human Cortical Spheroids
i.e., id est; That is
iNSCs induced neural stem cells
iPSCs induced pluripotent stem cells
NSCs neural stem cells
OD oxygen deprivation
OGD oxygen glucose deprivation
PBS phosphate buffered saline
PBST PBS with 0.025% Triton-X100
p-vimentin phospho-vimentin
reoxy reoxygenation
n.s. not statistically significant versus Static
MAP2 microtubule-associated protein 2
SD standard deviation
SFEBq serum-free floating culture of embryoid body-like aggregates with quick reaggregation
SVZ sub ventricular zone
3D three-dimensional
TUJ1 neuron-specificclass III beta-tubulin
VZ ventricular zone
vhCOs vascularized Human cortical organoids
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