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Abstract

Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The
protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups.
CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2
regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the
biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP
and Double–ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify
a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously
unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1). CK2
activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the
promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely
counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological
inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period
at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and
temperature-dependent activities (CCA1-CK2) are essential for clock temperature compensation in Arabidopsis.
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Introduction

Circadian rhythms are daily biological oscillations driven by an

endogenous mechanism known as circadian clock. The phase of the

rhythms is synchronized by environmental cues, mostly changes in

light and temperature, that occur during the 24-hour day/night cycle.

Synchronization ensures adequate timing and allows the rhythmic

activities to occur at the most appropriate phase relationships with the

environment [1–5]. In many organisms, the reciprocal regulation

among key clock genes and proteins sustains molecular oscillations

that are translated into metabolic and behavioral rhythms [6–8].

Additional mechanisms involving chromatin remodeling [9,10] and

post-translational regulation of clock components [11,12] also

contribute to circadian rhythmicity. Despite the conservation of

clock mechanisms, the actual molecular components responsible for

circadian function are not conserved among phylogenetic kingdoms.

A remarkable exception is the protein kinase CK2 (formerly casein

kinase 2) with an important function within the plant, fungi, insect

and mammalian circadian systems [13].

CK2 is an evolutionarily conserved serine/threonine protein

kinase involved in the regulation of key cellular events including

tumorigenesis, cell viability and proliferation [14]. CK2 achieves its

function by regulating more than 300 putative substrates [15]. The

CK2 holoenzyme consists of two catalytic a-subunits and two

regulatory b-subunits forming a hetero-tetrameric (a2b2) structure

[16]. On a broad sense, the regulatory CK2b subunits provide the

substrate selectivity and increase the overall catalytic activity [17,18].

Regarding the circadian function, CK2 has emerged as a conserved

molecular component modulating the subcellular localization and

stability of key clock proteins [13]. For example, CK2 regulates the

nuclear localization of the mammalian clock component BMAL1

[19] and the protein stability of PERIOD2 (PER2) [20,21]. These

findings are consistent with studies in Drosophila melanogaster [22,23]

showing that CK2 regulates the subcellular distribution and stability

of the core components PERIOD (PER) and TIMELESS (TIM)

[22–24]. In plants, two of the four members of the Arabidopsis

family of CK2 regulatory subunits, CKB3 [25–27] and CKB4

[28,29] have been also functionally linked with the plant circadian

clock. CK2 phosphorylates the Arabidopsis central clock compo-

nents CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and

LATE ELONGATED HYPOCOTYL (LHY) [26]. Furthermore,

the CCA1 phosphorylation was proposed to be important for CCA1

clock function [25]. Over-expression of CKB3 or CKB4 leads to

period shortening [27,28] and altered day-length-dependent regu-

lation of developmental outputs [27,28]. The pervasive alterations of

many clock outputs and the changes in oscillator expression

suggested that CK2 might be closely regulating the oscillator

function.
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Despite all these advances, little is known about the actual

mechanism of CK2 function within the Arabidopsis circadian clock.

In contrast, a recent study on the Neurospora crassa circadian system

has importantly advanced our knowledge of CK2 role controlling a

defining property of circadian function [30]. Indeed, to be effective

as a timing mechanism, the circadian system must be relatively

independent of temperature changes in order to avoid running

faster at higher temperatures and slower at lower temperatures [31].

This property was proposed to rely on a compensating mechanism,

which would allow the clock to buffer its period length against

changes in temperature [32]. The recent study by Mehra et al.,

assigns a role for CK2 in the mechanism underlying temperature

compensation in Neurospora. The mechanism seems to involve

CK2-mediated phosphorylation at specific sites of the period-

controlling clock protein FREQUENCY (FRQ). The CK2-

mediated phosphorylation of FRQ targets the protein for

degradation preferentially at high temperatures, thereby contribut-

ing to temperature compensation in Neurospora [30].

Experimental data and computer modeling studies have

suggested different mechanisms contributing to temperature

compensation. One of the mechanisms include the counterbalance

of opposing biochemical functions that have similar temperature

coefficients [33]. Consistently, the contrasting effects of inter- and

intra-molecular interactions of PER were proposed as a basic

mechanism underlying temperature compensation in Drosophila

[34]. The key role of Drosophila PER was further reinforced by

natural variation studies showing that per polymorphisms might help

to fine-tune the circadian clock to different thermal environments

[35]. A more recent study has also shown that the interaction

between the Drosophila circadian photoreceptor CRYPTO-

CHROME (CRY) and the protein complex composed of PER

and TIM are also critical for temperature compensation in

Drosophila [36]. In other model organisms, the mechanisms by

which the circadian clock compensates its period length over a

range of temperatures are less well known. In the cyanobacterium

Synechococcus elongatus, the ATPase activity of the essential clock

component KaiC was found to be temperature compensated. The

authors suggested that temperature compensation in Synechococ-

cus could be driven by this biochemical reaction [37]. In plants, the

temperature compensation of leaf movement rhythms was uncov-

ered by a quantitative genetic approach [38]. The identified genes

included the flowering time regulator FLOWERING LOCUS C [39]

and the flowering and clock-related gene GIGANTEA (GI) [40]. GI

was proposed to play a role extending the temperature range over

which rhythms can be maintained [40]. By using mutant plants and

analyzing the expression of the central clock genes CCA1 [41], and

LHY [42] and TIMING OF CAB EXPRESSION 1 (TOC1 or PRR1)

[43,44], the authors also concluded that a balance between GI and

the core component LHY was important at high temperatures,

while CCA1 would preferentially function at low temperatures [40].

Although quantitative genetic studies have been a successful

approach for the identification of possible elements contributing

to temperature compensation, the mechanisms responsible for these

clock responses remain to be discovered.

Here, we provide evidence for a role of CK2 modulating

temperature responses in Arabidopsis. This function is achieved by

antagonizing the clock component CCA1. CK2 does not alter

protein accumulation or subcellular localization, as CK2 does in

other circadian systems, but affects the transcriptional activity of

CCA1. Over-expression, mutation or pharmacological inhibition

reveal that both CK2 regulatory function and CCA1 binding are

more effective at high temperatures, which provide a mechanism by

which plants buffer clock period length against temperature changes.

Results

Genetic interaction of CCA1 and CKB4 in the control of
flowering time, hypocotyl elongation, and circadian gene
expression

The circadian clock is responsible for the integration of

temporal and photic information that regulates hypocotyl

elongation [45,46] and flowering time in Arabidopsis [47–49].

Previous studies have shown similar circadian phenotypes of cca1

mutant and CKB4 over-expressing (CKB4-MYC-ox) plants [29].

We therefore explored the inverse correlation between phenotypes

and expression by conducting a genetic study in which CCA1

over-expressing (CCA1-YFP-ox) and cca1-1/lhyRNAi mutant

plants [50] were transformed with the CKB4-MYC-ox construct

[29]. We used homozygous, single insertion lines (Figure S1) to

examine hypocotyl elongation and flowering time as an indication

of clock function on these developmental outputs. Analysis of

CCA1-YFP-ox/CKB4-MYC-ox plants revealed that over-expres-

sion of CKB4 reduced the delayed flowering phenotype of CCA1-

YFP-ox plants such that flowering in CCA1-YFP-ox/CKB4-

MYC-ox plants occurred at almost the same time than in Wild-

Type (WT) plants under both Long-Days (LgD,16 h light:8 h

dark) (Figure 1A) or Short-Days (ShD, 8 h light:16 h dark)

(Figure 1B). In contrast, the early flowering phenotype of cca1-1/

lhyRNAi mutant plants was not significantly affected by over-

expression of CKB4 (Figure S2), which indicates a non-additive

interaction and suggests that the effect of CKB4-MYC-ox might

require the functional expression of CCA1 and LHY. When

hypocotyl elongation was examined under light:dark (LD) cycles,

we found that over-expression of CKB4 significantly reduced the

long hypocotyl phenotype of CCA1-YFP-ox plants under both

LgD (p-value,0.0001) or ShD (p-value,0.0001)(Figure 1C). A

similar trend was observed at different fluence rates of constant

white light (Figure 1D). Together, these results indicate that the

severity of the flowering and hypocotyl phenotypes of CCA1-YFP-

ox plants is considerably reduced by over-expression of CKB4.

Author Summary

Most organisms are able to rhythmically coordinate their
physiology and metabolism in consonance with the day-
night cycle. The cellular mechanism responsible for
generating the biological rhythms is known as circadian
clock. In contrast to many other biochemical reactions, the
pace of the clock does not change with temperature (i.e.
the clock does not run faster at high temperatures). This is
a property known as clock temperature compensation,
and despite its importance for circadian function, we know
few details about the mechanisms responsible for the
temperature-dependent regulation of circadian period
length. Plants, as sessile organisms, are particularly
sensible to maintaining the clock running at the proper
pace, regardless the external temperature. In our study, we
have identified that the activity of two key plant clock
components (CK2 and CCA1) is regulated by temperature.
Notably, these temperature-dependent activities are an-
tagonistic, and they counterbalance each other at
increasing temperatures so that the clock does not run
faster at these high temperatures. When we alter the
expression and activity of CK2 and CCA1, we observe that
the clock is not longer able to maintain the proper pace,
thus demonstrating that the balance between these two
activities is essential for clock temperature compensation
in plants.

Clock Temperature Compensation in Arabidopsis
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As CCA1 regulates the expression of the evening-expressed

clock gene TOC1 [51,52], we next explored whether over-

expression of CKB4 altered the repressive function of CCA1.

Luminescence from WT, CCA1-YFP-ox, CKB4-MYC-ox and

CCA1-YFP-ox/CKB4-MYC-ox plants expressing the TOC1

promoter fused to the luciferase (TOC1:LUC) was examined under

12 h light/12 h dark (LD) conditions. As expected, TOC1:LUC

expression in CCA1-YFP-ox plants exhibited a very reduced

amplitude compared to WT plants (Figure S3). In contrast, higher

amplitude and slightly advanced phase of TOC1 promoter activity

was observed in CKB4-MYC-ox plants (Figure S3). Noticeably,

the double over-expressing CKB4 and CCA1 plants displayed

circadian waveforms very similar to those observed in WT plants

(Figure S3). Consistent with the studies of hypocotyl length and

flowering time, these results suggest that the TOC1:LUC repression

by CCA1-YFP-ox is reduced by over-expression of CKB4. These

results are also in agreement with the notion that CKB4 interferes

with CCA1 function within the circadian clock.

Molecular interaction of CCA1 and CKB4 in the nucleus
Previous studies have shown the interaction of CCA1 with

CKB1, CKB2 and CKB3, three members of the CK2 regulatory

subunit family with high sequence homology to CKB4 [26]. To

examine the possible physical association of CCA1 with CKB4, we

performed in vivo co-immunoprecipitation assays using the CCA1-

YFP-ox/CKB4-MYC-ox plants. Immunoprecipitation of CCA1

with the anti-GFP antibody (a-GFP) and subsequent detection

with the anti-MYC antibody (a-MYC) revealed a band with a

relative molecular mass of about 40 kDa, coincident with the

expected size of CKB4-MYC (Figure 2A, a-MYC) indicating that

CCA1 and CKB4 can be found in the same protein complex in

Arabidopsis plants. The absence of signal in single CCA1-YFP-ox

extracts (Figure 2A, a-MYC) and single CKB4-MYC-ox (not

shown) revealed the specificity of the interaction. Detection using

the GFP antibody showed a protein band with a molecular mass of

110 kDa that coincided with the predicted size of the CCA1:YFP

fusion protein and confirmed the immunoprecipitation of CCA1

(Figure 2A, a-GFP). The interaction was also examined in plants

expressing CCA1 under its own promoter (CCA1pro:CCA1-

MYC/cca1-1) [53]. The results confirmed that CCA1 and CK2

regulatory subunits are present in the same protein complex

(Figure S4) as revealed after immunoprecipitation with an

antibody to the human regulatory subunit CK2B (a-CKB)

followed by detection with the a-MYC antibody. The a-CKB

antibody efficiently recognizes the Arabidopsis CK2 regulatory

subunits (Figure S4). In agreement with previous studies showing

that CK2 phosphorylates CCA1 [26], our immunoprecipitation

assays with anti-GFP and subsequent detection with an antibody

that specifically recognizes phosphorylated serine residues (a-PSer)

revealed that the pattern of CCA1 phosphorylation was increased

in CCA1-YFP-ox/CKB4-MYC-ox plants as compared with

single CCA1-YFP-ox plants (Figure 2A, a-PSer). The data was

reinforced by two-dimensional protein gel analysis followed by

immunoblotting with the GFP antibody (Figure 2A, lower panels).

The results showed that over-expression of CKB4 enriched CCA1

spots with a lower isoelectric point, which most likely correspond

to CCA1 phosphorylated isoforms. Together, these results are

consistent with previous published studies and suggest that CK2

phosphorylates CCA1 most likely by direct interaction with the

CK2 regulatory subunits.

We next examined the in vivo subcellular localization of CCA1

and CKB4 interaction by exploiting Bimolecular Fluorescent

Complementation (BiFC) assays [54]. We analyzed plants over-

expressing both CKB4 fused to the C-terminal fragment of the

Yellow Fluorescent Protein (YFP) and CCA1 fused to the YFP N-

terminal fragment. Confocal microscopy analysis revealed fluo-

rescent signals accumulating in the nucleus (Figure 2B, CCA1-

nYFP-ox, CKB4-cYFP-ox). As fluorescence would be only

visualized if the two fragments of YFP are in such a close

proximity that the fluorophore is reconstituted, our results reflect

the in vivo interaction of CCA1 and CKB4 in the nucleus. The

subcellular localization of CCA1 and CKB4 interaction is similar

Figure 1. Genetic interaction of CCA1 and CKB4. Flowering time of plants grown under LgD (16 h light:8 h dark) (A) or ShD (8 h light:16 h dark)
(B). The number of leaves at flowering and the number of days to flowering are presented. Data is shown as means 6 SEM of three independent
experiments. (C) Hypocotyl lengths of seedlings grown under LgD or ShD. Data is shown as means 6 SEM of 15–20 seedlings. (D) Hypocotyl lengths
of seedlings under different intensities of white light (LL). Data is shown as means 6 SEM of 15–20 seedlings. All the experiments were performed at
least twice with similar results to those shown here.
doi:10.1371/journal.pgen.1001201.g001

Clock Temperature Compensation in Arabidopsis
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to the localization observed in plants expressing the proteins fused

to the full-length YFP. In both cases, the localization was mostly

nuclear, in speckles and homogeneous distribution throughout the

nucleoplasm for CKB4 (Figure 2B, CKB4-YFP) and mostly in

nuclear speckles for CCA1 (Figure 2B, CCA1-YFP). Similar

fluorescent signals were observed in CCA1-ox plants over-

expressing CKB4 fused to full-length YFP or in CKB4-MYC-ox

plants over-expressing CCA1 fused to full-length YFP (Figure S4).

In contrast, no evident fluorescence could be detected when BiFC

experiments were performed with plants over-expressing both

TOC1 (TOC1-nYFP-ox) and CKB4-cYFP-ox (Figure S4).

CK2 activity antagonizes CCA1 regulatory function
without affecting CCA1 protein accumulation

As phosphorylation targets many clock proteins for degradation

[55], we compared by Western-blot analysis, CCA1 protein

abundance in CCA1-YFP-ox and CCA1-YFP-ox/CKB4-MYC-

ox plants over a diurnal cycle. Our results showed a very similar

pattern of CCA1 accumulation in both genotypes at every time

point examined (Figure 3A–3C). Furthermore, analysis of CKB4

and CCA1 protein abundance in different CCA1-YFP-ox lines

transformed with the CKB4-MYC-ox construct showed a lack of

correlation between increasing concentrations of CKB4 and

decreasing amounts of CCA1 (Figure 3D). These results strongly

suggest that over-expression of CKB4 does not modulate CCA1

protein accumulation. Our previous studies have shown that

CKB4-MYC-ox plants exhibit increased CK2 activity that

correlates with the circadian phenotypes observed in CKB4-

MYC-ox plants [28]. Next we explored whether decreasing CK2

activity could alter the CCA1 protein accumulation or CCA1

repressive function. As a long-term and constant depletion of CK2

activity is lethal for plants [56], the CCA1 protein abundance was

analyzed in the presence or in the absence of specific CK2 inhibitors

such as DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole)

or DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimid-

azole) [57]. In a complementary approach, CCA1 protein

abundance was examined in plants expressing a dominant negative

CK2 alpha subunit (CKA3-) under the control of the Dexameth-

asone (Dex) inducible promoter [56]. Our studies showed that

treatment with the inhibitors (Figure 3E) or the induction of CKA3-

by Dex (Figure 3F) did not significantly alter CCA1 protein

accumulation as compared with non-treated plants. In clear

contrast, TOC1:LUC expression was markedly affected by the

decreased pattern of CK2 activity. Indeed, treatment with DMAT

or with DRB progressively reduced the amplitude and lengthened

the period of TOC1:LUC expression in a dose-dependent manner

(Figure 3G and Figure S5). Similar effects were observed after

treatment of CKA3- plants with Dex (Figure 3H) while TOC1:LUC

expression was not affected when WT plants were treated with Dex

(not shown). This is noteworthy, as decreasing CK2 activity leads to

the opposite phenotypes of those observed in CKB4-MYC-ox

plants. Therefore, CK2 activity is important in controlling the

circadian waveform of TOC1:LUC expression. As CKB4-MYC-ox

reduces the severity of CCA1 repressive function on TOC1

expression, we reasoned that decreasing CK2 activity should have

the opposite effects. To explore this hypothesis, we examined

TOC1:LUC expression in CCA1-YFP-ox/CKA3- plants before and

after treatment with Dex. Our studies showed a very reduced

amplitude of TOC1:LUC expression in CCA1-YFP-ox/CKA3-

plants treated with Dex (Figure 3H). Therefore, and consistently

with our hypothesis, the repressive function of CCA1 appears to be

enhanced by decreasing CK2 activity. Together, these results show

that CK2 and CCA1 have opposing functions in the regulation of

TOC1 expression and suggest a possible role for CK2 antagonizing

CCA1 regulatory activity.

CK2 antagonizes CCA1 binding to the promoters of its
target genes

As CK2 activity reduces the severity of CCA1-YFP-ox

phenotypes but this effect is not due to increased degradation of

CCA1, we reasoned that CK2 might modulate CCA1 transcrip-

tional regulatory function. To explore this possibility, we examined

Figure 2. Molecular interaction of CCA1 and CKB4. (A) Western-blot analysis of protein extracts immunoprecipitated with anti-GFP antibody
(a-GFP) and subsequent detection of CKB4-MYC (a-MYC), CCA1-YFP (a-GFP) or phosphorylated CCA1 isoforms (CCA1-P)(a-PSer). Lower panels show
the immunoblot analysis of two-dimensional gels detecting CCA1-YFP with a-GFP. In all cases, plants were grown under LD conditions and samples
were collected at ZT3. All the experiments were performed at least twice with similar results to those shown here. (B) Confocal microscopy analysis of
seedlings over-expressing CCA1 fused to the N-terminal fragment of YFP and CKB4 fused to the C-terminal fragment (top panel). Images of CCA1
(middle panel) and CKB4 (lower panel) fused to full-length YFP are also shown. Scale bar 0.2 mm.
doi:10.1371/journal.pgen.1001201.g002

Clock Temperature Compensation in Arabidopsis
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by chromatin immunoprecipitation (ChIP) assays, the in vivo

binding of CCA1 to the promoters of its target genes. CCA1 was

proposed to be part of a morning loop regulating the expression of

both morning- and evening-expressed genes [58]. However, direct

in vivo binding to oscillator genes was only demonstrated for TOC1

[52]. Our ChIP assays with CCA1-YFP-ox plants confirmed the

binding of CCA1 to the TOC1 promoter (Figure S6) and also

revealed the physical association of CCA1 to the promoters of the

oscillator genes PRR7, PRR9 and LUX (LUX ARRHYTHMO)

(Figure S6). We next examined the effects of over-expressing

CKB4 by comparing the binding of CCA1 in single CCA1-YFP-

ox and double CCA1-YFP and CKB4-MYC over-expressing

plants. Our results showed that over-expression of CKB4

considerably decreased the binding of CCA1 to the promoters of

the morning-expressed genes PRR7 and PRR9 (Figure 4A) as well

as the evening-expressed genes TOC1 and LUX (Figure 4B).

Conversely, decreasing CK2 activity by treatment with DRB

(Figure 4C and 4D) or by inducing the dominant negative CK2

mutant (Figure 4E and 4F) had the opposite effect, with an evident

increment of CCA1 binding to these promoters. Q-PCR analysis

revealed the significance of the binding changes (Figure S6) with p-

values,0.001 in all cases. Furthermore, DRB treatment of CCA1-

YFP-ox/CKB4-MYC-ox plants significantly decreased the effects

of CKB4 over-expression as compared with non-treated plants

(Figure S6), suggesting that phosphorylation is indeed important

for CKB4 regulation of CCA1 activity. The link between CCA1

phosphorylation and function was also reinforced in studies in

which WT and cca1-11 mutant plants [59] were treated with DRB.

Our results showed that treatment of WT plants expressing the

promoter of the clock-controlled gene CAB2 (CHLOROPHYLL A/

B BINDING PROTEIN 2, or LIGHT HARVESTING COMPLEX

B1, LHCB1*1) fused to luciferase [60] considerably lengthened

Figure 3. CK2 regulates TOC1:LUC expression without altering CCA1 protein accumulation. Immunodetection of CCA1 protein with a-GFP
in CCA1-YFP-ox (A) or CCA1-YFP-ox/CKB4-MYC-ox plants (B). Seedlings were entrained under LD cycles and samples were collected at the indicated
ZT. Quantification of CCA1-YFP protein accumulation is shown in (C). Means 6 SD of two independent experiments are represented relative to the
maximum value and normalized to the RUBISCO protein. (D) Western-blot analysis of CKB4-MYC (a-MYC) or CCA1-YFP (a-GFP) in CCA1-YFP-ox, CKB4-
MYC-ox and different CCA1-YFP-ox/CKB4-MYC-ox lines. Western-blot analysis of CCA1-YFP protein accumulation in CCA1-YFP-ox plants in the
presence (+) or absence of 150 mM DRB (E) or in CCA1-YFP-ox/CKA3- plants with (+) or without 1 mM Dex (F). Samples were collected at ZT3 and ZT15.
(G) TOC1:LUC luminescence in WT plants treated with DRB (0, 50, 75, 150 mM) or (H) in CKA3- and CCA1-YFP-ox/CKA3- plants in the absence or in the
presence of 1 mM Dex added at CT2 (arrow). Seedlings were entrained under LD cycles and transferred to LL prior luminescence recording. Data are
represented as means 6 SEM of luminescence signals from at least 12 independent plants. All the experiments were performed at least twice with
similar results to those shown here.
doi:10.1371/journal.pgen.1001201.g003

Clock Temperature Compensation in Arabidopsis
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circadian period (Figure S7). However, the effects of DRB were

considerably reduced in cca1-11 mutant plants as compared to

cca1-11 untreated plants (Figure S7). A similar trend was observed

for TOC1:LUC expression in cca1-1/lhy-11 mutant plants [61], in

which the up-regulation of TOC1 by the absence of the CCA1 and

LHY repressors was not importantly affected by DRB treatment

(Figure S7). The alteration of TOC1:LUC expression in cca1-1/lhy-

11 mutant plants was more severe than the circadian phenotypes

previously described [61]. This might be due to different growth

conditions, different intensities of light different regimes of

entrainment and/or the different reporters. Together, our results

indicate that the circadian function of CK2 is mostly mediated by

CCA1/LHY, which reinforces the link between these components.

Our results also indicate that CK2 activity antagonizes CCA1

regulation of circadian gene expression by interfering with the

binding of CCA1 to the promoters of the oscillator genes. A

phosphorylation-dependent inactivation of transcriptional activity

was previously reported to be important in other circadian systems

[62].

Proper regulation of CK2 activity is important for
temperature compensation in Arabidopsis

Our results show that CK2 activity regulates TOC1 expression.

As TOC1 is also modulated by temperature [40], we next explored

whether CK2 regulatory functions were affected by temperature.

To that end, we compared the waveforms of TOC1:LUC

expression in WT, CKB4-MYC-ox and CCA1-YFP-ox/CKB4-

MYC-ox plants synchronized for 7 days under LD cycles at 22uC
and then transferred to 12uC, 22uC or 27uC. Our results showed

that over-expression of CKB4 resulted in higher amplitude and

slight advanced phase of TOC1 promoter activity at 27uC (Figure

S8), a phenotype slightly more severe but following the same trend

than that observed at 22uC (Figure S8). Analysis of TOC1:LUC

expression at 12uC revealed that CKB4-MYC-ox plants exhibited

a lower amplitude and a slightly advanced phase compared to WT

(Figure S8). The differential changes in gene expression by

temperature could be fully appreciated in Figure S9 showing

point-by-point comparisons of TOC1:LUC expression in WT and

CKB4-ox at 27uC and 12uC. These results indicate that CK2

function regulating TOC1 expression is differentially modulated by

temperature. This notion was in agreement with our pharmaco-

logical studies using the CK2 inhibitor DRB. Treatment with

DRB at 27uC resulted in a delayed phase and lower amplitude of

TOC1:LUC expression whereas at 12uC, only subtle phenotypes of

TOC1:LUC phase or amplitude were observed (Figure S10). Thus,

decreasing CK2 activity has stronger effects at high temperatures.

If CK2 regulation of TOC1 expression is differentially modulated

by temperature, then the CK2 activity counteracting CCA1

Figure 4. CK2 antagonizes CCA1 binding to the promoters of its target genes. ChIP analysis of CCA1 binding to the promoters of the
morning-expressed genes PRR7 and PRR9 (A, C and E) or the evening-expressed genes TOC1 and LUX (B, D and F). Analysis was performed in CCA1-
YFP-ox and CCA1-YFP-ox/CKB4-MYC-ox plants (A and B) or in CCA1-YFP-ox plants collected after treatment for 48 h with 150 mM DRB (+DRB) (C and
D). As a control, samples were similarly processed in the absence of DRB (-DRB). (E and F) ChIP analysis of CCA1-YFP-ox/CKA3- plants collected after
induction with 1 mM Dex for 48 h (+Dex). As a control, samples were similarly processed but in the absence of Dex (-Dex). Input DNA was used as a
control. Plants were synchronized under LD cycles and samples were collected at ZT3. In all cases, the experiments were performed at least three
times with similar results to those shown here.
doi:10.1371/journal.pgen.1001201.g004
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repressive function should become also most apparent at the

higher range of temperatures. Indeed, our analysis with the double

CCA1-YFP-ox/CKB4-MYC-ox plants revealed very similar

waveforms of TOC1:LUC expression in WT and CCA1-YFP-ox/

CKB4-MYC-ox plants at both 27uC and 22uC (Figure S8)

suggesting that over-expression of CKB4 efficiently reverted the

repressive function of CCA1 at these temperatures. However, at

12uC, the amplitude of TOC1:LUC expression in CCA1-YFP-ox/

CKB4-MYC-ox plants was lower than in WT plants (Figure S8)

suggesting that CK2 activity interfering with CCA1 repressive

function is less effective or that additional mechanisms are engaged

to regulate TOC1 expression at low temperatures. We also

observed an earlier declining phase, particularly evident at 27uC.

The mechanism behind this phenotype might rely on the direct/

indirect regulation of TOC1 declining phase by CK2/CCA1 and/

or other clock components.

In view of our findings and based on previous studies assigning a

major role for CK2 in temperature compensation within the

Neurospora circadian system [30], we next examined the possible

connection between temperature compensation and CK2 activity

in Arabidopsis. As the direct effects of temperature on TOC1

expression might mask real clock period compensation, we

monitored overall clock output rates by using the morning-

expressed reporter CAB2:LUC and the evening-expressed reporter

CCR2:LUC (COLD-CIRCADIAN RHYTHM–RNA BINDING2). We

determined the free-running period (FRP) in plants entrained at

22uC and then transferred to constant light at 12uC, 17uC, 22uC
or 27uC. As expected, our results showed that circadian clock

function in WT plants was temperature compensated with similar

period length at the different temperatures (Figure 5A, 5B, 5D, 5E,

and Figure S11). In CKB4-MYC-ox plants, the FRP was shorter

than that of WT plants at all temperatures examined. However,

the period shortening for CAB2:LUC (Figure 5A) and CCR2:LUC

(Figure 5D) became more severe at the higher end of the

temperature range. The temperature dependency of period

shortening was also evident when the inverse of the period (as

an indication of the oscillator rate) was plotted against temperature

(Figure 5B and 5E). The linear regression analysis showed that the

slope was significantly deviated from zero (p-values,0.0001) in

CKB4-MYC-ox plants but not in WT (Figure 5B and 5E). These

results were in agreement with our studies using CK2 inhibitors in

which the increased FRP could be correlated with increasing

amounts of the inhibitor (Figure 5C and 5F). Noticeably, period

lengthening was more severe at high temperatures (Figure 5C and

5F and Figure S11). Therefore, manipulation of CK2 activity by

over-expression of CKB4 or by pharmacological inhibition

modulates the temperature compensation profiles. Increased

CK2 activity leads to under-compensated clock function (i.e. the

clock runs faster at high temperatures) whereas decreased CK2

activity results in a slightly over-compensation (i.e. the clock runs

slower at high temperatures). The temperature dependent function

of CK2 is manifested by the different phenotypes of clock outputs

at various temperatures such that period compensation is not

properly achieved when CK2 activity is mis-regulated.

Temperature modulates both CK2 and CCA1 regulatory
activities

In a last part of our study, we were interested in determining the

mechanism underlying the temperature-dependent CK2 function

in the Arabidopsis circadian clock. Our results indicated that CK2

interferes with the binding of CCA1 to the promoters of its target

genes. Therefore, we next explored whether the temperature-

dependent phenotypes of CK2 could be mechanistically linked

with altered CCA1 activity. We examined by ChIP assays the

CCA1 binding activity in CCA1-YFP-ox and CCA1-YFP-ox/

CKB4-MYC-ox plants entrained at 22uC and then transferred to

12uC or 27uC. Q-PCR analysis of CCA1-YFP-ox plants revealed

significantly increased amplification at 27uC compared to 12uC
(Figure 6A and Figure S12) suggesting that CCA1 binding is

regulated by temperature. Previous studies have shown that the

temperature dependence of the heat capacity is a thermodynamic

property of the majority of sequence-specific DNA-protein

interactions [63]. Compared to CCA1-YFP-ox, a much reduced

amplification was observed when CCA1-YFP-ox/CKB4-MYC-ox

plants were examined (Figure 6A), with reduced differences in

CCA1 binding between 12uC and 27uC (Figure S12). These

Figure 5. A link between CK2 and temperature compensation in Arabidopsis. Free-running periods of CAB2:LUC (A) and CCR2:LUC (D) in WT
and CKB4-MYC-ox plants entrained under LD cycles at 22uC and subsequently transferred to LL conditions at 12uC, 17uC, 22uC or 27uC. Data are
represented as means 6 SEM of the period estimated of approximately 12 plants (from two independent experiments). The inverse of the period
(oscillator rate) from CAB2:LUC (B) and CCR2:LUC (E) was used to extrapolate the linear regression of the temperature response. Free-running periods
for CAB2:LUC (C) and CCR2:LUC (F) of WT plants entrained under LD cycles at 22uC and subsequently transferred to LL conditions at 17uC, 22uC and
27uC. Plants were treated with 0, 75, 150, 200 mM DRB. Data are the means 6 SEM of the period estimated of approximately 12 plants.
doi:10.1371/journal.pgen.1001201.g005
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results indicate a temperature-dependent regulation of both CCA1

binding activity and the CK2 antagonistic function. The

differences in binding cannot be attributable to changes in

CCA1 and CKB4 mRNA (not shown) or protein accumulation

(Figure 6B, 6C, and Figure S12) did not vary at different

temperatures. In contrast, the CCA1 phosphorylated isoforms

were considerably increased at 27uC, as revealed by the

immunoprecipitation assays with anti-GFP antibody followed by

detection with anti-P-Ser antibody (Figure 6D). To verify that the

observed effects were not due to artefactual protein over-

expression, we performed ChIP assays with a CCA1prom:CCA1-

HA-YFP line, which expresses CCA1 under its own promoter [53].

This line displays a circadian period (25.660.6) slightly longer

than WT plants (24.360.1) [53]. Using this line, we confirmed the

CCA1 binding to its target loci and verified a regulatory role of

temperature on this binding (Figure S12). Our conclusions were

also in agreement with studies of TOC1:LUC-expressing double

mutant cca1-1/lhy-11 plants [61]. The results showed that the

luminescence signals damped high at 27uC (Figure 6E) indicating

that TOC1 repression was clearly alleviated by the absence of

CCA1 and LHY. However, this function was not so evident at

12uC, with cca1-1/lhy-11 plants displaying intermediate lumines-

cence signals (Figure 6F). These results also suggest that at 12uC

and in the absence of CCA1 and LHY, additional factors

contribute to TOC1 repression. The previously postulated major

role for CCA1 at low temperatures [40] might be reflecting the

decreased regulatory function of CK2 at the lower range of

temperatures. In consonance with this hypothesis, our studies

showed that circadian gene expression was clearly affected in

CCA1-ox and in cca1-11 mutant plants at high temperatures

(Figure S13) and the DRB effects were more severe at 27uC than

at 12uC (Figure S13). In agreement with these results, we observed

more evident effects of DRB on CCA1 binding at high than at low

temperatures (Figure S14). Altogether, our results suggest that the

temperature-dependent balance between CCA1 binding activity

and CK2 opposing function contributes to proper temperature

compensation in Arabidopsis.

CCA1 dephosphorylated isoforms are preferentially
bound to the promoters of the oscillator genes

Our results indicate that CK2 interferes with CCA1 function

and suggest an inverse correlation between CK2 activity and

CCA1 binding. We next performed Double ChIP assays at

temperatures of maximal CCA1 binding (22uC and 27uC) in an

attempt to estimate the phosphorylated CCA1 fraction that is

associated with the promoters. We performed a double round of

Figure 6. Effects of temperature and CK2 kinase function on CCA1 binding activity. (A) ChIP analysis of CCA1 binding to the promoters of
TOC1, LUX, PRR7 and PRR9 in plants entrained under LD cycles at 22uC and transferred to 12uC or 27uC. Samples were collected after 35 h under LL.
Input DNA was used as a control. Immunodetection of (B) CCA1-YFP and (C) CKB4-MYC protein accumulation in CCA1-YFP-ox/CKB4-MYC-ox plants
grown under the same conditions described in (A). Similar protein transference in each lane was verified by staining with Red Ponceau. (D) Western-
blot analysis of CCA1-YFP-ox/CKB4-MYC-ox protein extracts immunoprecipitated with anti-GFP antibody (a-GFP) with subsequent detection of
phosphorylated CCA1 isoforms (CCA1-P)(a-PSer) at 12uC or 27uC. Luminescence of TOC1:LUC expression in WT and cca1-1/lhy-11 plants grown under
LD cycles at 22uC and subsequently transferred to 27uC (E) or 12uC (F). Plots are means 6 SEM of 12 individual seedlings. The white and solid boxes
correspond to the light and dark periods, respectively. The experiments were performed at least twice with similar results to those shown here.
doi:10.1371/journal.pgen.1001201.g006
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immunoprecipitation, firstly, with the a-GFP antibody to immu-

noprecipitate total CCA1 protein bound to the target promoters

and secondly, with the a-PSer antibody to discriminate between

phosphorylated and dephosphorylated CCA1 isoforms. By virtue

of doubling-up the immunoprecipitation round, we expected to get

PCR amplification only if CCA1 phosphorylated isoforms were

preferentially bound to the target promoters (Figure S15). Our

results showed slightly above background amplification that was

observed at both 22uC or 27uC and for all the promoters

examined (Figure 7A and 7B). This corresponds to only a minimal

fraction of the total amount of CCA1 bound to the promoters, as

assayed by double round of immunoprecipitation with the anti-

GFP antibody (Figure 7A and 7B). The reliability of these results is

supported by the abundant CCA1 phosphorylated isoforms

observed at 27uC (Figure 6D) and the efficient detection of

immunoprecipitated CCA1 by the P-Ser antibody (Figure 2A and

Figure 6D). In addition, the lack of amplification in the Double

ChIP assays was not likely due to reduced efficiency of the

technique, as Double-ChIP experiments similarly processed with

a-Histone3 (a-H3) antibody followed by a-PSer immunoprecip-

itation revealed clear amplified bands in all cases (Figure 7A and

Figure S15). Together, the results confirmed and extend our

findings suggesting that the complex regulatory interplay between

CK2 and CCA1 binding activity is modulated by temperature and

contributes to proper temperature compensation within the

Arabidopsis circadian clock.

Discussion

Our results show that over-expression of CKB4 reduces the

severity of CCA1-YFP-ox phenotypes while the lack of additive

phenotypes in CKB4-MYC-ox/cca1-1/lhyRNAi plants indicates

that CKB4 and CCA1 function in the same signalling pathway.

Repression of TOC1 expression in CCA1-YFP-ox plants was

alleviated by over-expression of CKB4, which assigns an

important role for CKB4 modulating one of the main feedback

loops described in Arabidopsis [58]. Pharmacological treatment

with specific CK2 inhibitors or the use of plants expressing a CK2

inducible dominant mutant reflected the involvement of CK2

activity in this regulation, rather than a holoenzyme-independent

function of the CK2 regulatory subunit [64] . In human cells,

treatment with DRB or DMAT also results in long-period

phenotypes [19-21]. Similarly, decreased CK2 activity causes

long-period behavioral rhythms in Drosophila [22,23]. These

results highlight a remarkable conservation of CK2 circadian

function among very different organisms including plants, insects

and mammals.

Based on studies with other circadian systems, it was plausible to

assume that phosphorylation of CCA1 by CK2 might mediate

changes in CCA1 accumulation or subcellular localization [12].

However, our results assigned a role for CK2 in the control of

CCA1 binding activity rather than protein accumulation or

localization. Our studies also revealed that CCA1 regulates the

expression of morning- and evening-expressed genes most likely by

direct binding to their promoters. Therefore, by antagonizing this

binding, CK2 can precisely modulate CCA1 regulation of

circadian gene expression. The binding of CCA1 to the LIGHT-

HARVESTING CHLOROPHYLL A/B1*3 (LHCB1*3) promoter was

shown to be increased by CK2 [25,26]. However, the authors also

reported that in CKB3-ox plants, the induction of the LHCB1*1

gene was reduced compared to WT (Sugano et al., 1999). In our

studies, we observed that CK2 antagonizes CCA1 binding to the

promoters of the oscillator genes. This function consistently fits

with the CKB and CCA1 inverse correlation between phenotypes

and expression. Evidence that CK2 phosphorylation decreases

protein binding to target promoters was also provided for the bZIP

transcription factor HY5 [65]. Our binding analyses were

consistent with the Double-ChIP results showing that CCA1

dephosphorylated isoforms were preferentially bound to the

promoters of CCA1 target genes. An altered ratio of phosphor-

ylated/dephosphorylated isoforms by increased or decreased CK2

activity is fully consistent with the circadian phenotypes observed

Figure 7. Analysis of CCA1 isoforms bound to the promoters of the oscillator genes. (A) Double ChIP assays of CCA1 isoform binding to
the promoters of TOC1, LUX, PRR7 and PRR9 in CCA1-YFP-ox/CKB4-MYC-ox plants entrained under LD cycles at 22uC and transferred to LL conditions
at 22uC or 27uC. Samples were taken after 35 h under LL. The first immunoprecipitation was performed with a-GFP antibody followed by a second
round with a-PSer or with a-GFP. The combinations of a-H3/a-H3 antibodies or a-H3/a-Pser antibodies were used as controls. The experiments were
performed at least twice with similar results to those shown here. (B) Q-PCR analysis of CCA1 isoform binding by double ChIP assays. Data are shown
as means 6 SD relative to the maximum value of two independent experiments (*** p-value,0.001).
doi:10.1371/journal.pgen.1001201.g007
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in CKB4-MYC-ox and CCA1-YFP-ox/CKB4-MYC-ox plants. This

inhibitory function is not exclusive of the plant circadian system as a

phosphorylation-dependent inactivation of transcriptional function

was previously reported in other circadian systems [62].

To be effective as a key mechanism of clock progression, the

interplay between CK2 and CCA1 should be in turn precisely

regulated. Indeed, we found that different temperatures affect CK2

regulatory function. The higher amplitude of TOC1:LUC expression

in CKB4-MYC-ox plants was mostly observed at 22uC and 27uC
while the activating function of CK2 on TOC1 expression was not so

clearly observed at 12uC. The lower amplitude of TOC1:LUC

expression in CKB4-MYC-ox plants at 12uC is difficult to explain,

but denotes that a different mechanism is engaged at low

temperatures and emphasizes the complexity of the temperature

response within the Arabidopsis circadian network. This notion is

reinforced by the results showing that CK2 also phosphorylates

LHY [26]. Thus, it is possible that the previously described role of

LHY-GI in clock temperature compensation [40] might be also

regulated by CK2. Notably, CCA1 binding activity appeared to be

also modulated by temperature in CCA1-ox plants. Despite the

lower binding at 12uC, CCA1 is still able to repress TOC1

expression at 12uC as evidenced by our luminescence assays.

Furthermore, CK2 activity might also have a residual function as it

was able to interfere with CCA1 binding. Therefore, there is a

parallelism between the temperature regulation of CCA1 binding

and CK2 activity. We proposed that the dynamic regulation of these

activities by temperature is important for clock function, as altering

the functional expression by over-expression, mutation or pharma-

cological inhibition deregulates the temperature-dependent modu-

lation of gene expression.

Unlike the temperature dependency of most biological and

biochemical activities, the circadian clock sustains period length

over a range of constantly maintained temperatures [66]. When

we examined clock outputs, we found that the temperature

compensation profiles were altered in CKB4-MYC-ox plants

compared to those observed in WT. A simple explanation would

be that CK2 activity might be compromised only when CKB4

abundance is increased above physiological limits. However,

decreased CK2 activity by pharmacological inhibitors also led to

altered temperature compensation. Additionally, CKB4 protein

abundance did not vary between 12uC and 27uC. Together, these

findings indicate that CK2 contributes to proper temperature

responses in Arabidopsis: increased CK2 activity led to under-

compensation whereas decreased activity resulted in a slightly

over-compensated clock. This is noteworthy because previous

studies in Neurospora have also implicated CK2 in temperature

compensation [30]. Therefore, CK2 integrates a molecular clock

component with a regulatory function that is conserved among

different circadian systems. However, the specific mechanisms of

CK2 function differ among organisms. In Neurospora, the stability

of FRQ is controlled, at least in part, by a CK2-dependent

phosphorylating mechanism, which facilitates the FRQ protein

degradation preferentially at high temperatures [30]. In Arabi-

dopsis, CK2 does not affect CCA1 protein accumulation but

rather its transcriptional activity. Our results suggest that a precise

temperature regulation of CK2 and CCA1 activity shapes the

temperature compensation profile. Altering this delicate balance

by over-expression, mutation or pharmacological inhibition affects

the period compensation. In addition to the CK2-CCA1

counterbalancing loop, other loops and/or different mechanism

should also account for precise regulation of temperature

compensation. In fact, prior studies have proposed that LHY

and GI contribute to temperature compensation in Arabidopsis

[40]. Our findings focusing on CCA1 binding and CK2 activities

add exciting insights into the mechanisms of temperature

compensation in Arabidopsis. It would be also interesting to

perform similar studies with the other three CK2 regulatory

subunits in order to highlight functional similarities or divergences

in the control of temperature compensation. Our findings are also

in line with the notion that evolution might enhance fitness under

different climate conditions without directly affecting the expres-

sion of central oscillator components but rather modulating their

activity. Circadian clock adaptation to different environments

might thus rely on key regulatory factors that modulate the

oscillator activity. Further studies using different Arabidopsis

ecotypes can provide new insights into how this regulation might

have shaped plant adaptation to different climate areas around the

globe. The parallelism in temperature dependency of CCA1 and

CK2 activities and the inhibitory effect of CK2 on CCA1 function

is in agreement with a previously described model for temperature

compensation [33]. The model proposes that the temperature

independence of circadian period by the clock occurs through the

balance between two biochemical activities, each of which has a

similar temperature dependency [33]. Our studies would be also in

consonance with the notion that temperature compensation is not

only determined by central clock components but also by other

elements that function in trans to regulate the core proteins [40]. A

recent computer modeling study has proposed that a switch-like

mechanism might regulate period sensitivity through the control of

two parameters that are a function of processes such as

phosphorylation, ubiquitination or complex formation [67]. It

would be interesting to identify a role of these regulatory processes

as key modules shaping the temperature compensation profiles.

Specifically for phosphorylation, studies in Neurospora [30] and

mammals [68] indicate that in contrast to CK2, the activities of

other kinases and clock-related phosphorylation events are

temperature-insensitive. Our study showing that the CK2 activity

antagonizes CCA1 function in a temperature-dependent manner

highlights only one of the many aspects contributing to

temperature compensation. Further analysis focusing on addition-

al components and mechanisms would aid in our understanding of

the intricate interacting networks responsible for temperature

compensation in Arabidopsis and in other organisms.

Materials and Methods

Plant material, luminescence assays, flowering time, and
hypocotyl length analysis

Arabidopsis thaliana seedlings were stratified at 4uC in the dark for

3 days on Murashige and Skoog agar medium supplemented with

3% sucrose and then transferred to light:dark conditions (LD, 12 h

light:12 h hours dark) with 60 mmol m22s21 of cool white

fluorescent light at 22uC. The list with the different plants and

constructs used in this study is shown in Table S1 and S2. For

CCA1-ox/CKB4-ox studies, lines 9 and 14 were used (see Figure

S1 and Figure S2). For cca1/lhy/CKB4-ox studies, lines 4 and 5

were used (see Figure 3D and Figure S1). For Luminescence

analyses were performed as previously described [28]. In

experiments with CK2 inhibitors, one-week old plants were

transferred to 96-well plates containing MS medium supplemented

with the specified concentration of DRB or DMAT. Luminescence

was recorded 24 hours after the seedlings were transferred to the

plates. For Dexamethasone induction, 1 mM was added to each

well at Zeitgeber Time 2 (ZT 2). For flowering time analysis, seeds

were stratified in the dark at 4uC for 3 days on soil. Seedlings were

grown under Short-Day (ShD, 8 h light:16 h dark) or Long-Day

(16 h light:8 h dark) conditions with 60 mmol m22s21 of cool

white fluorescent light at 22uC. Flowering time was scored by
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counting the number of days and number of leaves at the time of a

1 cm-high flower bolt. For hypocotyl length assays, seeds were

stratified in the dark at 4uC for 4 days on MS medium

supplemented with 3% Sucrose. Germination was induced by

exposing the seeds to white light (60 mmol m22 s21) for 6 h

followed by 18 h under darkness. Seeds were placed under ShD or

LgD conditions (60 mmol m22 s21) or under continuous white

light (LL) with the specified light intensities. Hypocotyl length was

measured after seven days by using the Image J software (http://

rsb.info.nih.gov/ij/).

Western-blot and co-immunoprecipitation analysis
Western-blot assays were essentially performed as previously

described [69]. Briefly, nine day-old seedlings were ground in

liquid nitrogen and proteins were extracted in RIPA buffer

(50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% NP-40 0.1% SDS,

0.5% Sodium Deoxycholate, 0.5% Polyvinylpolypyrrolidone

(PVPP), 50 mm MG132, 10 mM NaF, 1 mM PMSF, 5 mg/ml

Leupeptin, 1 mg/ml Aprotinin, 5 mg/ml Antipain, 1 mg/ml

Pepstatin, 5 mg/ml Chymostatin). Protein concentration was

calculated using the Bradford method (Bio-Rad) and 20-60 mg of

total protein was loaded per lane. Proteins were transferred to

nitrocellulose membranes and stained with Red Ponceau following

standard protocols. Anti-MYC (clone 9E10; Sigma) and Anti-GFP

(A11122; Invitrogen) antibodies were used to detect CKB4-MYC

and CCA1-YFP proteins, respectively. Protein accumulation was

quantified using the LAS-4000 imaging system (Fujifilm-GE

Healthcare). In experiments with CK2 inhibitors, 48 hours before

sampling, plants were transferred to medium supplemented with

150 mM of DRB, 150 mM DMAT or 1 mM Dex. For co-

immunoprecipitation assays, nine day-old seedlings were ground

in liquid nitrogen and proteins extracted in RIPA buffer. Extracts

were incubated for 4 h at 4uC with Protein G–Sepharose beads

(Amersham Biosciences) conjugated with Anti-GFP antibody.

Immunocomplexes were washed 5 times with RIPA buffer

followed by additional washing with PBS (Phosphate buffer

saline). Immunoprecipitated proteins were eluted by adding

Laemmli buffer followed by 4 min incubation at 95uC. Anti-

MYC and Anti-GFP antibodies were used to detect CKB4-MYC

and CCA1-YFP respectively. The anti-phosphoserine antibody

(Anti-PSer, 4A3, Calbiochem) was used to detect phosphorylated

isoforms of CCA1. The antibody recognizes serine-phosphorylated

residues (in a positively charged amino acid context directly

neighbouring the phosphoserine). For interaction of proteins

expressed at endogenous levels, we used a polyclonal anti-CK2B

antibody to the human CK2B regulatory subunit CK2B

(CSNK2B; Abnova). Detection of CCA1 was performed with

the Anti-MYC antibody.

Two-dimensional gels and immunoblotting
For two-dimensional gels experiments, nine day-old seedlings

were ground in liquid nitrogen and proteins extracted in lysis

buffer (7 M Urea, 2 M Thiourea, 4% CHAPS, 18 mM Tris-HCl

pH 8.0, 50 mm MG132, 10 mM NaF, 1 mM PMSF, 5 mg/ml

Leupeptin, 1 mg/ml Aprotinin, 5 mg/ml Antipain, 1 mg/ml

Pepstatin, 5 mg/ml Chymostatin). Protein concentration was

determined using the Bradford method (Bio-Rad) and 40 mg of

total protein was loaded onto immobilized pH gradient (IPG)

strips (7 cm, pH 3–10, Amersham Biosciences) for the first

dimension separation. Strips were rehydrated for 6 h at room

temperature and the isoelectric point focusing was performed at 30

V for 6.5 h, 500 V for 1 h, 1000 V for 1 h and 5000 V for 7 h.

Strips were subsequently equilibrated for 15 min with equilibra-

tion buffer I (50 mM Tris-HCl pH 8.8, 6 M Urea, 30% Glycerol,

2% SDS, 10 mg/ml DTT) followed by a 15 min wash with

equilibration buffer II (50 mM Tris-HCl pH 8.8, 6 M Urea, 30%

Glycerol, 2% SDS, 25 mg/ml Iodoacetamide). For the second

dimension, strips were loaded onto SDS-PAGE 8% polyacryl-

amide gels followed by blotting to nitrocellulose membranes. Anti-

GFP antibody was used to detect CCA1-YFP protein.

Bimolecular Fluorescence Complementation (BiFC) and
confocal microscopy

Plants over-expressing both the CCA1 protein fused to the N-

terminal fragment of the Yellow Fluorescent Protein (YFP)

(nucleotides: 1–462) and the CKB4 protein fused to the C-terminal

part of the YFP protein (nucleotides: 463–741) were grown on MS-

agar medium supplemented with 3% Sucrose under LD cycles.

Fluorescence signals of hypocotyl cells were imaged using an

Olympus Fluoview FV1000 confocal microscope using a 515 nm

argon excitation laser. CKB4-YFP-ox, CCA1-YFP-ox, TOC1-YFP-

ox, CCA1-ox/CKB4-YFP-ox, CCA1-YFP-ox/CKB4-MYC-ox,

TOC1-nYFP-ox/CKB4-cYFP-ox were similarly imaged.

ChIP and double-ChIP assays
ChIP assays were performed essentially as previously described

[52]. Briefly, fourteen day-old seedlings were fixed in fixation

buffer (0.4 M Sucrose, 10 mM Tris-HCl pH 8.0, 1 mM

EDTA,1 mM PMSF, 1% Formaldehyde, 0.05% Triton X-100)

for 10 min, followed by addition of Glycine 0.125 M and vacuum

incubation during 10 min. Seedlings were subsequently ground in

liquid nitrogen and extracted in extraction buffer I (0.4 M Sucrose,

10 mM Tris-HCl pH 8.0, 5 mM b-mercaptoethanol, 1 mM

PMSF, 5 mg/ml Leupeptin, 1 mg/ml Aprotinin, 5 mg/ml Anti-

pain, 1 mg/ml Pepstatin, 5 mg/ml Chymostatin and 50 mm

MG132). Nuclei were then purified by centrifugation and washed

with extraction buffer II (0.25 M Sucrose, 10 mM Tris-HCl

pH 8.0, 10 mM MgCl2, 1% Triton X-100, 5 mM b-mercapto-

ethanol, 1 mM PMSF, 5 mg/ml Leupeptin, 1 mg/ml Aprotinin,

5 mg/ml Antipain, 1 mg/ml Pepstatin, 5 mg/ml Chymostatin and

50 mm MG132). Nuclei were resuspended in nuclei lysis buffer

(50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS, 5 mg/ml

Leupeptin, 1 mg/ml Aprotinin, 5 mg/ml Antipain, 1 mg/ml

Pepstatin, 5 mg/ml Chymostatin and 50 mm MG132). Chromatin

was sonicated to approximately 500–1000 bp fragments with a

sonicator (Branch). After centrifugation, soluble chromatin was

diluted in ChIP dilution buffer (15 mM Tris-HCl pH 8.0,

150 mM NaCl, 1% Triton-X-100, 1 mM EDTA, 1 mM PMSF,

5 mg/ml Leupeptin, 1 mg/ml Aprotinin, 5 mg/ml Antipain, 1 mg/

ml Pepstatin, 5 mg/ml Chymostatin and 50 mm MG132) and

incubated overnight at 4uC with Protein G–Sepharose beads

(Amersham Biosciences) conjugated with Anti-GFP antibody.

Immunocomplexes were washed with low salt buffer (20 mM Tris-

HCl pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 2 mM

EDTA), high salt buffer (20 mM Tris-HCl pH 8.0, 500 mM

NaCl, 1% Triton X-100, 0.1% SDS, 2 mM EDTA), LiCl wash

buffer (10 mM Tris-HCl pH 8.0, 0.25 M LiCl, 1% NP-40, 1%

Sodium Deoxycholate, 1 mM EDTA) and 2x TE buffer (10 mM

Tris-HCl pH 8.0, 1 mM EDTA). Immunocomplexes were eluted

with 1% SDS and 0.1 M NaHCO3 followed by overnight reverse

cross-link at 65uC and proteinase K treatment for 1 h at 45uC.

Immunoprecipitated DNA was isolated using the QIAquick kit

(Qiagen) following the manufacturer instructions. ChIP samples

were amplified by PCR, stained with SYBR Green (Molecular

Probes) and resolved by electrophoresis on 2% agarose gel. Images

were captured with the LAS-4000 imaging system (Fujifilm-GE

Healthcare). ChIPs were quantified by Q-PCR analysis using a 96-

well Lightcycler 480 system (Roche) with the Lightcycler 480
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software (Version 1.5.0.39, Roche). Melting peak analysis using

the LightCycler 480 Basic software module (Roche) and gel

electrophoresis confirmed that primer-dimers or other non-specific

products were not present. Crossing point (Cp) calculation was

used for quantification using the Absolute Quantification analysis

by the 2nd Derivative Maximun method (LightCycler 480 Basic

software module, Roche). ChIP values for each set of primers were

normalized to Input values. Primers were designed using the

PrimerExpress 2.0 software (Applied Biosystems) with lengths of

18-25 nucleotides, PCR amplicon lengths of 80 to 180 bp, 40-60%

G:C content and melting point of 58-62uC. The list of primers

used for promoter (prom) amplification and for Q-PCR analysis is

shown in Table S3. In experiments with CK2 inhibitors or with

plants expressing the CK2 inducible mutant, 48 hours before

sampling, plants were transferred to medium supplemented with

150 mM of DRB, 150 mM DMAT or 1 mM Dex. Double-ChIP

assays [70] were performed following the ChIP procedure for

chromatin extraction and immunoprecipitation followed by one

wash with low salt buffer (20 mM Tris-HCl pH 8.0, 150 mM

NaCl, 1% Triton X-100, 0.1% SDS and 2 mM EDTA) and two

washes with TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA).

Immunocomplexes were eluted using 10 mM DTT and incubat-

ing at 37uC for 30 min. Chromatin was diluted in 40 volumes of

Double-ChIP buffer (15 mM Tris-HCl pH 8.0, 150 mM NaCl,

1% Triton-X-100, 1 mM EDTA, 1 mM PMSF, 5 mg/ml

Leupeptin, 1 mg/ml Aprotinin, 5 mg/ml Antipain, 1 mg/ml

Pepstatin, 5 mg/ml Chymostatin and 50 mm MG132) and

incubated overnight at 4uC with Protein G–Sepharose beads

(Amersham Biosciences) conjugated with Anti-PSer or Anti-GFP

antibody. Immunocomplexes were washed, eluted, purified and

amplified as described for the ChIP protocol.

Statistical analysis
Statistical analyses were performed using the GraphPad Prism

software (GraphPad Software, Inc). For hypocotyl length and

flowering time experiments, two-tailed t-tests with 99% of

confidence were performed. For multiple comparisons, two-way

ANOVA followed by Bonferroni post-tests were performed;

photoperiod and genotype were considered as variables. For ChIP

quantifications, two-way ANOVA tests followed by Bonferroni

post-tests were used. Gene and genotype or temperature and

genotype were considered as variables. GraphPad Prism software

was also used to extrapolate the linear regression of the

temperature response. Profiles for bioluminescence experiments,

the estimated period length was determined by Fast Fourier

Transform/Nonlinear Least Squares method (FFT/NLLS) [71]

using a window of 96 hr of data excluding the first 24 hr to avoid

any transient effects after transferring to constant conditions.

Supporting Information

Figure S1 CKB4 and CCA1 expression in different CCA1-ox/

CKB4-ox and cca1/lhy/CKB4-ox lines. (A) RT-PCR analysis of

CKB4, CCA1 and ACTIN2 (ACT2) expression in WT and double

CCA1 and CKB4 over-expressing plants. Lines 14 and 9 were

used for subsequent studies. (B) RT-PCR analysis of CKB4 and

ACTIN2 (ACT2) expression in WT and in cca1-1/lhyRNAi/CKB4-

ox plants. Lines 5 and 4 were used for subsequent studies.

Seedlings were entrained under LD cycles and samples were

collected at Zeitgeber Time 2 (ZT2). (C) Immunodetection of

CKB4 protein accumulation in cca1-1/lhyRNAi/CKB4-ox plants.

CKB4 protein was detected using the a-MYC antibody. Seedlings

were entrained under LD cycles and samples were collected at

ZT2.

Found at: doi:10.1371/journal.pgen.1001201.s001 (0.21 MB PDF)

Figure S2 Analysis of CCA1 and CKB4 genetic interaction.

Flowering time of WT, cca1-1/lhyRNAi, cca1-1/lhyRNAi/CKB4-

MYC-ox and CKB4-MYC-ox plants grown under (A, B) Long-

Day (LgD, 16 h light:8 h dark) or (C, D) Short-Day (ShD, 8 h

light:16 h dark) conditions. Flowering time was measured as the

number of leaves at flowering or the number of days to flowering

(1-cm-high bolt). Data are shown as means 6 SEM of three

independent experiments. Similar results were obtained when

flowering time was examined in cca1-1/lhy-11 and cca1-1/lhy-11/

CKB4-MYC-ox plants.

Found at: doi:10.1371/journal.pgen.1001201.s002 (0.12 MB PDF)

Figure S3 Analysis of TOC1:LUC diurnal expression in different

genetic backgrounds. TOC1:LUC luminescence in seedlings

maintained under LD (12 h light:12 h dark) cycles. Plots represent

means 6 SEM of at least 12 individual seedlings. The white and

solid boxes correspond to the light and dark periods, respectively.

The experiment was performed three times with similar results to

those shown here.

Found at: doi:10.1371/journal.pgen.1001201.s003 (0.09 MB PDF)

Figure S4 Analysis of CCA1 and CKB4 molecular interaction.

(A) Western-blot analysis of WT, CCA1-ox and CCA1-

prom:CCA1-MYC/cca1-1 plants using an antibody to the human

CK2B subunit (a-CKB). The antibody efficiently recognizes the

CK2 regulatory subunits of Arabidopsis. (B) Western-blot analysis

of Co-IP experiments with plants expressing CCA1 under its own

promoter (CCA1prom:CCA1-MYC/cca1-1). Protein extracts were

immunoprecipitated with the a-CKB antibody followed by

detection with the a-MYC antibody. Plants were grown under

LD conditions and samples were collected at ZT1.5. Nuclear

localization analysis by confocal microscopy at ZT11 of plants

expressing (C) CCA1-ox/CKB4-YFP-ox, (D) CCA1-YFP-ox/

CKB4-MYC-ox, (E) TOC1 fused to the N-terminal fragment of

YFP (TOC1-nYFP-ox) and CKB4 fused to the C-terminal

fragment of YFP (CKB4-cYFP-ox) or (F) TOC1 fused to full-

length YFP (TOC1-YFP-ox).

Found at: doi:10.1371/journal.pgen.1001201.s004 (0.40 MB PDF)

Figure S5 Effects of the CK2 inhibitors DRB and DMAT on

TOC1:LUC expression. (A) Free-running periods estimated from

TOC1:LUC luminescence signals in WT plants under LL

conditions treated with increasing concentrations of DRB. Period

was estimated from individual seedlings plotted against their

relative amplitude errors. (B) TOC1:LUC luminescence in WT

plants treated with increasing concentrations of DMAT. Lumi-

nescence was recorded under LD (12 h light:12 h dark) cycles.

Data are represented as means 6 SEM of luminescence signals

from at least 12 independent plants.

Found at: doi:10.1371/journal.pgen.1001201.s005 (0.11 MB PDF)

Figure S6 Effects of CK2 activity on the in vivo CCA1 binding to

the promoters of the oscillator genes. (A) ChIP analysis of CCA1

binding to the promoters of the morning-expressed genes, PRR7

and PRR9 and the evening-expressed genes TOC1 and LUX.

Analysis was performed with CCA1-YFP-ox plants entrained

under LD cycles and samples were collected at ZT3 and ZT15.

The binding regions of TOC1, LUX and PRR9 promoters contain

the Evening Element (EE) motif. No conserved motifs were

identified in the CCA1 binding region of PRR7 promoters. No

amplification was obtained with the promoter of a clock-unrelated

gene (At5g55840) or when samples were similarly processed in the

absence of antibody. The experiments were performed three times

with similar results to those shown here. Q-PCR analysis of CCA1

binding in (B) CCA1-YFP-ox and CCA1-YFP-ox/CKB4-MYC-
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ox plants; in (C) CCA1-YFP-ox with 150 mM of the CK2 inhibitor

DRB; in (D) CKA3-/CCA1-YFP-ox plants induced with 1 mM

Dexamethasone (Dex) or in (E) CCA1-YFP-ox/CKB4-MYC-ox

plants treated with 150 mM of the CK2 inhibitor DRB. Seedlings

were grown under LD cycles and collected at ZT3. Data are

presented as means 6 SEM relative to the input and to the

maximum value of at least three independent experiments

(*** p-value, 0.001).

Found at: doi:10.1371/journal.pgen.1001201.s006 (0.20 MB PDF)

Figure S7 Effects of temperature and CK2 kinase function on

circadian gene expression. Bioluminescence of CAB2:LUC expres-

sion in WT (A) and cca1-11 mutant (B) plants in the presence or in

the absence of 100 mM DRB. Luminescence was measured in

plants entrained under LD conditions at 22uC and transferred to

LL conditions. Plots are means 6 SEM of 8-12 individual

seedlings. (C) Analysis of circadian period length of CAB2::LUC

expression in WT and cca1-11 mutant plants in the presence or in

the absence of DRB. Estimated period length was determined as

described in Supplemental experimental procedures. (D) TO-

C1:LUC luminescence in WT and cca1-1/lhy-11 double mutant

plants in the presence or in the absence of 100 mM DRB.

Luminescence was measured in plants entrained under LD

conditions at 22uC and transferred to LL conditions. Plots are

means 6 SEM of 8-12 individual seedlings. The experiments were

repeated at least twice with similar results to those shown here.

Found at: doi:10.1371/journal.pgen.1001201.s007 (0.14 MB PDF)

Figure S8 Analysis of TOC1:LUC diurnal expression under

different temperatures. Luminescence analysis of TOC1:LUC

expression in plants entrained under LD cycles at 22uC and

subsequently transferred to LD cycles at 27uC (A, D), 22uC (B, E)

or 12uC (C, F). Data is shown as means 6 SEM of at least 12

individual seedlings. The experiments were performed at least

twice with similar results to those shown here.

Found at: doi:10.1371/journal.pgen.1001201.s008 (0.13 MB PDF)

Figure S9 Analysis of TOC1:LUC diurnal expression in CKB4-

ox plants under different temperatures. Point-by-point lumines-

cence analysis of TOC1:LUC expression in plants entrained under

LD cycles at 22uC and subsequently transferred to LD cycles at

27uC (A) or 12uC (B). Data is shown as means 6 SEM of at least

12 individual seedlings. The experiments were performed at least

twice with similar results to those shown here.

Found at: doi:10.1371/journal.pgen.1001201.s009 (0.13 MB PDF)

Figure S10 Effects of DRB treatment on TOC1:LUC diurnal

expression at different temperatures. TOC1:LUC luminescence in

WT plants in the presence or in the absence of 100 mM DRB at

27uC or 12uC. Luminescence was measured in plants entrained

under LD conditions at 22uC and transferred to LD cycles at 27uC
(A) or 12uC (B). Plots are means 6 SEM of 12 individual seedlings.

The experiments were repeated at least twice with similar results to

those shown here. The white and solid boxes correspond to the

light and dark periods, respectively.

Found at: doi:10.1371/journal.pgen.1001201.s010 (0.11 MB PDF)

Figure S11 Effects of temperature and CK2 kinase function on

the free-running period of the clock-output CAB2:LUC. Free-

running periods estimated from CAB2:LUC luminescence signals

in WT, CKB4-MYC-ox and WT plants treated with 100 mM

DRB at 12uC (A), 22uC (B) and 27uC (C). Period was estimated

from individual seedlings plotted against their relative amplitude

errors. Data come from two independent experiments with

approximately 6-12 plants per phenotype or treatment.

Found at: doi:10.1371/journal.pgen.1001201.s011 (0.12 MB PDF)

Figure S12 Effects of temperature and CK2 kinase function on

CCA1 binding to the promoters of the oscillator genes. Q-PCR

analysis of CCA1 binding to TOC1 (A), LUX (B), PRR7 (C) or

PRR9 (D) promoters. CCA1-YFP-ox and CCA1-YFP-ox/CKB4-

MYC-ox plants were grown under LD cycles at 22uC and

transferred to continuous light (LL) at 12uC or 27uC. Samples

were collected after 35 h under LL conditions. Data are presented

as means 6 SD relative to the input and to the maximum value of

two independent experiments. (E) Q-PCR analysis of CCA1

binding to TOC1, LUX, PRR7, PRR9 and a clock unrelated gene

(At5g55840) in plants expressing CCA1 under its own promoter

(CCA1pro:CCA1-HA-YFP). Plants were grown under LD cycles

at 22uC and transferred to continuous light (LL) at 12uC or 27uC.

Samples were collected after 49.5 h under LL conditions. (F)

Western-blot analysis of CCA1 protein accumulation in CCA1-

YFP-ox plants at 12uC and 27uC. Similar protein transference in

each lane was verified by staining with Red Ponceau. The

experiments were performed twice with similar results to those

shown here (** p-value,0.01; *** p-value,0.001).

Found at: doi:10.1371/journal.pgen.1001201.s012 (0.17 MB PDF)

Figure S13 A role for CCA1 regulating circadian gene

expression at high temperatures. TOC1:LUC luminescence in

WT and CCA1-YFP-ox plants at 27uC (A) or 12uC (B).

TOC1:LUC luminescence in WT and CCA1-YFP-ox plants at

27uC (C) or 12uC (D) in the presence or in the absence of 100 mM

DRB. (E) CAB2:LUC luminescence in WT and cca1-11 mutant

plants at 27uC and in the presence or in the absence of 100 mM

DRB (F). Luminescence was measured in plants entrained under

LD conditions at 22uC and transferred to LL conditions at the

indicated temperatures. Plots are means 6 SEM of 12 individual

seedlings. The experiments were repeated at least twice with

similar results to those shown here.

Found at: doi:10.1371/journal.pgen.1001201.s013 (0.15 MB PDF)

Figure S14 Effects of temperature and CK2 kinase function on

CCA1 binding to the promoters of the oscillator genes. Q-PCR

analysis of CCA1 binding to TOC1, LUX, PRR7 and PRR9

promoters in plants over-expressing CCA1 in the absence (-) or in

the presence (+) of 150 mM of the CK2 inhibitor DRB. Plants were

grown under LD cycles at 22uC and transferred to continuous

light (LL) at 12uC (A) or 27uC (B). Data are presented as means 6

SD relative to the input and to the maximum value. Samples were

collected after 50 h under LL conditions.

Found at: doi:10.1371/journal.pgen.1001201.s014 (0.11 MB PDF)

Figure S15 Double ChIP analysis. (A) Schematic representation

depicting a summary of the Double-ChIP assay described in

Figure 7. A double round of immunoprecipitation (IP) was

performed. In the first round, the a-GFP antibody was used to

detect total CCA1-YFP protein bound to chromatin. In a second

round, the a-PSer antibody was used to specifically detect the

phosphorylated isoforms of CCA1 (P). PCR amplification would

be obtained only if the phosphorylated CCA1 isoforms are

preferentially bound to chromatin. (B) Double-ChIP assays with

the combination of a-H3/anti-PSer or a-H3/anti-H3 antibodies

Data are presented as means 6 SD relative to the maximum value

of two independent experiments.

Found at: doi:10.1371/journal.pgen.1001201.s015 (0.13 MB PDF)

Table S1 Plant Material used in this study.

Found at: doi:10.1371/journal.pgen.1001201.s016 (0.07 MB

DOC)

Table S2 Constructs used in this study.

Found at: doi:10.1371/journal.pgen.1001201.s017 (0.05 MB

DOC)
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Table S3 Primers used in this study.

Found at: doi:10.1371/journal.pgen.1001201.s018 (0.05 MB

DOC)
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