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ABSTRACT The identification of sensitive, specific, and reliable biomarkers that can
be quantified in the early phases of tuberculosis treatment and predictive of long-
term outcome is key for the development of an effective short-course treatment reg-
imen. Time to positivity (TTP), a biomarker of treatment outcome against Mycobacterium
tuberculosis, measures longitudinal bacterial growth in mycobacterial growth indicator
tube broth culture and may be predictive of standard time to stable culture conversion
(TSCC). In two randomized phase 2b trials investigating dose-ranging rifapentine
(Studies 29 and 29X), 662 participants had sputum collected over 6 months where TTP,
TSCC, and time to culture conversion were quantified. The goals of this post hoc study
were to characterize longitudinal TTP profiles and to identify individual patient charac-
teristics associated with delayed time to culture conversion. In order to do so, a nonlin-
ear mixed-effects model describing longitudinal TTP was built. Independent variables
associated with increased bacterial clearance (increased TTP), assessed by subject-specific
and population-level trajectories, were higher rifapentine exposure, lower baseline grade
of sputum acid-fast bacillus smear, absence of productive cough, and lower extent of
lung infiltrates on radiographs. Importantly, sensitivity analysis revealed that major learn-
ing milestones in phase 2b trials, such as significant exposure-response and covariate
relationships, could be detected using truncated TTP data as early as 6weeks from start
of treatment, suggesting alternative phase 2b study designs. The TTP model built
depicts a novel phase 2b surrogate endpoint that can inform early assessment of experi-
mental treatment efficacy and treatment failure or relapse in patients treated with
shorter and novel TB treatment regimens, improving efficiency of phase 2 clinical trials.
(The studies discussed in this paper have been registered at ClinicalTrials.gov under
identifiers NCT00694629 and NCT01043575.)
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Development of effective, safe, and well-tolerated short-course treatment regimens
for drug-sensitive and resistant tuberculosis is a global health priority, but phase 3

multicenter trials to demonstrate efficacy require enormous resources and time invest-
ments (1). Sensitive, specific, and reliable biomarkers that allow the prediction of tuber-
culosis treatment outcomes, especially those that can be identified early, would facili-
tate development of new tuberculosis treatment regimens.
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A rifapentine exposure-response model that used time to stable culture conversion
(TSCC) in liquid cultures as a useful surrogate biomarker of treatment response in
phase 2b clinical trials for tuberculosis has been described (2). TSCC describes time
from the culture obtained at initiation of study treatment to the first of 2 consecutive
sputum cultures negative for Mycobacterium tuberculosis that was not followed by a
positive culture. The culture system used was the mycobacterial growth indicator tube
(MGIT), commonly available in laboratories worldwide (3–5). TSCC biomarker analysis
treated each individual time point for an MGIT culture as a binomial result (positive or
negative). However, laboratory data provided by an MGIT culture are, in fact, continu-
ous and provide the time in days from initial culture collection until the culture is iden-
tified as positive or censored at an upper quantification limit of 6 weeks (44 days) of
incubation. Using a binary outcome measure of efficacy does not maximize the use of
rich, longitudinal data, including serial microbiologic outcome measures as provided
by MGIT culture. Therefore, modeling MGIT continuous data, otherwise termed time to
positive culture or time to positivity (TTP), may be more sensitive to changes in treat-
ment response. Time to first negative culture (or time to culture conversion [TCC]) is
equivalent to the time of first censored assay value, which in practice is taken to be in-
dicative of a negative culture readout.

In this pharmacokinetic/pharmacodynamic (PK/PD) study, TTP measurements were
used to formulate an alternative model-based measure, defined by the continuous
number of days on treatment at which a patient’s modeled TTP culture trajectory
reached the assay censoring limit. MGIT data were obtained from two phase 2b trials
for the treatment of tuberculosis (TB Trial Consortium Studies 29 and 29X).

Optimal treatment exposure can be efficiently identified with population PK/PD
modeling methods that combine data on pharmacokinetic properties and efficacy out-
comes. To maximize the use of available longitudinal data and identify optimal drug
exposure, we used data from participants with pulmonary tuberculosis treated with
rifapentine as part of a multidrug therapy and established the PK/PD relation between
rifapentine exposure and time to positivity. One of the goals of modeling a longitudi-
nal biomarker such as TTP profiles over time is to be able to identify earlier in time
trial-related signals of interest, such as time to first negative culture (time to culture
conversion [TCC]), compared to well-established TSCC.

Therefore, the aims of this post hoc study were to characterize longitudinal TTP pro-
files with respect to a rifapentine exposure-response relationship and to identify indi-
vidual patient characteristics associated with delayed time to first negative culture,
who may be unlikely to respond to shorter-term therapy. Knowledge of such pheno-
types would open novel research avenues toward innovative clinical trial designs in
the middle stages of drug development with the final objective of improving tubercu-
losis patient care.

RESULTS
Study population/raw data. Six of 668 study participants (in the modified inten-

tion-to-treat groups from TB Trial Consortium Study 29 and Study 29X) who did not
have at least two MGIT results at two different (nominal) time points were excluded
from the analysis. TTP pharmacodynamic analyses were performed in the remaining
662 participants, of which 408 participants received rifapentine and 254 received rifam-
pin during intensive-phase therapy. Patient demographic characteristics can be found
in Table 1. Rifapentine pharmacokinetic parameters (e.g., area under the concentra-
tion-time curve [AUC]) were obtained from a one-compartment model with first-order
absorption and elimination that has been previously built and published (2), using the
exposure data from Studies 29 and 29X, and were used for the rifapentine pharmacoki-
netic/pharmacodynamic analyses (2); note that exposure data for patients treated with
rifampin were not collected in these studies, and therefore exposure to rifampin was
not considered when the PK/PD model was built. Participant groups treated with rifa-
pentine or rifampin had similar clinical and demographic characteristics at study
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enrollment (Table 1). Individual TTP trajectories for all patients are shown as spaghetti
plots with overlaid median trajectories in Fig. 1A to D; individual panels display TTP tra-
jectories stratified by dosing regimen and exposure. Figure S1 stratifies TTP trajectories
for rifampin and rifapentine by one of the tested covariates (WHO smear grade; the
categories were combined to represent high [41, or highly bacillary, and 31, or inter-
mediate bacillary] and low [negative and 11, or paucibacillary]) in order to visualize an

TABLE 1 Demographic and clinical covariates for patients who were treated for tuberculosis
and had at least 2 time-to-positive-culture measurementsa

Factor

Value for patients in groupb

Rifampin
(n=254 [38%])

Rifapentine
(n=408 [62%])

Combined
(n=662)

Demographic factors
Age (y) 32.9 (18.2, 77.9) 31.0 (18.1, 87.7) 31.8 (18.1, 87.7)
Race
Black 149 (59) 245 (60) 394 (60)
White 64 (25) 77 (19) 141 (21)
Asian 30 (12) 66 (16) 96 (15)
Other 1 (,1) 3 (,1) 4 (,1)
Not reported 10 (4) 17 (4) 27 (4)

Sex, male 165 (65) 289 (71) 454 (69)
African study site 136 (54) 221 (54) 357 (54)

Clinical factors
Dose of rifapentine (mg/kg)
10 285 (70) 285 (43)
15 66 (16) 66 (10)
20 57 (14) 57 (9)

HIV positivity 34 (13) 36 (9) 70 (11)
Wt (kg) 55.0 (40.4, 130) 55.0 (40.0, 92.1) 55.0 (40.0, 130)
Body mass index (kg/m2) 20 (14, 41) 20 (14, 36) 20 (14, 41)
Karnofsky score
90–100 181 (71) 255 (62) 436 (66)
60–80 73 (29) 153 (37) 226 (34)

Cough before treatment
Productive 225 (89) 367 (90) 592 (89)
Nonproductive 19 (8) 27 (7) 46 (7)
None 10 (4) 14 (3) 24 (4)

Sputum AFB smear grade
41 (highly bacillary) 98 (39) 152 (37) 250 (38)
31 (intermediate bacillary) 57 (22) 96 (24) 153 (23)
11 (paucibacillary) 85 (33) 125 (31) 210 (32)
0 (negative) 13 (5) 32 (8) 45 (7)

Chest radiograph cavitation
None 77 (30) 128 (31) 205 (31)
Total diam, 4 cm 82 (32) 138 (34) 220 (33)
Total diam$ 4 cm 94 (37) 142 (35) 236 (33)

Chest radiography, extent of diseasesc

Limited (,25% of lung) 65 (26) 80 (20) 145 (22)
Moderate (25–49%) 103 (41) 183 (45) 286 (43)
Extensive (.50%) 85 (33) 144 (35) 229 (35)

Smoking, yes 109 (43) 173 (42) 282 (42)
Food
Empty stomach 193 (76) 185 (45) 378 (57)
Nonfat/low-fat snack 16 (6) 34 (8) 50 (8)
Food with.27 g fat 43 (17) 189 (46) 232 (35)

aAbbreviations: AFB, acid-fast bacilli; WHO, World Health Organization.
bData are reported as median (minimum, maximum) or number (percent).
c“Limited” is defined as a lesion(s) involving a total lung area less than one-quarter the area of the entire thoracic
cavity as seen in the posteroanterior (PA) or anteroposterior (AP) view. “Moderate” is defined as a lesion(s) with
an area greater than that of limited lesions but, even if bilateral, involving a total lung area of less than one-half
the area of the entire thoracic cavity as seen on PA or AP view. “Extensive” is defined as a lesion(s) involving a
total lung area equal to or more than half the area of the entire thoracic cavity as seen in the PA or AP view.
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example of covariate stratification of TTP trajectories. Raw trajectory plots showed that
some subjects had TTP trajectories that reached the upper limit of assay quantification
(ULOQ) in 1 measurement and later decreased below the censoring limit.

Base model estimation. Among all tested nonlinear functions, the best structural
fit was provided by a shifted logistic model (see Fig. S2 in the supplemental material).
This model allows for shifts in TTP trajectories due to modeled impact of pharmacoki-
netic or clinical covariates as visualized in Fig. S2. Estimated base and final TTP model
parameters were comparable between rifampin and rifapentine treatments (Table 2;
Table S1) given the choice of structural model, indicating the robustness of the shifted
logistic model in capturing the dynamics of this biomarker. The most clinically mean-
ingful relationships were quantified by the impact of covariates on the inflection point
parameter (tshift) and/or slope parameter (alpha) of the TTP trajectories, illustrating
faster bacterial clearance (e.g., left-shifted MGIT trajectory) and shorter time to culture
conversion (e.g., time to first censored TTP value) (Fig. S1). Appropriateness of the cho-
sen TTP model fit was supported by a visual predictive check of model-censored obser-
vations of raw and model-predicted proportions of participants, showing agreement
between raw and model-predicted proportions reaching the TTP assay censoring limit
of 44 days at each nominal time point (Fig. 2). It is important to mention that between
days 2 and 4 for both drugs, the model slightly underpredicts the probability of having
a negative culture over time, as well as after day 16 for rifampin. We attempted to address

FIG 1 Individual trajectories of the relation between assay time (time to positivity) and time on treatment for rifampin and rifapentine. A heat map
indicating the proportion of observations available at each (nominal) study time (weeks) that lies at the censoring limit (44 days) is included above each
plot. (A) Rifampin raw data, grouped by dose (mg/kg). Colored lines represent median trajectories over each arm. (B) Rifapentine raw data, grouped by
dose (mg/kg). Colored lines represent median trajectories over each study and arm combination. (C) Rifapentine raw data, grouped by flat dose. Colored
lines represent median trajectories over each dose, as shown in the key. (D) Rifapentine raw data, grouped by quintiles of AUC0–24. Colored lines represent
median trajectories over each steady-state AUC range, as shown in the key. Abbreviations: AUC, area under the concentration-time curve from 0 to 24 h.

Gewitz et al. Antimicrobial Agents and Chemotherapy

October 2021 Volume 65 Issue 10 e01794-20 aac.asm.org 4

https://aac.asm.org


this by testing different functions (e.g., linear, exponential, 3-parameter Gompertz,
and 4-parameter Weibull) and by exploring different variance-covariance structures;
however, we could not improve this particular part of the curve. These underpredic-
tions are of very small magnitude (,4%), and overall predictions are satisfactory.
Further integration exercises and modeling should help create more improved
model structures. The visual predictive check (VPC) shown in Fig. 2 looks at the prob-
ability of having a negative culture over time, representing the 95% confidence interval (CI)
of the probability, computed using both the median trend and the interindividual variability
estimated in the TTP model.

Rifapentine pharmacokinetic and pharmacodynamic modeling in MGIT broth
cultures. Modeling results suggested a linear relationship between either rifapentine
exposure (AUC0–24 [AUC]) or maximum concentration (Cmax) and time to culture conver-
sion in the TTP model (Fig. 3; Table S1). As mentioned, time to culture conversion is
equivalent to the time of the first censored assay. These AUC-response or Cmax-
response relations did not reach an upper limit of efficacy in the modeled data. In
order to evaluate if significant exposure-response relationships can be identified with
short-term data, to assess the feasibility of shorter clinical trials, individual TTP trajecto-
ries of raw data truncated at nominal study times of 6, 8, 12, and 16weeks were eval-
uated. This analysis, stratifying by dosing regimen and exposure, showed that the lin-
ear relation between exposure and response was estimable and robust in trend
analyses (Fig. 1 and 3). This suggests that, indeed, significant exposure-response rela-
tionships can be identified with short-term data.

TABLE 2 Base and final model parameter estimates for empirical logistic models for rifampin and rifapentine, which were modeled
separatelya

Model
Parameter or
covariateb

Rifampin Rifapentine

Parameter estimate (%
relative SE) or result

Interindividual variability
(% relative SE)c

Parameter estimate (%
relative SE) or result

Interindividual variability
(% relative SE)c

Base RUV 0.394 (2) NE 0.388 (2) NE
Baseline 12.8 (6) 31.5 (9) 12.0 (2) NE
Time effect 0.848 (9) 36.1 (10) 0.759 (6) 45.3 (11)
Maximum 253 (14) NE 168 (9) NE
Time shift 8.53 (3) 32.7 (5) 7.69 (4) 32.6 (6)

Final RUV 0.390 (3) NE 0.381 (3) NE
Baseline 11.0 (4) NE 12.5 (2) NE
Time effect 0.739 (10) 34.2 (13) 0.866 (6) 51.9 (5)
Maximum 152 (11) NE 162 (12) NE
Time shift 8.26 (5) 26.8 (6) 8.86 (5) 32.4 (7)
Slope NA NA 0.301 (32) NE

Maximum:
radiographic extent

3 0.666 (21)

2 (ref) 1
1 1.725 (61)

Time shift: African site Yes (ref) 1
No 0.866 (28)

Maximum: smear grade 41 or 31 (ref) 1
11 or 0 1.801 (37)

Time shift: smear grade 41 or 31 (ref) 1
11 or 0 0.797 (16)

Time shift: productive
cough

Productive (ref) 1 Productive (ref) 1

Nonproductive cough 0.784 (35) Nonproductive or no
cough

0.849 (34)

No cough 0.560 (16)
aAbbreviations: NE, not estimated; NA, not applicable (exposure to rifampin was not available); ref, reference.
bRUV, residual unexplained variability; baseline, TTP at asymptotic baseline (prestudy); time effect, constant related to rate of change of assay time with time on treatment;
maximum, maximummodeled value reachable by TTP (artifact of modeling due to censoring); time shift, treatment time to 50% of the possible maximum; slope, rate of
change of exposure. For more detailed descriptions, see Fig. S1.

cMeasured as percent coefficient of variation (CV).
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In models evaluating the trajectory of TTP over time in patients treated with rifa-
pentine, significant independent covariates included drug exposure (AUC0–24 or Cmax),
sputum acid-fast bacillus (AFB) smear grade as a measure of baseline bacterial burden,
baseline productive cough, and extent of disease as determined by chest radiography
(Table 2). Significant independent covariates with rifampin treatment were sputum
AFB smear grade, baseline productive cough, and extent of disease as determined by
chest radiography (Table 2). Shorter culture conversion times were observed in partici-
pants from non-African sites, with lower burden of tuberculosis disease at baseline (as
measured by WHO smear grade and cough before treatment), and with higher rifapen-
tine exposure (Fig. 2 and 4; Fig. S3).

Exposure-response relationships. Exposure-response relationships for rifapentine
were examined by introducing various pharmacodynamic models on each parameter
of the chosen base logistic model to change model-predicted time to culture conver-
sion. Results of these different models suggested that the most improved model fit
occurred when a linear exposure-response effect of AUC was tested on the parameter
controlling the offset of the independent variable of time (tshift); this confirmed the
behavior suggested in the raw-data plots (Fig. 1), indicating faster bacterial clearance
with higher rifapentine exposure. In the base model, the relationship between rifapen-
tine exposure and time to culture conversion was identified as significant. Exposure
affected the parameter controlling the time on treatment at which the typical popula-
tion assay TTP value reached half of its modeled value, which is independent of the
censoring limit. For completeness, comparable model fit (in terms of objective function
value [OFV] for nested models and in terms of the Akaike information criterion [AIC] for
nonnested models) was obtained using a sigmoid Emax model; OFV was significantly
higher for an Emax model with the Hill coefficient (sigmoid parameter) fixed to 1.

FIG 2 Visual predictive checks for probability of culture conversion. Base and final models of rifampin (top) and rifapentine
(bottom). Observed proportion of culture-negative patients (black line), simulated proportion of culture-negative patients
(dashed line), and simulated 95% confidence intervals around the simulated proportion (blue band).
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However, the sigmoid Emax model fit had a slightly larger OFV, even with 3 additional
parameters. Furthermore, stable estimation of the sigmoid Emax model necessitated fix-
ing the Hill coefficient to a large value in this model (equivalent to a step function-type
effect of exposure). We selected the more parsimonious linear model to encode the
effect of exposure on the shift parameter. For completeness, we tested individual Cmax

values as our exposure measurements and arrived at the same conclusion that a linear
pharmacokinetic exposure-effect relation was the most parsimonious and best-fitting
model.

There was a significant improvement in model fit when AUC was included as a line-
arly acting covariate on the tshift parameter both for the full model and for models with
truncated (6, 8, 12, and 16weeks) observation sets (Table S2); similar results were
obtained when Cmax was used as our exposure measurement (data not shown). The ex-
posure-response relationship for a typical patient, ranging from a model-predicted
maximum of 6 weeks needed for censored TTP assay at low exposures to a minimum
of 3 weeks needed for censored TTP assay over the range of areas under the concen-
tration-time curve from 0 to 24 h (AUC0–24) in the base model, identified from the entire
set of 3,091 longitudinal measurements, also was identified by truncating the observa-
tions after 16weeks (2,701 observations). Comparable relationships were observed by
truncating the data after 12weeks (2,398 observations), 8weeks (2,029 observations),
and 6weeks (1,273 observations), and quantitatively similar exposure-response rela-
tionships were derived from model fits using truncated data, confirming that models
estimated using fewer and shorter nominal time points captured linear exposure-
response relations over the range of calculated exposures in the population of the
same effect size (Fig. 3).

Covariate analysis. Clinical covariates (Table 1) were tested on all logistic base
models (Table S1). For each parameter, covariates that were identified as significantly
affecting model fits for each drug were incorporated into the final models. Estimated
covariate effects are displayed relative to a reference category containing the greatest

FIG 3 Exposure-response plots for truncated rifapentine base models. Plots show model-predicted
time-to-culture conversion for logistic models fitted to the full data time course (red) and data up to
16 weeks (tan), 12 weeks (green), 8 weeks (blue), and 6 weeks (purple). Note that enough data need
to be present when truncation occurs at 6, 8, or 12weeks.
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number of patients; this coding was chosen due to the ordinal character of the
selected predictors (Table 2). The marginal effects on model-predicted TCC of the cate-
gory levels of each identified covariate (i.e., relative to the model with covariate effects
fixed to their reference category values) was computed for rifampin; these 90% predic-
tion intervals were computed by incorporating estimated interindividual variances on
both tshift and alpha (Table 3). For rifapentine, AUC was incorporated as a continuous
covariate on tshift, and its median effect on TCC at both high (95th-percentile) and low
(5th-percentile) population values on model-predicted TCC is shown, along with 90%
prediction intervals; for both high and low rifapentine exposure levels, the model-pre-
dicted median TCC and associated 90% prediction intervals are likewise shown for
each identified clinical covariate. Note also that the population-averaged 90% predic-
tion intervals derived from the base models are shown (Table 3). Model-derived trajec-
tories for selected covariate combinations for both rifampin and rifapentine showed
that the chosen combinations captured the spectrum of typical TTP trajectories upon
stratification by those baseline covariates identified as significant predictors of time to
culture conversion. In these plots, and in order to explore the most evident change in
the curves in a clear way, only interindividual variance on tshift was included (Fig. 4). A
forest plot for rifampin and rifapentine was prepared for different baseline covariate
combinations, length of time (weeks) required for 95% through 99% of patients pos-
sessing those covariate groupings to achieve their first model-derived negative culture
status (equivalent to the time of the first censored assay), and groupings for both
rifampin and rifapentine (Fig. S3).

DISCUSSION

Longitudinal models can incorporate time-dependent information into the evalua-
tion of putative biomarkers (6, 7). The present study shows that a primary benefit of

FIG 4 Selected model-predicted trajectories for covariate combinations for rifapentine. (Left) Covariate
combinations with high exposure (AUC); (right) the same covariate combinations with low exposure (AUC). Red
lines represent median simulated trajectories, and blue lines represent 90% percentiles of trajectories calculated
using distribution of interindividual-variance shift in parameter only. Solid portions of trajectories indicate
model-predicted trajectories corresponding to observed data (up to black horizontal dashed line at the ULOQ
of 44), whereas dashed portions of trajectories represent model-predicted trajectories above the ULOQ.
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longitudinal biomarker modeling is the increased early identification of trial-related
signals of interest compared to well-established TSCC, such as dose and exposure-
response relationships, estimates of 2-month culture conversion, and hard-to-treat
patient phenotypes. Models for MGIT assay TTP values have shown relationships
between longitudinal TTP readout and measured bacterial load during early-phase
rifampin treatment as well as more generally across various drugs and treatment regi-
mens (8–11). TTP measurements have also been used to formulate a repeated time-to-
event model in which the hazard function of interest is linked to a separate semime-
chanistic model for bacterial load (12).

In the present study, we modeled TTP as a censored longitudinal response variable,
and our empirical models were based on the trajectories of the assay data without fur-
ther assumptions about mycobacterial growth kinetics. We used this model to predict
a putative surrogate (time to culture conversion), to identify an exposure-response
relation for rifapentine within 6weeks after the start of treatment, and to identify hard-
to-treat patient phenotypes. For TTP, exposure-response relationship was well
described by a linear relation between exposure (AUC and Cmax) and slope of the TTP
change defining time to culture conversion. Therefore, the effect of exposure on the
shortening of time to culture conversion may become more pronounced with increas-
ing rifapentine exposure, and doses higher than those tested may help achieve higher
steady-state exposures if there are no toxicity constraints. The current clinically
approved dose used for rifapentine is 600mg, and therefore, even if higher doses than
those tested in these phase 2 trials are not used yet, the higher doses are candidates
for improved efficacy, as recently confirmed in the phase 3 clinical trial (Tuberculosis
Trials Consortium [TBTC] study 31). One of the limitations of this study is that the expo-
sure to the active desacetyl rifapentine metabolite was not taken into account when
TTP trajectories were described and therefore could be a potential point of action of
model improvement. Another limitation of this study is that no measurements of free
drug were available for rifapentine, and in order to establish a more accurate PK/PD
relationship, protein binding would be critical. In addition, as a limitation of the
present study, no rifampin exposure was available, and therefore it could not be
considered.

TABLE 3 Base and final model-predicted times to culture conversiona

Drug Model Parameter covariate Median TCC (5%, 95%)
Rifampin Base 6.12 (2.53, 12.25)

Final Reference 6.41 (3.29, 11.16)
Radiog. extent 3 7.20 (4.15, 11.82)
Radiog. extent 1 5.61 (2.04, 10.23)
Smear grade 11/0 5.50 (2.04, 10.22)
Nonproductive cough 4.65 (2.08, 8.35)
No cough 2.82 (0.80, 5.45)

Rifapentine Base 5.65 (2.01, 11.26)
Final Reference

AUChigh 5.28 (1.83, 10.30)
AUClow 6.56 (2.67, 12.35)
Non-African site
AUChigh 4.33 (1.38, 8.77)
AUClow 5.52 (2.09, 10.63)
Smear grade 11/0
AUChigh 3.92 (1.12, 8.00)
AUClow 4.93 (1.61, 9.83)
Nonproductive or no cough
AUChigh 4.26 (1.28, 8.46)
AUClow 5.30 (1.90, 10.45)

aAbbreviations: TCC, model-predicted time to culture conversion (weeks); AUChigh, 95th percentile of observed
rifapentine 24-h AUC (689.63mg � h/ml); AUChigh, 5th percentile of observed rifapentine 24-h AUC (169.81mg �
h/ml). The 5 to 95% CI reported for TCC represents the influence of between-patient variability.
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Regarding the estimation method used in this analysis, population parameter and
variability estimates were obtained using the Laplacian method. Even though this esti-
mation method is known to use a simplified objective function due to an inconsistent
estimator and provides stability issues due to second-order gradient calculations, it
was selected over other estimation methods such as SAEM due to shorter computa-
tional times. To test the differences with other estimation methods, we re-estimated
the final models with the Stochastic Approximation Expectation-Maximization (SAEM)
algorithm. For both drugs, the parameter estimates and precision were similar
between both algorithms, and so were the VPCs and clinical evaluation of the covari-
ates. For instance, the parameter T50 with the Laplacian algorithm was estimated to be
8.86 and 8.26weeks for rifapentine and rifampin, respectively, whereas with the SAEM
method, the estimates were 8.07 and 8.11weeks, giving differences of 9.79 and 1.82%,
respectively. Taken everything into consideration, we think that the use of the
Laplacian estimation method is therefore appropriate in this analysis. The present
results contrast with the conclusions of our previous study in which a sigmoid Emax

model best described a survival model-derived relation between rifapentine exposure
and time to stable culture conversion (TSCC), with the effect of increasing exposure
reaching a plateau (2). There, the results suggested that a fixed dosing scheme was suf-
ficient to achieve this saturated response for most patients and that further increases
in dose beyond 1,200mg would offer no benefit in terms of shortening time to culture
conversion while approaching limits of tolerability. However, one shortcoming of the
previously published analysis includes the use of survival analysis to model a phase 2
dose selection study. This may not be ideal, because a continuous predictor (drug ex-
posure) may be limited by issues associated with survival models, such as the identifi-
cation of categorical functions of the modeled hazard rather than continuous functions
(13). Another limitation of the earlier analysis is that achieving stable conversion as an
outcome in the current phase 2b trial may require a minimum of 16weeks, whereas an
earlier identification of the outcome would be more useful (2).

We have identified several important patient covariates associated with slower bac-
terial clearance and longer time to culture conversion, such as baseline smear, produc-
tive cough, and radiographic extent of disease, all features consistent with the hard-to-
treat patient phenotype (14). However, compared to the survival model from our ear-
lier work, we were unable to detect an effect of baseline cavity size, a covariate that
distinguished patients with different clinical outcomes and TSCC values (2, 4, 5). The
addition of baseline cavity size did not improve the fit of the model, and therefore,
keeping it as a predictor of time to positivity was not justified. Raw trajectory plots also
showed that some subjects had TTP trajectories that reached the upper limit of assay
quantification (ULOQ) in at least one measurement time and later decreased below the
censoring limit. The nature and limitation of the chosen structural model did not allow
a later decrease below the censoring limit, thereby preventing the capture of these dy-
namics that occurred after the response of interest was achieved. However, preliminary
results from a logistic regression with response defined as the subject-specific pres-
ence or absence of a trajectory that may reach the upper limit and then fall below it
showed higher odds ratios for increased levels of cavitation relative to cavitation-free
chest radiograph before treatment. Alternatively, the inability of our model to capture
cavitation as a predictor may have been caused by the inherent shortcomings of
stepwise covariate modeling in the presence of multicollinearity between potential
predictors (15).

With predictions of time to culture conversion with truncated data, any associated
prediction intervals may be overly narrow, because we may not have accounted for all
sources of uncertainty in our analyses, such as the effects of parametric estimation
uncertainty. The quality of model predictions is also associated with aspects of study
design, such as measurement timing and sample collection. Predictions from time-de-
pendent models typically become less reliable as the horizon over which predictions
are sought increases and measurements become sparser, much like for models of

Gewitz et al. Antimicrobial Agents and Chemotherapy

October 2021 Volume 65 Issue 10 e01794-20 aac.asm.org 10

https://aac.asm.org


cross-sectional studies in which prediction intervals become wider in regions where
fewer measurements have been taken (16). The present study design, with liquid cul-
ture data collected only monthly after 8weeks, naturally led to decreased prediction
accuracy of time to culture conversion for patients reaching the ULOQ after 8weeks
(when only data up to 8weeks were used) (Fig. S2). In addition, our obtained predic-
tions were all adjusted to the next nominal patient visit because culture status was not
obtained between scheduled sputum collection visits. Therefore, there were individu-
als whose predictions of actual times to culture conversion using first-step model esti-
mates were accurate (if slightly overpredicted) but for whom the subsequent rounding
of the estimate to the next nominal patient-specific time decreased prediction accu-
racy. This problem could be mitigated with additional time points clustered around
times at which most subjects who respond to treatment could be expected to achieve
culture-negative status for the first time; such considerations were not a part of the
original study design but could prove useful in the context of future study designs. In
short, one limitation of the present study is the less frequent sample collection, espe-
cially after 8weeks. However, frequent culture sampling is rarely feasible in the context
of phase 2b clinical studies, and thus precise characterization of TSCC will be inherently
limited by design and by the ability of patients to produce sputum at scheduled study
visits.

Modeled TCC (as derived from measurements of assay TTP values) may be used as a
surrogate for TSCC after further validation, itself routinely used as a surrogate for clini-
cal outcomes. In most subjects, TCC may coincide with TSCC except for the trajectories
of subjects who had TTP values that reached the ULOQ at 1 measurement and later
decreased below the censoring limit. This (infrequent) occurrence may have been due
to increased bacterial burden between these measurements or increased assay error
from numerous sources at the level of low bacterial burden (2). In addition, since this
analysis has been done in drug-sensitive strains, the emergence of resistance could
also explain the fact that the TTP decreased below the censoring limit after reaching
the ULOQ. The emergence of bacterial resistances during treatment is likely to become
problematic for this mathematical model that predicts time to first culture conversion.
Improved models, including more data and multidrug-resistant strains, would be
needed for further evaluation and validation of the current model.

Comprehensive standardized clinical, radiographic and laboratory data collection
from patients treated under directly observed therapy in two registration-quality clini-
cal trials done in North and South America, Europe, sub-Saharan Africa, and Asia was
used. The performance of MGIT cultures and drug concentrations in quality-controlled
laboratories and low loss to follow-up were also reported and used. However, an addi-
tional limitation of the present modeling endeavor concerns the use of TCC as a surro-
gate endpoint of TSCC or long-term clinical outcome. Patients who achieve stable cul-
ture conversion later do not necessarily have poorer clinical outcomes (17), and TCC
may be subject to deficiencies in surrogate quality similar to those of TSCC.

The utility of TTP trajectories in predicting clinical relapse and long-term outcomes
remains undefined, both for individual probability of relapse and for trial-level relapse
rates; thus, the utility of TTP as a surrogate phase 2b biomarker in tuberculosis drug de-
velopment remains uncertain. Recent studies suggest that the probability of individual
relapse is associated with multiple factors, including patient phenotype, adherence,
and bacterial subbreakpoint MIC, as well as markers of early-treatment bacteriological
response (14, 18). Regardless of the future utility of TCC as a biomarker, we have shown
how longitudinal biomarker models might facilitate the identification of trial-related
signals of interest at earlier times than otherwise feasible.

In addition, our modeling framework may provide useful information for drug de-
velopment, with the longitudinal TTP model trajectories and parameters providing
multiple potential biomarker-related characteristics that may benefit future phase 2b
studies and major drug development questions at this stage, such as identification of
optimal dose, identification of high-risk phenotypes and robust comparison of study

Biomarker Analysis of Tuberculosis Exposure-Response Antimicrobial Agents and Chemotherapy

October 2021 Volume 65 Issue 10 e01794-20 aac.asm.org 11

https://aac.asm.org


arms using rich longitudinal trajectories. Further, the incorporation and modeling of
individual patient characteristics that may be predictive of long-term clinical outcomes
may improve the predictive efficiency of phase 2 clinical trials.

The results of this PK/PD analysis of longitudinal TTP trajectories support selection
of high doses (e.g., 1,200mg rifapentine) for late-stage clinical trials. High-risk patients,
defined by high smear grade, presence of productive cough, and higher extent of lung
infiltrates on radiographs, and those with high risk of suboptimal exposures might
have reduced response to therapy. Our analysis on two TB drugs represents an exam-
ple of how new candidate biomarkers can be used to quantify exposure-response rela-
tionship, identify important covariates, and select the dose for the next stage of clinical
development. Further analysis including more example drugs and external validation
of the model are warranted; however, our findings suggest that the earlier identifica-
tion of dose/exposure-response relationship and impact of significant covariates is pos-
sible, opening the door for innovation of TB clinical trial designs.

MATERIALS ANDMETHODS
We evaluated adults who had smear-positive pulmonary tuberculosis enrolled in 2 randomized

phase 2b clinical trials that compared rifapentine with rifampin during the first 8weeks of antituberculo-
sis therapy (TB Trial Consortium Studies 29 and 29X) at African and non-African TB Trial Consortium sites.
Detailed clinical trial design and participant characteristics in these trials were described previously (2,
16, 17). In Study 29, participants were randomized to receive rifapentine (10mg/kg/dose) or rifampin
(10mg/kg/dose) on an empty stomach, 5 days per week for 8weeks (intensive phase). In Study 29X, par-
ticipants received rifampin (10mg/kg/dose) or rifapentine (10, 15, or 20mg/kg/dose) once daily with
food, 7 days per week, for 8weeks, and food consumption before pharmacokinetic sampling was docu-
mented with detailed food history. In both studies, participants were treated during the continuation
phase with rifampin and isoniazid according to published guidelines (19). Methods and results of both
treatment trials were published previously (20, 21). The pharmacokinetic and pharmacodynamic analysis
included participants from the modified intention-to-treat group (individuals with culture-confirmed M.
tuberculosis at study entry which was sensitive to isoniazid, rifampin, and pyrazinamide) from both treat-
ment studies. The studies were approved by the Institutional Review Boards of the United States
Centers for Disease Control and Prevention and participating sites. Informed consent was obtained from
all participants. Both trials were registered at ClinicalTrials.gov (NCT00694629 and NCT01043575).

Assay details. The MGIT system, which currently is the most widely used liquid-medium sputum cul-
ture system for mycobacteria, provided a faster and more sensitive alternative to traditional culture tech-
niques such as solid-medium Lowenstein-Jensen culture or AFB smear microscopy (18). The MGIT assay
yields readouts of the time (in days) required to observe detectable fluorescence, indicating the pres-
ence of active mycobacterial oxygen consumption (time to positivity [TTP]) in sputum samples cultured
in liquid medium (3). In this study, larger TTP values were representative of smaller bacterial burden in
cultured samples, up to an assay time limit of 44 days.

Longitudinal TTP data were collected in these two phase 2b trials (Study 29 and Study 29X), with
patient samples collected at enrollment into the trials; after completion of 2, 4, 6, and 8weeks of treat-
ment (during the intensive phase); and then monthly during continuation-phase treatment up to
24weeks. All cultures obtained before trial enrollment (defined as baseline or 0 days) were excluded
from the analysis. Two sputum cultures were obtained routinely after 8weeks of therapy (at the end of
intensive-phase therapy), and all available sputum culture results were included in the analyses.

Model development. (i) Structural models. Efficacy endpoints were characterized using serial spu-
tum culture results from MGIT cultures. We used the time-dependent trajectory to characterize the pop-
ulation-average trajectory, with individual trajectories parameterized by subject-specific random effects
and baseline covariates (see the supplemental material). The model-predicted time on treatment used
the participant TTP MGIT tests that first reached the upper censoring limit of 44 days. Covariates tested
in exposure-response models included age, sex, weight, race, HIV status, body mass index, the summed
diameter of all cavitary lesions on pretreatment chest radiographs, extent of lung infiltrate, baseline spu-
tum smear grade, presence of productive or nonproductive cough, and Karnofsky score.

Various models were tested and evaluated for fit, stability, and parsimony (Table S1). The changes in
the time-dependent trajectory, when a parameter was changed while holding all others fixed, were
shown in schematic diagrams of the base logistic models with a time shift in the independent variable
(Fig. S1). The dependent variable tassay was defined as MGIT assay time (days), and the independent vari-
able/covariate ttreatment was defined as time (weeks) on treatment. The M3-based method of augmenting
the likelihood of noncensored observations, with the likelihood of censored observations being greater
than the censoring limit, was used because of the right-censored character of the longitudinal data (TTP
values of.44 days were treated as being above the ULOQ) (22, 23).

(ii) Exposure-response modeling. Data on exposure to rifampin were not collected in these studies,
and therefore, exposure to rifampin was not considered when the PK/PD model was built. On the other
hand, the drug effect of rifapentine was evaluated as a dose (fixed [mg] and weight-based [mg/kg]) and
as a steady-state AUC0–24 derived from the established population PK model for the population parame-
ters of the logistic base models (linear, Emax, and sigmoid Emax models).
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The effect of time on treatment was entered as a covariate into the base structural models (Table
S1). All other covariates (Table 1) were evaluated using stepwise covariate modeling for rifampin and
rifapentine by forward selection (P, 0.05) and backward elimination (P, 0.01).

All nonlinear mixed-effects models were developed with pharmacokinetic modeling software
(NONMEM 7.3.0; Icon Inc., Verona, PA), and other development was performed with the statistical and
modeling software R and Pirana (24, 25). Population parameter and variability estimates were obtained
using the Laplacian estimation method. Even though this estimation method is known to use a simpli-
fied objective function due to an inconsistent estimator and provides stability issues due to second-
order gradient calculations, it was selected over other estimation methods such as SAEM due to much
shorter computational times. However, all final models were rerun with the SAEM algorithm, and no
major changes were found.

Model selection was carried out using a combination of objective function value (OFV), goodness-of-
fit plots, and model stability analysis (model convergence). When two hierarchical models were com-
pared, likelihood ratio tests for nested models were used to assess statistical significance. Nonnested
models were compared statistically using the Akaike information criterion [AIC].

SUPPLEMENTAL MATERIAL
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