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Abstract
In many biological systems, the movement of individual agents is characterized hav-
ing multiple qualitatively distinct behaviors that arise from a variety of biophysical
states. For example, in cells the movement of vesicles, organelles, and other intracel-
lular cargo is affected by their binding to and unbinding from cytoskeletal filaments
such as microtubules through molecular motor proteins. A typical goal of theoretical
or numerical analysis of models of such systems is to investigate effective transport
properties and their dependence on model parameters. While the effective velocity
of particles undergoing switching diffusion dynamics is often easily characterized in
terms of the long-time fraction of time that particles spend in each state, the calcu-
lation of the effective diffusivity is more complicated because it cannot be expressed
simply in terms of a statistical average of the particle transport state at one moment of
time. However, it is common that these systems are regenerative, in the sense that they
can be decomposed into independent cycles marked by returns to a base state. Using
decompositions of this kind, we calculate effective transport properties by computing
the moments of the dynamics within each cycle and then applying renewal reward
theory. This method provides a useful alternative large-time analysis to direct homog-
enization for linear advection–reaction–diffusion partial differential equation models.
Moreover, it applies to a general class of semi-Markov processes and certain stochastic
differential equations that arise in models of intracellular transport. Applications of
the proposed renewal reward framework are illustrated for several case studies such
as mRNA transport in developing oocytes and processive cargo movement by teams
of molecular motor proteins.
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1 Introduction

Microscale biological agents frequently change biophysical state, which results in sig-
nificant changes in theirmovement behavior. Intracellular cargo, for example, switches
among active transport, diffusive transport, and paused states, each resulting from dif-
ferent mechanochemical configurations of the cargo, cytoskeletal filaments, and the
molecular motors that bind them (Hancock 2014; Bressloff and Newby 2013). Models
for this behavior can be either deterministic (typically partial differential equations,
PDEs) or stochastic (often continuous-time Markov chains, CTMCs, or stochastic
differential equations, SDEs) depending on whether the investigation focuses on pop-
ulation properties (deterministic methods) or individual paths (stochastic methods).
Each state is commonly characterized in terms of a mean velocity, fluctuations about
themeanvelocity, and a distribution of time spent in the state, sometimes but not always
determined by classical reaction rate theory. Explicit solutions for these models are
rarely available, so asymptotic or numerical methods are often deployed to investi-
gate and characterize the model’s predictions. The study of deterministic models often
relies on numerical simulation using PDE integration methods (Wang et al. 2003; Cox
and Matthews 2002; Trong et al. 2015), while stochastic models are simulated with
Monte Carlo/Gillespie algorithms (Müller et al. 2008; Kunwar and Mogilner 2010;
Müller et al. 2010; Allard et al. 2019) to generate individual trajectories that are then
analyzed statistically. However, these computations can be quite costly, especially
when one wants to understand how bulk transport properties (like effective velocity
or diffusivity) depend on individual model parameters. When possible, asymptotic
analysis allows for explicit approximation of transport properties, which can validate,
complement, or even replace numerical simulations (Reed et al. 1990; Brooks 1999;
Pavliotis 2005; Pavliotis and Stuart 2008; Popovic et al. 2011; McKinley et al. 2012;
Bressloff and Xu 2015; Ciocanel et al. 2017).

The long-term effective velocity of state-switching particles is often straightforward
to compute, usually obtained by calculating the fraction of time spent in each state
and correspondingly averaging the associated state velocities. On the other hand,
this weighted average technique is not valid when calculating a particle’s effective
diffusivity, since this nonlinear quantity depends, via the Kubo formula (Kubo 1963),
on the correlation of velocity at two different times. This in turn depends on the
dynamics in the change in biophysical state beyond the stationary distribution of
state. For example, randomness in the switching dynamics will produce a positive
effective diffusivity even when the diffusivity within each state is zero. Generalizing
some previous work (Brooks 1999; Hughes et al. 2011; Krishnan and Epureanu 2011;
Hughes et al. 2012; Ciocanel et al. 2017), we consider this problem of computing
effective diffusivity for a class of state-switching particle models that can be expressed
in a frameworkwhere the sequence of states are given by aMarkov chain, but the times
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spent in these states are not necessarily exponentially distributed as in a continuous-
time Markov chain. Since we assume that the state process Markov chain is positive
recurrent, the particle position process can be described as a regenerative increment
process in a sense defined by Serfozo (2009), for example. That is to say, we consider
processes that almost surely return to some base state at a sequence of (random)
regeneration times such that the dynamics after a regeneration time are independent
from those that occur before. As a result, we can decompose the process into what
we refer to as cycles, in which the particle starts in a base state, undergoes one or
more state changes, and then revisits the base state again. The dynamics within each
cycle are independent of other cycles, and we can use the renewal reward theorem to
perform asymptotic calculations by viewing the total displacement within each cycle
as its reward and viewing the cycle durations as times between regenerations. An
early application of the idea of computing effective particle velocity and diffusivity
by decomposition and analysis of the dynamics in terms of independent cycles was
to understand the large enhancement of (non-switching) particle diffusion in a tilted
periodic potential (Reimann et al. 2001, 2002).

Our primary motivating examples are related to intracellular transport. Some
prominent recent investigations include the study of mRNA localization in oocyte
development (Zimyanin et al. 2008; Trong et al. 2015; Ciocanel et al. 2017), cell
polarization in the budding yeast (Bressloff and Xu 2015), neurofilament transport
along axons (Jung and Brown 2009; Li et al. 2014), interactions of teams of molecular
motor proteins (Klumpp andLipowsky 2005;Müller et al. 2008;Kunwar andMogilner
2010; Müller et al. 2010; Tjioe et al. 2019), and sliding of parallel microtubules by
teams of cooperative identical motors (Allard et al. 2019). Microtubule-based trans-
port of cargo is typically mediated by kinesin motors moving material to the cell
periphery and by dynein motors carrying it to the nucleus. Understanding population-
scale behaviors, such as protein localization, that arise from local motor interactions
remains an open question. While multiple motor interactions are usually thought to be
resolved through a tug-of-war framework (Müller et al. 2008), it has been observed
that important predictions made by the tug-of-war framework are not consistent with
in vivo experimental observations (Kunwar et al. 2011; Hancock 2014). The work
presented in this paper can aid theoretical efforts to relate local motor cargo dynamics
to predictions for large-scale transport.

1.1 PDEMethods for Markovian Switching

For hybrid switching diffusion processes (Yin and Zhu 2010), in which particles inde-
pendently switch with continuous-time Markovian dynamics between states that have
different velocities and/or diffusivities, the law of a particle can be expressed in terms
of its associated forward Kolmogorov equations with an advection–reaction–diffusion
structure:

∂u(y, t)

∂t
= ATu − V ∂yu + DΔu . (1)
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Here, we will think of u as an (N + 1)-dimensional column vector (indexed from
0 to N ) of the concentrations of particle populations in different dynamical states,
which also obey the forward Kolmogorov equations with a different normalization.
The dynamics are governed by matrices A, V , D ∈ R

(N+1)×(N+1), where V and
D are diagonal matrices, with real constant diagonal entries v0, v1, . . . , vN for V
corresponding to the particle velocities in each state, and positive real constant diagonal
entries d0, d1, . . . , dN for D corresponding to the diffusion coefficients in each state.
The matrix A is the transition rate matrix of the associated finite state continuous-time
recurrent Markov chain (CTMC), J (t), which tracks the state of the particle at a given
time. That is to say, each off-diagonal entry ai j can be interpreted as the rate at which
a particle in state i switches to state j . The diagonal entries of A are non-positive and
correspond to the total rate out of a given state. The rows of A sum to zero. Assuming
that the CTMC is irreducible, it follows that A admits a zero eigenvalue with algebraic
and geometric multiplicity one, and the corresponding normalized zero-eigenvector
π is the stationary distribution of J (t).

Either quasi-steady-state reduction (Bressloff and Newby 2013) or homogeniza-
tion theory (Pavliotis and Stuart 2008) can be used to reduce the complexity of the
advection–reaction–diffusion system (1) to a scalar advection–diffusion equation of
the form:

∂c(y, t)

∂t
= veff∂yc(y, t) + DeffΔc(y, t) .

with constant effective velocity veff and constant effective diffusivity Deff for the par-
ticle concentration without regard to state c(y, t) = ∑N

i=0 ui (y, t). Quasi-steady-state
reduction assumes the stochastic switching dynamics occurs on a fast scale relative to
the advection–diffusion dynamics, while homogenization theory applies at sufficiently
large space and time scales relative to those characterizing the dynamical scales. These
different asymptotic conditions give in general distinct results when the transport and
switching rates have explicit dependence on space, but when, as in the present case,
they are spatially independent, the formulas for the effective transport coefficients
coincide. (This is because the time scale of advection/diffusion is linked purely to
the spatial scale, so the large spatial-scale assumption of homogenization will per-
force induce a time-scale separation between the switching and transport dynamics,
as assumed in quasi-steady-state reduction.) The effective velocity is computed by
averaging the velocity in each state, weighted by the stationary distribution of the
particle states:

veff = v · π , (2)

where v = (v0, v1, . . . , vN )T. The effective diffusivity is given, from an equiva-
lent long-time effective dynamical description for intracellular transport derived by
Lyapunov–Schmidt reduction on the low wavenumber asymptotics of the Fourier
transform of Eq. (1) in Ciocanel et al. (2017, 2018), by

Deff = d · π − v · (AT)−1(v ◦ π − veffπ) , (3)

123



Renewal Reward Perspective on Linear Switching Diffusion… Page 5 of 36 126

where

v ◦ π = (v(0)π(0), v(1)π(1), . . . , v(N )π(N ))T (4)

denotes the Hadamard product (component-wise multiplication of vectors). Here
d = (d0, d1, . . . , dN )T, and AT is the restriction of AT to its range Ran(AT) (vectors
orthogonal to (1, 1, . . . , 1)T). Note that the operation involving the inverse of (AT)−1

is well defined since AT is a full-rank matrix mapping Ran(AT) to Ran(AT), and its
inversion in Eq. (3) is applied to a vector in Ran(AT). We remark that the homoge-
nization formula is often written (Cioranescu and Donato 1999; Pavliotis and Stuart
2008) in an equivalent adjoint form to Eq. (3), with a centering of the leading vector
v → v − veff(1, 1, . . . , 1)T that renders the formula indifferent to the choice of how
to invert AT. The term d · π above reflects the contributions to the asymptotic diffu-
sivity from pure diffusion, while the second term captures the interactions between
the advection and reaction terms.

Applications of quasi-steady-state reduction to biophysical systems with state
switching and diffusion can be found in Newby and Bressloff (2010b, c), Bressloff
and Newby (2011), Bressloff and Newby (2013), Bressloff and Xu (2015). Homoge-
nization of Brownian motor models was conducted in Pavliotis (2005), Kramer et al.
(2010).

1.2 Summary of Method Based on Regeneration Cycles

These foregoing methods (Pavliotis and Stuart 2008; Ciocanel et al. 2017; Bressloff
and Newby 2013) rely on the fully Markovian structure of the dynamics, with the
state-switching process in particular taking the form of a continuous-time Markov
chain with exponentially distributed state durations. In this work, we consider a gen-
eralized framework in which we require only that the sequence of states visited form
a discrete-time recurrent Markov chain, but do not require exponentially distributed
state durations, so the state-switching process J (t) need not be a continuous-time
Markov chain. Moreover, we allow for more general random spatial dynamics within
a state that also need not be fully Markovian. Our framework and method of analysis
rather require only a regenerative structure of the dynamics, with repeated returns to
a base state, at which moments the future randomness is decoupled from the previous
history. For simplicity in exposition, we will restrict attention to the spatially homoge-
neous setup where all switching statistics and transport coefficients within each state
are independent of spatial location, and comment in the discussion in Sect. 6 on how
our results might extend to the spatially inhomogeneous context.

We use renewal reward theory and a functional central limit theorem to derive
effective drift and diffusion for these more general switching diffusion systems in
terms of the analysis of a single regeneration cycle. The calculation framework also
results in an expression for the expected run length of cargo undergoing switching
diffusion. Our approach builds on previous applications of renewal reward processes
modeling motor-stepping and chemical cycles of bead-motor assays (Krishnan and
Epureanu 2011; Hughes et al. 2011, 2012; Miles et al. 2018; Shtylla and Keener
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2015) and extends the technique to accommodatemore complexmodelswith dynamics
depending on the amount of time spent in the current state, as described in Sect. 2.
Given the renewal reward framework, the analysis of the model reduces to computing
the correlated spatial displacement and time duration of each cycle, which we study
in Sect. 3.

We illustrate the usefulness of the probabilistic renewal reward techniques with
several case studies. In Sect. 4, we show that our method of deriving effective veloc-
ity and diffusivity agrees with predictions in Ciocanel et al. (2017) arising from a
Lyapunov–Schmidt reduction approach equivalent to homogenization for partial dif-
ferential equations describing mRNA concentrations as in (1). In Sect. 5, we show that
our method also agrees with previous theoretical and numerical analyses of transport
properties for cargo pulled by teams of molecular motors. In the case of tug-of-war
dynamics, with cargo transported by teams of opposite-directed motors, our frame-
work provides predictions on the dependence of effective diffusivity on the ratio of
stall to detachment force of the pulling motors. We also apply this method to a model
accounting for increased reattachment kinetics when motors are already attached to
the cargo and show that teams of opposite-directed motors have lower effective veloc-
ities but larger run lengths than teams consisting of the dominant motor only. Finally,
we show that our effective diffusivity calculation agrees with stochastic simulations
of sliding microtubule behavior driven by teams of bidirectional motors for a large
range of load sensitivity. Since themethod reduces to calculating themoments of times
and spatial displacements in each dynamic state, this framework may also be useful
for analyzing complex, higher-dimensional models [such as Bergman et al. (2018)],
where cellular components interact in complicated ways, but moments of the dynam-
ical changes in each state could be estimated numerically. As the experimental data
on motor interactions develop rapidly, the framework proposed may prove useful in
analyzing novel models and in understanding the dependence of effective transport
properties on model parameters.

2 Mathematical Framework and Examples

The type of path we have in mind in this work is displayed in Fig. 1, a simulated
continuous, stochastic process that switches between several stereotypical behaviors.
Let the real-valued process {X(t) : t ≥ 0} be the time-dependent position of a particle
and let {J (t) : t ≥ 0} denote the time-dependent underlying (e.g., biophysical) state,
taking values from the finite state space S = {0, 1, 2, . . . , N }. Switches between the
states take place at the random times {tk : k ∈ N}, and we use {Jk : k ∈ N} to denote
the state during the kth time interval [tk−1, tk). We set t0 = 0 and J1 = J (0). We
assume that the sequence of states {Jk : k ∈ N} forms a time-homogeneous recurrent
Markov chain with zero probability to remain in the same state on successive epochs.
Given the state Jk , the associated state duration tk − tk−1 and spatial displacement
X(tk) − X(tk−1) are conditionally independent of all other random variables in the
model (but not necessarily of each other). Moreover, the conditional joint distribution
of tk − tk−1 and X(tk) − X(tk−1) given Jk depends only on the value of Jk and
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Fig. 1 An example of the type of particle trajectory considered in this work. This simulated trajectory
corresponds to the position of intracellular cargo (such as a vesicle) experiencing periods of active and
diffusive transport. The path shown here illustrates switches between a forward transport state, a backward
transport state, a stalled state, and a freely diffusing state in the framework of Eq. (5). The dashed vertical
lines indicate random times {tk : k ∈ N}when there are switches in the biophysical state. The base “renewal”
state is free diffusion, and the red dashed vertical lines correspond to times {Tk : k ∈ N} when the system
enters the base state. We denote the times spent in each state by τk , as detailed in Sects. 2.1 and 2.2. In the
language of the paper, the red lines correspond to the regeneration times and the total spatial displacements
and times between these regeneration times are the “rewards” and the cycle durations, respectively (see
Sect. 2.1)

not separately on the index k. In other words, the dynamics of (J (t), X(t)) have a
statistically time-homogeneous character.

One general subclass of the processes considered can be expressed as follows:
The random times {tk}∞k=0 are generated by sampling tk − tk−1 independently from
their conditional marginal distributions given the Markov chain states Jk , and then
conditioned upon these random variables, the spatial process X(t) is governed by a
stochastic differential equation with coefficients depending on the current state, the
value of X upon entry into the current state, and the time since entry into the current
state. That is, we express the conditional dynamics of X(t) as:

dX(t) =
∞∑

k=1

1[tk−1,tk )(t)
(
αJk

(
X(t), X(tk−1), t − tk−1

)
dt + √

2dJkdW (t)
)
, (5)

where α j : R2 ×R+ → R is a function that describes the drift (deterministic compo-
nent of the dynamics) of a particle while in the state j , and d j is the diffusivity in that
state. (In general, the diffusive coefficients might also depend on the position of the
particle and the recent history of the process, but we restrict ourselves to memoryless,
additive noise for this discussion.)

Consider, for example, the stochastic process associatedwith the PDE (1), forwhich
we set the drift terms in (5) to be α j = v j , where v j is the constant j th diagonal entry
of the velocity matrix V in (1). The diffusion coefficients would correspond to the
entries of the diagonal matrix D in (1). The process would switch between states as
a CTMC with rate matrix A, which, through standard theory (Lawler 1995, Sec. 3.2),
induces a transition probability matrix for the sequence of states {Jk : k ∈ N}:
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Pi j =
{ Ai j

λ̄i
for i �= j,

0 for i = j .

where λ̄i ≡ ∑
j∈S\{i} Ai j is the total transition rate out of state i . The state duration

in state i would be exponentially distributed with mean λ̄−1
i .

We can articulate a more biophysically explicit model of motor cargo dynamics
that takes into account, for example, the fluctuations of the cargo around the unob-
served motor trajectory. Such a process is depicted in Fig. 1 and is inspired by data
from kymograph readouts of cargo movement as seen in Encalada et al. (2011) and
analyzed by a tool developed by Neumann et al. (2017). For the simulation depicted
in Fig. 1, there are four states: a forward processive state, a backward processive state,
and a stalled state—each of which is characterized by having a drift with speed v j

plus Ornstein–Uhlenbeck type fluctuations [as described for example in Smith and
McKinley (2018)]—and a freely diffusing state where the drift term equals zero. That
is, α0 = 0 for the freely diffusing state and for j > 0,

α j (y, y0, t) = − κ

γ

(
y − (v j t + y0)

)
, (6)

where κ is a spring constant, γ is the viscous drag, and v j is the velocity associated
with the j th state. The term (v j t + y0) indicates the theoretical position of a processive
molecular motor that is simultaneously bound to the particle and to a microtubule.

Remark 1 We note that there are at least two ways that the process X(t) can be con-
sidered to be non-Markovian and still fall within the set of models to which our results
apply. The first, which is captured by the drift term (6), is that the process X(t) has
memory in the sense that resolving X(t) on any interval in (tk, tk+1) depends on the
value X(tk). A second allowable non-Markovian dynamic can be obtained by choosing
the state duration times tk − tk−1 given state Jk to have a non-exponential distribu-
tion. As long as the stochastic process of states {Jk} is a time-homogeneous, positive
recurrent Markov chain, the technique we present will apply.

In Sect. 2.3, we share a few examples from the molecular motors literature that
include detailed assumptions about the set of achievable states and transitions among
them. We note that these examples vary in their assumptions about fluctuations about
mean behavior. In some cases, the dynamics are assumed to be “piecewise determin-
istic,” similar to the class of models studied by Brooks (1999) in which each state
is characterized by a fixed velocity parameter α j = v j with the state diffusivity d j

set to zero. In some of the other examples, fluctuations about the mean are included
and would contribute to the long-term diffusivity as a result. Of course, fluctuations
are always present in these dynamics (sometimes due to variability in the motor step-
ping, sometimes due to fluctuations in cargo position). There are natural ways to add
these considerations to the models in Sect. 2.3 and express the dynamics within the
framework of Eq. (5).
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2.1 Decomposition into Regenerative Cycles and Renewal Reward Structure

Here we outline our procedure for calculating the effective velocity and diffusivity
of particles undergoing switching dynamics. The strategy is to break the process into
independent “cycles” that are marked by returns to a chosen base state. As shown in
Krishnan and Epureanu (2011), the analysis using the renewal reward structure is not
affected by this initial choice of base state. An elementary exposition of this “dissection
principle” concept can be found in Resnick (1992, Sec. 2.5). We define these times of
re-entry into the base state as regeneration times {Tn}. In what follows, we will view
the consecutive spatial displacements and time durations of the regenerative cycles to
be the rewards and cycle durations of a classical renewal reward process (Cox 1962).
Because the cycle statistics are independent and identically distributed after the first
regeneration time T1, we define (in the sense of distribution) random variables for a
generic cycle n ≥ 2:

ΔX
D= X(Tn) − X(Tn−1); ΔT

D= Tn − Tn−1; and

M
D= sup

t∈[Tn−1,Tn ]
|X(t) − X(Tn−1)|.

We rely on the functional central limit theorem (FCLT) presented in Serfozo (2009)
for our asymptotic results. To this end, we define the quantities

μ := E(ΔT ); a := E(ΔX)

E(ΔT )
; and

σ 2 := Var(ΔX − aΔT ).

As in previouswork onmolecularmotor systems (Hughes et al. 2011, 2012), the FCLT
justifies defining the effective (long-run) velocity and effective (long-run) diffusivity
of the process X(t) in terms of properties of the regenerative increments as follows:

veff := lim
t→∞

1

t
X(t) = a = E(ΔX)

E(ΔT )
; (7)

Deff := lim
t→∞

1

2t
Var(X(t))

= σ 2

2μ
= 1

2E(ΔT )

(
Var(ΔX) + v2effVar(ΔT ) − 2veffCov(ΔX ,ΔT )

)
. (8)

In more technically precise terms, the FCLT states: For r ∈ Z+, define Yr (t) :=
(X(r t) − art)/(σ

√
r/μ). If a, μ, σ,E(M), and E((ΔT )2) are all finite, then

limr→∞ Yr = B in distribution for t ∈ [0, 1], where {B : t ∈ [0, 1]} is a standard
Brownian motion (Whitt 2002).
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2.2 Notation for Events within Each Regeneration Cycle

The mathematical analysis in Sect. 3 focuses on calculation of the moments of the
cycle duration and spatial displacement (reward) in an independent cycle of the process
(introduced in Sect. 2.1). Here we introduce notation for events occurring within a
single regeneration cycle. We denote the number of steps in the nth cycle by

η(n) := min{k ≥ 1 : Jk+Kn−1+1 = 0},

where K0 = 0 and Kn = ∑n
i=1 η(i). We will let τ

(n)
k = tKn−1+k − tKn−1+k−1 denote

the times spent in each step of the nth cycle and ξ
(n)
k = X(tKn−1+k) − X(tKn−1+k−1)

denote the corresponding spatial displacements. The total time ΔT and displacement
ΔX accrued in a cycle n ≥ 2 before returning to the base state are then naturally the
sum of these stepwise contributions:

ΔT :=
η(n)
∑

k=1

τ
(n)
k and ΔX :=

η(n)
∑

k=1

ξ
(n)
k . (9)

In what follows, we drop the superscript denoting the index n of the cycle, since the
cycles have statistically independent and identically distributed behavior for n ≥ 2.
We will decompose each cycle into what is accrued during the first step (τ1 and ξ1)
associated with the visit to the base state, and what accrues in all subsequent steps in
the cycle, which we label

ΔT̃ := ΔT − τ1 and ΔX̃ := ΔX − ξ1 . (10)

For each state j ∈ S of the underlying Markov chain, let {τk( j), ξk( j)}∞k=1 be a
sequence of iid pairs of random variables drawn from the conditional joint distribution
of durations and displacements occurring during a sojourn in state j . The rewards
collected in each step can then be written as

τk =
N∑

j=0

τk( j)1{Jk= j} and ξk =
N∑

j=0

ξk( j)1{Jk= j} .

In the statements of our main theorems, it will be useful to have a notation for
a vector of random variables with distributions for the time durations and spatial
displacements that are associated with the states S = {0, 1, . . . , N }:

τ
D= (τ (0), τ (1), . . . , τ (N )) and ξ

D= (ξ(0), ξ(1), . . . , ξ(N )). (11)

So, for any step number k ∈ N, we have that the vector (τk(0), τk(1), . . . , τk(N )) is
equal in distribution to the vector τ and likewise for the spatial displacements.
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2.3 Examples

The four-state example illustrated in Fig. 1 is just one of many models for intracellular
transport that is carried out by multiple molecular motors. To provide context for
this framework and for our result in Sect. 3, Proposition 1, here we introduce several
canonical examples from the literature where intracellular transport of cargo can be
modeled as a stochastic processwith regenerative increments.Often, cargofluctuations
are neglected in models when a motor cargo complex is in a processing state (Müller
et al. 2008, 2010; Kunwar and Mogilner 2010). This is equivalent to taking a limit in
which the cargo is effectively instantaneously restored by the motor cargo tether to a
fixed mechanical equilibrium configuration with respect to the motor.

Example 1 (2-state advection–diffusion model of particle transport). Consider a 2-
state advection–diffusion model for the dynamics of protein particles (such as mRNA)
as illustrated in Ciocanel et al. (2017, Figure 3A), with a freely diffusing state and an
active transport state. Assume that the times spent by the particles in each state are
drawn from an exponential distribution

τ(0) ∼ Exp(β2) ,

τ (1) ∼ Exp(β1) .

Here β1 and β2 are the transition rates between states and the notation Exp(r) denotes
an exponential distribution with parameter r (equal to the inverse of the mean). The
spatial displacement in each state is given by:

ξ(0) = √
2Dτ(0)Z ,

ξ(1) = vτ(1) ,

where D is the diffusion coefficient in the freely diffusing state, v is the speed in the
active transport state, and Z is an independent standard normal random variable.

Example 2 (4-state advection–reaction–diffusion model of particle transport). More
realistic representations of the dynamics of cellular protein concentrations lead to
considering themore complex 4-statemodel illustrated in Ciocanel et al. (2017, Figure
3B), where particles may diffuse, move in opposite directions, or be paused. The state
durations are exponentially distributed, with the switching rates between dynamical
states provided in Ciocanel et al. (2017, Figure 3B), and the spatial displacements in
each state are given by:

ξ(0) = √
2Dτ(0)Z ,

ξ(1) = v+τ(1) ,

ξ(2) = v−τ(2) ,

ξ(3) = 0 ,

with v+ the particle speed in the forward active transport state and v− the particle
speed in the backward active transport state.
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Example 3 (Cooperative models of cargo transport). Consider the cooperative trans-
port models proposed in Klumpp and Lipowsky (2005); Kunwar andMogilner (2010),
where processive motors move cargo in one direction along a one-dimensional fila-
ment. These models assume a maximum number N of motor proteins, firmly bound
to the cargo, that may act simultaneously in pulling the cargo in a specified direction
(see Klumpp and Lipowsky (2005, Figure 1) for model visualization). The biophysical
state (dynamic behavior) is defined by the number 0 ≤ n ≤ N of these motors that
are bound to a filament and therefore actively contributing to transport. In a state with
n motors attached to a filament, the cargo moves at a velocity vn , motors can unbind
from the filaments with rate εn , or additional motors can bind to the filaments with
rate πn . The expressions for these transport model parameters are reproduced from
Kunwar and Mogilner (2010), together with a nonlinear force–velocity relation:

vn(F) = v

(

1 −
(

F

nFs

)w)

, (12)

εn(F) = nεeF/(nFd ) , (13)

πn = (N − n)π . (14)

Here v is the load-free velocity of the motor, ε is the load-free unbinding rate, and π is
the motor binding rate. F is the externally applied load force, Fs is the stall force, and
Fd is the force scale of detachment. The exponentw determines the nature of the force–
velocity relation considered, with w = 1 corresponding to a linear relation, w < 1
corresponding to a concave sub-linear force–velocity curve, andw > 1 corresponding
to a convex super-linear force–velocity curve (Kunwar andMogilner 2010). The times
and displacements in each state n (with 0 ≤ n ≤ N motors bound to the filaments)
are therefore given by:

τ(n) ∼ Exp
(
rout(n)

)
,

ξ(n) = vn(F)τ (n) , (15)

where rout(n) = εn(F) + πn is the transition rate out of the state with n motors [see
Klumpp and Lipowsky (2005, Figure 1)].

Example 4 (Tug-of-war models of cargo transport). Cargoes often move bidirection-
ally along filaments, driven by both plus and minus-directed motors. For example,
kinesinmoves cargo toward the plus end ofmicrotubules while dyneinmoves it toward
the minus end. In Müller et al. (2008, 2010), the authors propose a model where a tug-
of-war between motors drives cargo in opposite directions, with transport by several
motors leading to an increase in the time the cargo remains bound to a microtubule
and is pulled along a particular direction. In these models, teams of maximum N+
plus- and N− minus-end motors are bound to the cargo, and the biophysical state is
given by the pair of indices (n+, n−) with 0 ≤ n+ ≤ N , 0 ≤ n− ≤ N indicating
the number of plus and minus motors bound to the filament and thereby contributing
actively to the transport (see Müller et al. (2008, Figure 1) for model visualization). A
key assumption for this model is that motors interact when bound to the filament since
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opposing motors generate load forces, and motors moving in the same direction share
the load. In addition, they assume that motors movewith the same velocity as the cargo
in any state (Müller et al. 2008, 2010). This model uses the following expressions for
the transport parameters:

vc(n+, n−) = n+Fs+ − n−Fs−
n+Fs+/v f + + n−Fs−/vb−

, (16)

ε+(n+) = n+ε0+eFc/(n+ Fd+) , (17)

π+(n+) = (N+ − n+)π0+ . (18)

Here indices + and − refer to the plus- and minus-end directed motors under con-
sideration. The model parameters are as follows: Fs is the stall force, Fd is the force
scale for detachment, ε0 is the load-free unbinding rate, π0 is the motor binding rate,
v f is the forward velocity of the motor (in its preferred direction of motion), and
vb is the slow backward velocity of the motor considered. Equation (16) applies for
the case when n+Fs+ > n−Fs− [stronger plus motors, Müller et al. (2008)], and an
equivalent expression with v f + replaced by vb+ and vb− replaced by v f − holds for
n+Fs+ ≤ n−Fs− (stronger minus motors). Equivalent expressions for the binding and
unbinding rates hold for the minus-end directed motors. In the case of stronger plus
motors, the cargo force Fc when pulled by n+ plus and n− minus motors is given by
Müller et al. (2008):

Fc(n+, n−) = λn+Fs+ + (1 − λ)n−Fs− ,

λ = 1

1 + n+ Fs+vb−
n− Fs−v f +

,

with equivalent expressions for stronger minus motors as described above and in
Müller et al. (2008). The times and displacements accumulated at each time step and
in each state are defined as in Eq. (15) in Example 3.

3 Analysis within a Single Cycle

From standard renewal reward and functional central limit theorem results, which we
detailed in Sect. 2, we have related the computation of effective velocity and diffusivity
via Eqs. (7) and (8) to analyzing the first and second moments and correlation of the
spatial displacement and time spent in each regeneration cycle. In this section, the
main result is Proposition 1, which provides these statistics. We begin with Lemma 1,
by recalling a standard recursion formula for the moments of the reward accumulated
until hitting a designated absorbing state. We include the proof of this lemma for
completeness and as an example of the moment generating function approach we use
in Lemma 2. In Proposition 1, we address the calculation of total displacement and
time duration during the regeneration cycles described in Sect. 2.

Let 0 be the base state that marks the beginning of a new renewal cycle. We denote
the set of remaining states as S\{0}, and define P̃ as the N × N substochastic matrix
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containing the probabilities of transition among these non-base states only. Generally,
we use the symbol ~ to refer to a vector or a matrix whose components corresponding
to the base state have been removed.

Let R denote the total reward accumulated until the state process hits the base
state. Note that the value of R will depend on what the initial state of the process is.
In our motor transport examples, R corresponds to the time ΔT̃ or the displacement
ΔX̃ accumulated after stepping away from the base state and before returning to the
base state. Let ρk denote the reward accumulated at each time step, recalling that time
increments are denoted τk and displacement increments ξk in Sect. 2.2.

By introducing random variables ρk( j) for j ∈ S and k ∈ N that indicate the reward
received at step k if the particle is also in state j at that step, we can use indicator
variables for the state to express: ρk = ∑N

j=1 ρk( j)1{Jk= j} and

R =
η∑

k=1

ρk =
η∑

k=1

N∑

j=1

ρk( j)1{Jk= j} . (19)

In the same way that we defined the distribution for the time durations and spatial
displacements through the random vectors τ and ξ in Eq. (11), we define the distri-
bution of generic rewards through the vector of random rewards associated with each
state:

ρ̃ = (ρ(1), ρ(2), . . . , ρ(N )). (20)

The tilde notation is used here to be consistent with the connotation that tilde implies
the zero state is excluded. When we need component-wise multiplication, we use the
Hadamard power notation [see Eq. (4)]:

ρ̃◦n = (ρn(1), ρn(2), . . . , ρn(N )). (21)

We define the moment-generating functions of the reward collected until the state
process hits the base state, and of the reward in state i , respectively, by the following
vectors:

φ(s) : φi (s) := E(es R | J1 = i) , and

ψ(s) : ψi (s) := E(esρ(i)) . (22)

Characteristic functions could alternatively be used to handle rewards whose higher
moments are not all finite; the results for the low order moments we calculate would be
the same. Note that here and in the following, we will typically use index i to refer to
states i ∈ S\{0}. In Lemma 1, J1 is the state in the initial step of the process. We seek
a general recursion relation for E(Rn|J1 = i) and denote the corresponding vector
of moments for all i ∈ S\{0} by ES\{0}(Rn). The following result is a variation on
similar recursion formulas for rewards accumulated in Markov chains (Hunter 2008;
Palacios 2009).
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Lemma 1 Let {Jk}k≥1 be a time-homogeneous, positive recurrent Markov chain with
a transition probability matrix P (over a finite state space S) that has zeroes for each
of its diagonal entries. Let the reward variables R and ρ̃ be defined as in Eqs. (19)
and (20), respectively. For n ∈ N, define the column vector

ES\{0}(Rn) := (
E(Rn | J1 = 1), . . . , E(Rn | J1 = N )

)
.

Then, this vector—the expected reward accumulated up to the first time that the state
process {Jk} hits the base state 0—satisfies the recursion relation

ES\{0}(R) = (I − P̃)−1
E(ρ̃);

ES\{0}(Rn) = (I − P̃)−1

(

E(ρ̃◦n) +
n−1∑

m=1

(
n

m

)

diag(E(ρ̃◦(n−m))) P̃ ES\{0}(Rm)

)

.

(23)

Here P̃ is the substochastic matrix component of P excluding the base state 0, and
ρ̃◦n is the Hadamard n-th power vector defined in Eq. (21).

Proof Let R, the reward accumulated until hitting the base state 0, be decomposed
into the reward from the first and from subsequent steps as follows: R = ρ1 + Ř. We
calculate the moment-generating function of R conditioned on the initial state J1 = i
as follows:

φi (s) :=E(es R | J1 = i)

=
∑

j∈S

E(es R | J1 = i, J2 = j)Pi j

=
∑

j∈S

E(esρ1es Ř | J1 = i, J2 = j)Pi j

=E(esρ1 | J1 = i)

⎛

⎝E(es Ř |J2 = 0)Pi0 +
∑

j∈S\{0}
E(es Ř | J2 = j)Pi j

⎞

⎠

=E(esρ(i))

⎛

⎝Pi0 +
∑

j∈S\{0}
E(es R | J1 = j)Pi j

⎞

⎠

= ψi (s)

⎛

⎝Pi0 +
∑

j∈S\{0}
φ j (s)Pi j

⎞

⎠ , (24)

where ψi (s) is defined in Eq. (22). In the fourth line, we used the Markov property,
and in the fifth line, we used the fact that

(Ř | J2 = j) ∼ (R | J1 = j)(1 − δ j0)
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where δi j is the Kronecker delta function. Defining

fi (s) = ψi (s)Pi0 , i ∈ S\{0} ,

G(s) = {G(s, i, j); i, j ∈ S\{0} : G(s, i, j) = ψi (s)Pi j } ,

then we can write Eq. (24) in matrix vector form:

φ(s) = f (s) + G(s)φ(s) . (25)

Since the moments of the reward before hitting the base state can be calculated using

E(Rn | J1 = i) = ∂n

∂sn
φi (s)|s=0 ,

we calculate the derivatives:

∂nφ(s)

∂sn
= ∂n f (s)

∂sn
+

n∑

m=0

(
n

m

)
∂n−m G(s)

∂sn−m

∂mφ(s)

∂sm
.

For the first moment (n = 1), each component yields:

∂φi (s)

∂s
= Pi0E(ρ1 | J1 = i) +

∑

j∈S\{0}
Pi jE(ρ1 | J1 = i) +

∑

j∈S\{0}
Pi j

∂φ j (s)

∂s

= E(ρ(i)) +
∑

j∈S\{0}
Pi j

∂φ j (s)

∂s
.

Evaluating at s = 0 for n = 1, we have

E(R | J1 = i) = E(ρ(i)) +
∑

j∈S\{0}
Pi j E(R | Jn = j).

Writing in vector form and solving for ES\{0}(R) yield the first part of Eq. (23).
For higher-order moments (n > 1):

∂nφi (s)

∂sn
= Pi0E(ρn

1 | J1 = i) +
∑

j∈S\{0}
Pi jE(ρn

1 | J1 = i)

+
n−1∑

m=1

(
n

m

)

E(ρn−m
1 | J1 = i)

∑

j∈S\{0}
Pi j

∂mφ j (s)

∂sm
+

∑

j∈S\{0}
Pi j

∂nφ j (s)

∂sn

= E(ρ(i)n) +
∑

j∈S\{0}
Pi j

∂nφ j (s)

∂sn

+
n−1∑

m=1

(
n

m

)

E(ρ(i)n−m)
∑

j∈S\{0}
Pi j

∂mφ j (s)

∂sm
.
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Evaluating at s = 0 gives the recursion relation expressed in the second part of Eq. (23).
�


Corollary 1 Let τ and ξ denote the vectors of state-dependent time duration and spatial
displacements as defined in Eq. (11). Let ΔT and ΔX denote the total time elapsed
and displacement accumulated by a state-switching particle up until its state pro-
cess {Jk}k≥1 returns to the base state 0 [see Eqs. (9)]. Moreover, recall the first-step
decomposition ΔT = τ1 + ΔT̃ and ΔX = ξ1 + ΔX̃ (see Eqs. (10)). Suppose that
the state process {Jk}k≥1 and its associated transition probability matrix P satisfy the
assumptions of Lemma 1. Then,

ES\{0}(ΔT̃ ) = (I − P̃)−1
E(τ̃ ) , (26)

ES\{0}(ΔX̃) = (I − P̃)−1
E(ξ̃) , (27)

ES\{0}(ΔT̃ 2) = (I − P̃)−1
(
E(τ̃ ◦2) + 2diag(E(τ̃ ))P̃ ES\{0}(ΔT̃ )

)
(28)

ES\{0}(ΔX̃2) = (I − P̃)−1
(
E(ξ̃

◦2
) + 2diag(E(ξ̃))P̃ES\{0}(ΔX̃)

)
, (29)

where τ̃ and ξ̃ are the vectors of time durations and spatial displacements excluding
the base state.

Proof These results follow directly from Lemma 1, with ΔT̃ and ΔX̃ , respectively,
playing the role of the reward R. �

Lemma 2 Let τ , ξ , ΔT̃ , ΔX̃ , P, and {Jk}k≥1 be defined as in Corollary 1. Then,

ES\{0}(ΔT̃ ΔX̃) = (I − P̃)−1
(
E(τ̃ ◦ ξ̃) + diag(E(ξ̃))P̃ES\{0}(ΔT̃ )

+ diag(E(τ̃ ))P̃ES\{0}(ΔX̃)
)

. (30)

Proof We use an argument similar to the re-arrangement of the moment-generating
function in Eq. (25) in the proof of Lemma 1. Here we decompose the time and
displacement into the first step after the base state and the subsequent steps: ΔT̃ =
τ2+ Ť andΔX̃ = ξ2+ X̌ . Since we are interested in the cross-moment of the duration
and displacement, we consider the following moment-generating function:

φi (r , s) = E(esΔX̃ erΔT̃ |J1 = 0, J2 = i)

=
∑

j∈S

E(esΔX̃ erΔT̃ |J1 = 0, J2 = i, J3 = j)Pi j

=
∑

j∈S

E(esξ2erτ2es X̌ er Ť |J2 = i, J3 = j)Pi j

= E(esξ2erτ2 |J2 = i)
∑

j∈S

E(es X̌ er Ť |J2 = i, J3 = j)Pi j

= E(esξ(i)erτ(i))
∑

j∈S

E(es X̌ er Ť |J3 = j)Pi j
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= ψi (r , s)Pi0 + ψi (r , s)
∑

j∈S\{0}
φ j (r , s)Pi j , (31)

where ψi (r , s) = E(esξ(i)erτ(i)).

For the calculation of the cross-term ES\{0}(ΔT̃ ΔX̃), we note that ∂2φi
∂r∂s |s=r=0 =

E(ΔT̃ ΔX̃ |J2 = i) and calculate:

∂2φi

∂r∂s
= ∂2

∂r∂s

⎛

⎝ψi (r , s)
∑

j∈S\{0}
φ j (r , s)Pi j + ψi (r , s)Pi0

⎞

⎠

= ∂

∂r

⎛

⎝ ∂ψi (r , s)

∂s

∑

j∈S\{0}
φ j (r , s)Pi j + ψi (r , s)

∑

j∈S\{0}

∂φ j (r , s)

∂s
Pi j + ∂ψi (r , s)

∂s
Pi0

⎞

⎠

= ∂2ψi (r , s)

∂s∂r

∑

j∈S\{0}
φ j (r , s)Pi j + ∂ψi (r , s)

∂s

∑

j∈S\{0}

∂φ j (r , s)

∂r
Pi j

+ ∂ψi (r , s)

∂r

∑

j∈S\{0}

∂φ j (r , s)

∂s
Pi j + ψi (r , s)

∑

j∈S\{0}

∂2φ j (r , s)

∂s∂r
Pi j + ∂2ψi (r , s)

∂s∂r
Pi0 .

Evaluating the above at s = r = 0 yields:

E(ΔT̃ ΔX̃ |J2 = i) = E(τ2ξ2|J2 = i) + E(ξ2|J2 = i)
∑

j∈S\{0}
Pi j E(ΔT̃ |J2 = j)

+ E(τ2|J2 = i)
∑

j∈S\{0}
Pi jE(ΔX̃ |J2 = j)

+
∑

j∈S\{0}
Pi jE(ΔT̃ ΔX̃ |J2 = j) .

Therefore,

ES\{0}(ΔT̃ ΔX̃) = E(τ̃ ◦ ξ̃) + diag(E(ξ̃))P̃ES\{0}(ΔT̃ )

+ diag(E(τ̃ ))P̃ES\{0}(ΔX) + P̃ES\{0}(ΔT ΔX),

which yields Eq. (30). �

Remark 2 An alternative derivation of equation (30) would be to use a polarization
argument for the expectation of the product:

ES\{0}(ΔT̃ ΔX̃) = 1

4

(
ES\{0}((ΔX̃ + ΔT̃ )2) − ES\{0}((ΔX̃ − ΔT̃ )2)

)
.

In this approach, the moment-generating function depending on both cycle time ΔT̃
and cycle displacement ΔX̃ introduced in Eq. (31) is not required, since Lemma 1
can be directly applied to give explicit formulas for the second moments of the reward
R = ΔX̃ + ΔT̃ and R = ΔX̃ − ΔT̃ .
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We proceed to Proposition 1, which provides the quantities necessary to compute
the effective velocity and diffusivity of the cargo dynamics using classical theory (see
Eqs. (7) and (8) and the procedure in Sect. 2.1).

Proposition 1 (First- and second-order statistics of rewards in a renewal cycle)
Consider a regenerative cycle of a discrete-time time-homogeneous recurrent

Markov chain that takes its values in the discrete state space S = {0, 1, 2, . . . , N } with
probability transition matrix P with zero diagonal entries, starting at base state 0 until
its first return to base state 0. The associated time ΔT and spatial displacement ΔX
are defined as in Eq. (9). The random variables τ(0) and ξ(0) have the distributions
of the time duration and spatial displacement that are accumulated in the base state,
and p(1) is the vector of transition probabilities from the base state in the first step of a
cycle, i.e., the first row of P. The moments of the cycle time and displacement rewards
are then given by:

E(ΔT ) = E(τ (0)) + p(1) · ES\{0}(ΔT̃ ) ,

E(ΔX) = E(ξ(0)) + p(1) · ES\{0}(ΔX̃) ,

Var(ΔT ) = Var(τ (0)) + p(1) · ES\{0}(ΔT̃ 2) − ( p(1) · ES\{0}(ΔT̃ ))2 ,

Var(ΔX) = Var(ξ(0)) + p(1) · ES\{0}(ΔX̃2) − ( p(1) · ES\{0}(ΔX̃))2 ,

Cov(ΔX ,ΔT ) = Cov(τ (0), ξ(0)) + p(1) · ES\{0}(ΔT̃ ΔX̃)

− ( p(1) · ES\{0}(ΔT̃ ))( p(1) · ES\{0}(ΔX̃)), (32)

where the first, second, and cross-moments of the time ΔT̃ and the displacement ΔX̃
are given by Eqs. (26), (27), (28), (29), (30) in Corollary 1 and Lemma 2.

Proof With state 0 as base state, we decompose the cycle time into the time spent in the
base state τ1 = τ(0) and the time ΔT̃ spent from leaving the base state until returning
to the base state. Therefore, the total time in a cycle is given by ΔT = τ1 + ΔT̃ , and
similarly, the total spatial displacement in a cycle is ΔX = ξ1 + ΔX̃ . We apply the
law of total expectation by conditioning on the state J2 that the process visits after the
base state:

E(ΔT ) = E(E(ΔT |J2))
=

∑

i∈S\{0}
E(ΔT |J2 = i)P0i

=
∑

i∈S\{0}
E(τ1 + ΔT̃ |J2 = i)P0i

= E(τ (0)) +
∑

i∈S\{0}
E(ΔT̃ |J2 = i)P0i

= E(τ (0)) + p(1) · ES\{0}(ΔT̃ ) ,

where as before S\{0} is the set of transient states and P0i is the probability of switching
from base state 0 to state i . A similar calculation applies to the first moment of the
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cycle reward E(ΔX). For the second moments, we use the law of total variance as
follows:

Var(ΔT ) = E(Var(ΔT |J2)) + Var(E(ΔT |J2))
= E(Var(τ1 + ΔT̃ |J2)) + Var(E(τ1 + ΔT̃ |J2))
= E(Var(τ (0)) + Var(ΔT̃ |J2)) + Var(E(τ (0)) + E(ΔT̃ |J2))
= Var(τ (0)) + E(Var(ΔT̃ |J2)) + Var(E(ΔT̃ |J2))
= Var(τ (0)) +

∑

i∈S\{0}
Var(ΔT̃ |J2 = i)P0i

+
∑

i∈S\{0}
(E(ΔT̃ |J2 = i))2P0i −

⎛

⎝
∑

i∈S\{0}
E(ΔT̃ |J2 = i)P0i

⎞

⎠

2

= Var(τ (0)) +
∑

i∈S\{0}
E(ΔT̃ 2|J2 = i)P0i −

⎛

⎝
∑

i∈S\{0}
E(ΔT̃ |J2 = i)P0i

⎞

⎠

2

= Var(τ (0)) + p(1) · ES\{0}(ΔT̃ 2) − ( p(1) · ES\{0}(ΔT̃ ))2 ,

and similarly for Var(ΔX). The covariance term can then be obtained via the polar-
ization formula from the formulas for the variances.

�


4 Application toModels of Intracellular Transport

Proposition 1 and the calculation procedure inSect. 2.1 canbe applied to understand the
long-termdynamics of protein intracellular transport described inSect. 2 inExamples 1
and 2. The effective velocity and diffusivity of proteins are key in understanding large
timescale processes such as mRNA localization in frog oocytes (Ciocanel et al. 2017)
and cell polarization in the budding yeast (Bressloff and Xu 2015).

4.1 2-State Advection–diffusionModel of Particle Transport

In the following, we consider the 2-state transport-diffusion model for the dynamics
of mRNA particles described in Example 1 and illustrated in Ciocanel et al. (2017,
Figure 3A).We show how the calculations in Proposition 1 can be applied to determine
the large-time effective velocity and diffusivity of the particles.

In the 2-state model, the probability transition matrix is simply P =
(
0 1
1 0

)

. In

this example, we take the diffusing state as the base state; however, our results are not
dependent on this choice of base state as mentioned in Sect. 2.1. The substochastic
matrix of the probabilities of transition between the other states (Bhat andMiller 2002)
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is then simply the scalar P̃ = 0 in this case, while the vector of transitions out of the
base state is simply p(1) = [1].

The first and second moments of the cycle duration are given by Eqs. (26) and (28)
with (I − P̃)−1 = 1. Similarly, the moments of the spatial displacement are given
by Eqs. (27) and (29). In this model, we have that S\{0} = {1} and τ̃ ◦n

k = τ n
k (1) for

the time reward and ξ◦n
k = ξn

k (1) for the spatial displacement reward in the active
transport state. In the 2-state system, these values are simply scalars:

E1(ΔT̃ ) = E(τ (1)) = 1/β1 ,

E1(ΔX̃) = E(ξ(1)) = v/β1 ,

E1(ΔT̃ ΔX̃) = E(τ (1)ξ(1)) = 2v/β2
1 ,

E1(ΔT̃ 2) = E(τ (1)2) = 2/β2
1 ,

E1(ΔX̃2) = E(ξ(1)2) = 2v2/β2
1 .

The statistics of the cycle are therefore given by:

E(ΔT ) = E(τ (0)) + E1(ΔT̃ ) p(1)(1) = 1

β2
+ 1

β1
,

E(ΔX) = E(ξ(0)) + E1(ΔX̃) p(1)(1) = 0 + v/β1 = v

β1
,

Var(ΔT ) = Var(τ (0)) + E1(ΔT̃ 2) p(1)(1) − (E1(ΔT̃ ) p(1)(1))2 = 1

β2
2

+ 1

β2
1

,

Var(ΔX) = Var(ξ(0)) + E1(ΔX̃2) p(1)(1) − (E1(ΔX̃) p(1)(1))2 = 2D

β2
+ v2

β2
1

,

Cov(ΔT ,ΔX) = Cov(τ (0), ξ(0)) + E1(ΔT̃ ΔX̃) p(1)(1)

−
(
E1(ΔT̃ ) p(1)(1)

) (
E1(ΔX̃) p(1)(1)

)
= v

β2
1

.

Equations (7) and (8) then provide expressions for the effective velocity and diffusivity
of the particles as in Hughes et al. (2011, 2012), Whitt (2002):

veff = E(ΔX)

E(ΔT )
= v

β2

β1 + β2
,

Deff = 1

2E(ΔT )
(v2effVar(ΔT ) + Var(ΔX) − 2veff cov(ΔT ,ΔX))

= D
β1

β1 + β2
+ v2

β1β2

(β1 + β2)3
.

Note that the effective velocity is given by the speed in the transport state multiplied
by the fraction of time the mRNA particles spend in the moving state. The effective
diffusivity has a more complicated expression, but clearly shows the dependence of
this quantity on each model parameter. These expressions agree with the results of
Eqs. (2), (3) as outlined in Ciocanel (2017).
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4.2 4-State Advection–Reaction–DiffusionModel of Particle Transport

Our calculation procedure and Proposition 1 extend to more complicated and realistic
models such as the 4-state model described in Example 2 and illustrated in Ciocanel
et al. (2017, Figure 3B). By considering the stochastic transitions between dynamic
states and the durations and displacements accumulated in each state, the effective
velocity and diffusion of cargo can be calculated in an intuitive way even for such
complex models with many transition states. Since this approach requires calculating
the inverse of the invertible matrix I − P̃ (see Bhat and Miller 2002; Dobrow 2016) to
determine the fundamental matrix, the approach presented here is easily implemented
in a software package such as Mathematica or MATLAB for symbolic derivation of
the effective transport properties for models with multiple states [see sample code in
the repository on GitHub (2019)].

In Fig. 2, we illustrate the good agreement of the results in Ciocanel et al. (2017)
with our calculation procedure in Sect. 2.1 [Proposition 1 combined with Eqs. (7) and
(8)] based on 15 sets of parameters estimated in Ciocanel et al. (2017). In addition,
we validate results from both approaches by carrying out numerical simulations of the
particle transport process and empirically estimating the effective transport properties.
In particular, we set up a Markov chain of the 4-state model in Ciocanel et al. (2017,
Figure 3B). For each parameter set, we consider NR = 500 stochastic realizations
of the dynamics, and for each iteration, we run the process until a fixed large time
T f = 5 × 104, which keeps the computation feasible. We then estimate the effective
velocity and diffusivity as follows:

veff ≈ (
∑NR

i=1 Xi (T f ))/NR

T f
,

Deff ≈
(∑NR

i=1(Xi (T f ) − (
∑NR

i=1 Xi (T f ))/NR)2
)

/(NR − 1)

2T f
,

where Xi (T f ) are the simulated final positions of the particle at time T f in iteration i .
The different parameter sets (labeled by index) in Fig. 2a–b correspond to sim-

ulations using parameter estimates based on FRAP mRNA data from different frog
oocytes in Gagnon et al. (2013), Ciocanel et al. (2017). The good agreement of the
theoretical and simulated effective velocity and diffusivity shows that the analyti-
cal approach proposed is a good alternative to potentially costly simulations of the
stochastic process up to a large time.

The theoretical formulas for effective velocity and diffusivity are long-time asymp-
totic results, which raises the question of howwell they apply at finite times. In Fig. 2c,
d, we show the difference between the predicted and simulated effective velocity and
diffusivity for each parameter set as a function of simulation time T f . The convergence
rate for the renewal reward asymptotic theory relies on a large number of regenera-
tion cycles. We can estimate the number of regeneration cycles in a simulation as
T f /E(ΔT ), with the expected cycle time E(ΔT ) computed for each parameter set
from Eq. (32). For the five parameter sets used in Fig. 2c, d, the cycle time E(ΔT )
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Fig. 2 a, b Effective velocity (a) and effective diffusivity (b) of particles switching between diffusion,
bidirectional transport, and stationary states as in (Ciocanel et al. 2017, Figure 3B) for different parameter
sets. Blue triangles correspond to predictions based on the homogenization or equivalent analysis (Ciocanel
et al. 2017) of the corresponding PDEs [Eq. (1)], filled red dots correspond to estimates from multiple
simulated realizations of the Markov chain, and yellow circles correspond to predictions based on analysis
of the corresponding renewal process model combined with Proposition 1. c, dDifference between effective
velocity (c) and effective diffusivity (d) as computed by renewal reward asymptotics and Monte Carlo
simulations over a finite time T f . Results from five of the parameter sets from (a, b) are shown, and the
axes are in log scale

is given by: 114s, 477s, 135s, 175s, and 747s. Across the 15 parameter sets consid-
ered, we found that 10 regeneration cycles were usually sufficient for the simulated
finite-time velocity and diffusivity to be within 10% of the theoretical asymptotic
value.

5 Application to Cooperative and Tug-of-War Models of Cargo
Transport

The framework presented here also extends to models of cargo particles driven by
changing numbers of motor proteins. The analytical calculation of transport proper-
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ties of cargo pulled by motors in the same or opposite directions could replace or
complement costly numerical simulations of individual cargo trajectories. In the fol-
lowing, we consider both models of cooperative cargo transport with identical motors
(Klumpp and Lipowsky 2005; Kunwar and Mogilner 2010) and tug-of-war models of
bidirectional transport driven by identical or differentmotorsmoving in opposite direc-
tions (Müller et al. 2008, 2010). While not discussed here, this framework may also
prove useful in analyzing stochastic models of nanoparticulate transport in biogels,
where states correspond to the number of occupied binding sites on nanoparticulates
and to the number of molecular anchors crosslinking them to the matrix of polymers
(Newby et al. 2017).

5.1 Cooperative Models of Cargo Transport

We start by considering the cooperative transport models described in Sect. 2, Exam-
ple 3, and studied by Klumpp and Lipowsky (2005); Kunwar and Mogilner (2010),
with processive motors that move along a one-dimensional microtubule and transport
cargo in only one direction. The cargo movement is described in terms of the force-
driven velocities vn , unbinding rates εn , and binding rates πn in each state with n
motors simultaneously bound to the cargo and the microtubule [see Eqs. (12), (13),
and (14)]. In this section, we use the kinetic parameters for conventional kinesin-1
provided in Klumpp and Lipowsky (2005) (see Table 1 in “Appendix”).

Our calculation of the effective velocity of cargo agrees with the derivation in
Klumpp and Lipowsky (2005), which uses the stationary solution of the master equa-
tion for probabilities of the cargo being in each state (i.e., carried by n motors). We
note that there are two notions of effective velocity (and diffusivity) that can be used
in studying this model: one is to calculate the effective velocity of the cargo aver-
aged over the bound states only (the asymptotic velocity without detachment along
a theoretical infinite length microtubule) (Klumpp and Lipowsky 2005; Kunwar and
Mogilner 2010), and the second is to calculate the overall effective velocity that also
accounts for periods of detachment from microtubules. For the N = 2 motors model,
Klumpp and Lipowsky (2005) and Kunwar and Mogilner (2010) report the average
velocity for bound cargo (first notion):

veff = v1
π0ε2

π0ε2 + π0π1
+ v2

π0π1

π0ε2 + π0π1
. (33)

Since we are interested in the overall effective velocity of the particles in the context
of their full dynamics, we include the state where no motors are bound to the filament
in our calculation, so that the effective velocity with respect to the overall dynamics
is given by:

veff = v1
π0ε2

ε1ε2 + π0ε2 + π0π1
+ v2

π0π1

ε1ε2 + π0ε2 + π0π1
. (34)

Using the calculation of the overall effective velocity in (34), we predict a similar
dependence of the effective velocity under a range of force loads as in Klumpp and
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Fig. 3 Effective velocity (a, c) and effective diffusivity (b, d) of cargo driven by a maximal number N of
forward motor proteins as a function of the load force under various force–velocity exponents w (Eq. (12)).
The stall force used for kinesin is Fs = 6 pN (see Table 1 in Appendix for all parameters). Solid lines
correspond to motors with a linear force–velocity relation, and dashed lines correspond to sub-linear motors
with a convex-up velocity–force relation (top row) and, respectively, to super-linear motors with a concave
force–velocity relation (bottom row)

Lipowsky (2005) using the formula (33). The dashed curves in Fig. 3a, c agree with
the behavior of sub- and super-linear motors under different load forces as reported in
Kunwar and Mogilner (2010, Figure 2C-D), including the fact that sub-linear motors
have lower effective velocities for any choice of the load force and for all maximum
motor numbers N considered (A, w = 0.5), while super-linear motors are faster and
therefore have larger effective velocities than linear motors (C, w = 2).

The insight from our method lies in the prediction of the effective diffusivity as a
function of load for each type of motor. Figure 3b, d shows that the N = 1 motor
transport case has a large effective diffusivity under no load because of the switching
between the paused and moving states. As the force load increases to stall Fs , the
velocity of the single motor state decreases to 0: v1(F) = v (1 − F/Fs). Therefore,
the active transport state switches to a stationary state at F = Fs = 6 pN, leading
to decreased effective diffusivity as the cargo switches between dynamic states with
similar behaviors.
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For N = 2 and N = 3, the calculation of the effective diffusivity allows us to
re-visit the cooperative transport models for a large range of load forces and observe
a new phenomenon in the classical models of Klumpp and Lipowsky (2005), Kunwar
and Mogilner (2010). The broader sweep of the load force parameter in Fig. 3b, d
shows a non-monotonic dependence of the effective diffusivity on load force for all
types of motors considered (linear, sublinear, and superlinear), with an increase in
effective diffusivity of cargo at low load forces and a decrease at large load forces.
While it is not immediately clear what leads to this phenomenon, we conjecture that
this observation may be a result of the balance between two competing effects: on
the one hand, as the load increases, there is more detachment of motors [see (13)]
and thus more frequent switches between transport and stationary states, leading to an
increase in effective diffusivity; on the other hand, the increase in load force leads to a
decrease in the speeds of the motor-driven cargo states [see (12)] and thus a decrease
in effective diffusivity.

5.2 Tug-of-War Models of Cargo Transport

In Example 4 in Sect. 2, we consider the case where plus- and minus-directed motors
can drive cargo bidirectionally along filaments. The cargo velocities vc(n+, n−),
unbinding rates ε+/−(n+, n−), and binding rates π+/−(n+/−) depend on the num-
ber of plus motors n+ and minus motors n− at each state.

Identical plus and minus motors. With kinesin parameters drawn fromMüller et al.
(2008) (see Table 1 in “Appendix”), we first calculate the transport properties of cargo
in these models for identical plus and minus motors in equal numbers (N+ = N−).
We vary the stall force of the kinesin motor to determine if the theoretical effective
velocity and diffusivity capture the differences obtained in the numerical simulation
studies in Müller et al. (2008, 2010) for weak motors (small stall to detachment force
ratio f = Fs/Fd ) and strong motors (large f ). As expected, the effective velocity
in this symmetric case of identical motors is zero for all stall forces (see Fig. 4a).
The predicted effective diffusivity in Fig. 4b shows that for weak motors, the effec-
tive diffusivity is small, and different maximum numbers of motors do not lead to
significant differences. This is similar to the results in Müller et al. (2008), where the
simulated cargo trajectories show small fluctuations and the probability distribution
for the velocity has a single maximum peak corresponding to approximately equal
numbers of plus and minus motors attached. However, for strong motors with a larger
stall to detachment force ratio, the effective diffusivity increases considerably for all
models. This is consistent with the observation in Müller et al. (2008) that strong
motors lead to cascades of unbinding of minus motors until only plus motors stay
bound (and vice versa), so that the spread of the cargo position is predicted to be
larger. The larger motor numbers lead to a more significant increase in effective dif-
fusivity as observed in Müller et al. (2010), where the simulated diffusion coefficient
grows exponentially with motor numbers and therefore leads to a more productive
search of target destinations throughout the domain (Müller et al. 2010).

It is worth noting that the method we develop in Sect. 2.1 extends to cases where
slow diffusive transport rather than pausing is observed in the unbound state (see
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Fig. 4 Effective velocity (a, c) and effective diffusivity (b, d) of cargo driven by maximum N forward and
maximum N backward motor proteins as a function of kinesin-1 stall force Fs ; the detachment force is
Fd = 3 pN (see Table 1 in “Appendix” for all parameters). Panels (a, b) correspond to identical forward and
backward motors with kinetic parameters for kinesin-1, and panels (c, d) correspond to kinesin-1 forward
motors and conventional dynein backward motors

Sect. 4 for another example with a diffusive state). As expected, when the cargo has an
intrinsic diffusion coefficient that is nonzero, the effective velocity of the cargo does
not change; however, the effective diffusivity is consistently larger than in the case
where the unbound cargo is fully stationary (results not shown).

Distinct plus and minus motors.When considering dynein as theminus-end directed
motor in the bidirectional transport model, we use the kinetic parameters estimated to
fitDrosophila lipid droplet transport inMüller et al. (2008) (seeTable 1 in “Appendix”).
Figure 4c shows that the cargo is predicted to move in the forward (kinesin-driven)
direction with a positive effective velocity. We again observe increased transport
efficiency for larger numbers of motors. With increasing stall force, the velocity of
individual runs in each state increases, and therefore, the effective velocity increases
and then plateaus. This asymmetric motor case also results in effective diffusivity that
decreases past a small stall force and then stabilizes (see Fig. 4d). Since the kinesin
motor dominates the dynamics, there are fewer excursions backwards than in the case
of identical motors, so that the effective diffusivity is an order of magnitude smaller.
Larger teams of motors regularize the dynamics and display decreased effective diffu-
sivity. We remark that an asymmetric tug-of-war may even occur in motor interactions
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Fig. 5 Effective velocity (a, b) and expected run length (c, d) of cargo driven by maximum N1 forward
(kinesin-1) and maximum N2 backward (dynein) motor proteins (N1, N2) as a function of the reattachment
factor ρ. Panels (a, c) use conventional dynein motor kinetics as in Müller et al. (2008, 2010) while panels
(b, d) use dynein–dynactin–BicD2 (DDB) complex parameters as in Ohashi et al. (2019); see Table 2 in
“Appendix” for all parameters. The run lengths in panels b and d are plotted on a log–log scale to allow for
visualization of differences between the models considered. The definitions of effective velocity and run
length used are provided in the text

of a single type, as recently observed in force-gliding assay experiments of kinesins
moving microtubule cargoes in Tjioe et al. (2019). The analysis proposed here could
be applied to models accounting for switching between different behaviors (states) of
kinesin motors, such as “driving” kinesins pulling on a microtubule and “resisting”
kinesins holding it back (Tjioe et al. 2019).

5.3 Reattachment in Models of Cargo Transport

In vitro experiments have suggested that binding rates of molecular motors at specific
locations may be regulated by the concentration of the same or opposite-directed
motors (Hancock 2014), as well as by the availability of microtubule filaments. To test
for the impact of reattachment kinetics in the standard transport models ofMüller et al.
(2008, 2010), we modify the binding rate in (18) to account for a higher likelihood of
reattachment when a motor (of either type) is already attached to the microtubule:
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π+(n+, n−) =
{

N+π0+, if n+ + n− = 0 ,

(N+ − n+)ρπ0+, else.

Here ρ > 0 denotes the reattachment factor, and an equivalent expression is valid
for the binding rate for minus motors π−(n+, n−). ρ = 1 corresponds to the bind-
ing kinetics in the previous sections, and ρ > 1 denotes an increased reattachment
likelihood when other motors are attached.

Figure 5 illustrates the effective velocity (panels a,b) and the expected cargo run
length (Eq. (32) for ΔX , panels c,d) for values of ρ ranging from 1 to 50, in the
context of models labeled (N1, N2) with transport driven by maximum N1 forward
(kinesin-1) motors and N2 backward (dynein) motors. Here we report the overall
effective velocity of the cargo according to the second definition in Sect. 5.1, which
includes both attached and detached cargo states in the calculation. In addition, the
mean run length is calculated as the mean total displacement over a cycle starting with
all motors detached until its return to a completely detached state, namely E(ΔX) in
Eqs. (32). Note the base state of complete detachment makes no contribution to the
mean displacement.

Classically in tug-of-war modeling, dynein has been viewed as a “weaker partner”
than kinesin familymotors. In this parameter regime (Müller et al. 2008, 2010), dynein
has both a smaller stall force and smaller critical detachment force than kinesin-1. As
a result, when equal numbers of kinesin-1 and dynein are simultaneously attached,
kinesin-1 dominates transport. However, it has recently been shown that it might not be
realistic to consider dynein in the absence of its helper proteins, particularly dynactin
and BicD2. Together, these form a complex referred to as DDB, and the associated
parameter values (Ohashi et al. 2019) are much more “competitive” with kinesin-1 in
a tug-of-war scenario (see Table 2 in “Appendix”).

In Fig. 5, we display the effective velocity and expected run length of kinesin-1 vs
dynein (panels a,c), and kinesin-1 versus DDB (panels b,d) dynamics. In Fig. 5a, the
effective velocity of cargo driven by teams of motors approaches the effective speed
predicted for kinesin-onlymotor teams (models (1, 0) and (2, 0)) for small values of ρ,
but then decreases asρ becomes larger for conventional dyneinmotility.As observed in
recent studies, activated dynein competes more efficiently with kinesin, and therefore,
the teams of opposite-directed motors are consistently slower than teams consisting of
only the forward kinesin motor protein in Fig. 5b (Ohashi et al. 2019). The expected
run lengths in Fig. 5c, d illustrate that teams of multiple motors are characterized
by significantly increased processivity on microtubules as the reattachment factor
becomes larger. When considering conventional dynein, the difference in processive
cargo motion between the cooperative and tug-of-war models is only observed at large
values of the reattachment constant ρ (> 10, see Fig. 5c). This is due to the fact that the
backward motor (conventional dynein) in the Müller et al. (2008) model is weak with
a small detachment force, so that overcoming the large dynein unbinding rate requires
large values of the reattachment factor. On the other hand, activated dynein in the
DDB complex is a more equal competitor to kinesin, with predictions of the expected
run length in Fig. 5d confirming the experimental observations of larger unloaded run
lengths in Ohashi et al. (2019).
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Fig. 6 Comparison of effective diffusivity estimates for parallel microtubules driven bidirectionally by
kinesin motors as a function of the scaled load sensitivity γ . a Stochastic simulations from Allard et al.
(2019) are marked with blue stars, first passage time approximation in Allard et al. (2019) marked with red
circles, and renewal reward calculation marked with yellow triangles. Following Allard et al. (2019), we
only allow states with i kinesin motors moving forward and K − i kinesin motors moving backward, with
0 ≤ i ≤ K and K = 35 (see Table 3 in “Appendix” for all parameters). The vertical axis is plotted on a
log scale to allow for visualization of differences between effective diffusivity estimated from simulations
and analytical approximations. b Percent error of the first passage approximation in red circles and of the
renewal reward calculation in yellow triangles with respect to the simulation results in Allard et al. (2019)

5.4 Microtubule SlidingModel

As afinal example of the applicability of ourmethod,we consider a recent investigation
into microtubule motility and sliding by Allard et al. (2019). The authors consider a
continuous-time Markov chain model of the interaction of two parallel microtubules,
cross-linked and moved by multiple identical kinesin motors. Depending on which
microtubule the motor heads are attached to, they push the microtubule pair apart
in one of the two directions (one of which is arbitrarily assigned to be “positive”).
The model assumes that motor attachment to microtubules occurs quickly relative to
detachment, allowing a reduced number of dynamic states with microtubules driven
by i motors pushing in the positive direction and K − i motors pushing in the negative
direction (where K is themaximal number ofmotors that fit the overlap region between
the two parallel microtubules). The detachment rates are therefore given by

κ+
i = (K − i)κ0 exp

(

γ
i

K

)

,

κ−
i = iκ0 exp

(

γ
K − i

K

)

,

where κ+
i is the rate at which a motor pulling in the negative direction is replaced by

one pulling in the positive direction, κ−
i is the is the rate at which a motor pulling

in the positive direction is replaced by one moving in the negative direction, κ0 is a
force-free transition rate, and γ is a dimensionless load sensitivity defined as twice
the stall force divided by the detachment force scale (Allard et al. 2019). The relative
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velocity of the parallel microtubules in each state is given by

Δvi = Vm
2i − K

K
,

where Vm is the speed of a single motor (Allard et al. 2019).
A main point of this study is that parallel microtubules may slide bidirectionally

with respect to each other, with a zero mean velocity due to symmetry; thus, the
long-term microtubule transport is characterized by diffusive behavior. The effective
diffusivity of the microtubule pair driven by a total of 35 motors is measured in Allard
et al. (2019) through fitting the slope of the mean squared displacement in stochastic
simulations at long time (stars in Fig. 6a) and comparing to a theoretical approximation
in terms of a first passage time problem (open circles in Fig. 6a).

Our method based on renewal reward theory yields predictions of the effective dif-
fusivity that are closer to the estimates derived from large-time stochastic simulations
(marked with triangles in Fig. 6a). This is further illustrated in Fig. 6b, which shows
the percentage error of the approximations with respect to the available simulation
estimates in Allard et al. (2019). To make the relationship between effective diffusiv-
ity and load sensitivity more clear, we illustrate results for many intermediary values.
Our proposed analytical framework also facilitates the possibility of subsequent sys-
tematic asymptotic approximations to study dependence on underlying biophysical
parameters.

6 Discussion

In this work, we consider examples from the intracellular transport literature where
particles undergo switching dynamics. In particular, we are interested in determining
the effective velocity and diffusivity aswell as the expected run length of these particles
as they switch between biophysical behaviors such as diffusion, active transport, and
stationary states.We propose amethod that is based on defining the underlyingMarkov
chain of state switches and the independent cycles of the dynamicsmarked by returns to
a chosen base state. Emphasizing the cyclic structure of the behavior allows us to treat
the time durations and spatial displacements of particles in these regenerative cycles
as the cycle durations and rewards in a renewal reward process. Through calculation of
the statistics of cycle time and displacement, this robust framework provides a rigorous
means to study how the asymptotic behavior of switching systems depends on model
parameters.

We have restricted our considerations to the case where the switching dynamics
and transport coefficients within each state have no spatial dependence. We expect,
just as in QSS and homogenization methods, that the regenerative approach will also
apply when the dependence between the switching and transport behavior is slowly
varying in space, giving now effective velocity and diffusivity that depend on space
over the same large scale. In QSS, this requires a scale separation in which switching
kinetics are fast relative to transport over spatial variations; see, for example, Newby
and Bressloff (2010a); Bressloff and Newby (2013). Homogenization will also work
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under these conditions, as well as to a broader class ofmodels where the transport coef-
ficients within each state depend also on smaller spatial scales, where its results would
depart from those of QSS. Both of these PDE-based approaches produce effective
Fokker–Planck equations that give unambiguous interpretation of spatially dependent
diffusivity in the context of the equivalent stochastic description.

We expect the regenerative cycle approach developed here should also apply in
a generalization of the context in which QSS works, namely, when the spatial scale
of transport over a regeneration cycle is small compared to the spatial variation in
the switching kinetics and/or transport coefficients within each state. The sense in
which to interpret the resulting spatially dependent diffusivity would presumably be
the same as for QSS, but this would require a detailed derivation to investigate. The
extension of our approach to compute effective transport when the switching and/or
state-dependent transport coefficients depend on small as well as large spatial scales
is more challenging and problematic because regeneration of the stochastic process
would require not only a return to the base state but also to the same values of the
transport coefficients. Similarly, while the presence of spatial boundaries can be han-
dled in a QSS framework via a boundary layer analysis of the forward Kolmogorov
equation (Zmurchok et al. 2017), spatial boundaries would be a rather difficult chal-
lenge for the regeneration cycle analysis because the hitting of the boundary during a
cycle would at least ostensibly disrupt its generic statistical properties. In particular,
our extension to switching dynamics that are not fully Markovian moves the analysis
outside of the framework of partial differential equations, so singular perturbation
analysis as in QSS and homogenization cannot be so flexibly applied.

We have emphasized the application of the regenerative cyclemethodology to effec-
tive transport coefficients, particularly for canonical tug-of-war models describing the
transport of cargo by teams of molecular motor proteins. Previous investigations of
the effective transport of cargo in these multi-state models have considered individ-
ual trajectories of the dynamics, computed using Monte Carlo simulations with the
Gillespie algorithm (Müller et al. 2008; Kunwar and Mogilner 2010; Müller et al.
2010). These studies determine the effective velocity of the particles analytically by
calculating the distribution of the number of bound motors from the stationary solu-
tion of the master equation (Klumpp and Lipowsky 2005). However, determining the
effective diffusivity in these studies relied on numerical simulations. Our method pro-
poses a faster and explicit investigation of the impact of model parameters on the
effective diffusivity. For instance, Fig. 4 (top right) captures the different behavior
of identical motor teams involved in tug-of-war dynamics when the ratio of stall to
detachment force is small (weak motors with small effective diffusivity) versus large
(strong motors with increasing effective diffusivity). This observation is consistent
with simulations in Müller et al. (2008), where the large force ratios correspond to
a dynamic instability where only one motor type is primarily bound at the end of an
unbinding cascade (Müller et al. 2008, 2010).

Multiple experiments summarized in Hancock (2014) have shown that inhibition
of one motor type reduces transport in both directions in several systems, suggesting
a “paradox of co-dependence” in bidirectional cargo transport. Several mechanisms
accounting for this paradox were proposed, including the microtubule tethering mech-
anism recently explored in Smith and McKinley (2018). The hypothesis for this
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mechanism is that motors switch between directed active transport and a weak binding
or diffusive state. The recent experimental study in Feng et al. (2018) suggests that
teams of kinesin-1 motors coordinate transport using help from the dynamic tethering
of kinesin-2 motors. This work shows that when kinesin-1 motors detach, tethering
of kinesin-2 to the microtubule ensures that cargo stays near the filament to allow
for subsequent reattachment (Feng et al. 2018). Our approach allows us to assess the
dependence of the dynamics on a potentially increased reattachment rate for cargo
that is already bound to the filament by at least one motor (Fig. 5). Implementing this
change in the standard binding models in Müller et al. (2008); Kunwar and Mogilner
(2010); Müller et al. (2010) for both kinesin-1/dynein and kinesin-1/DDB dynamics
shows a decrease in overall effective velocity, but very large increases in potential
run length. This could be consistent with the paradox in that experimentalists would
observe more kinesin-directed activity when the reattachment rate is sufficiently high.

We have made MATLAB and Mathematica sample code available for the cal-
culation of effective velocity, diffusivity, and run lengths in a cooperative model of
one-directional transport (as discussed in Sect. 5.1) and a tug-of-war model of bidirec-
tional transport (as discussed in Sect. 5.2) (GitHub 2019). The code for these examples
can be readily adapted to allow for a general probability transition matrix for the state
dynamics, together with the probability distributions for the times and displacement
in each state, to extend to other models of the processive movement of molecular
motors and cargo transport. As the theory of how motors coordinate to transport cargo
continues to develop at a rapid pace, the analysis developed here will provide a tool
for new models accounting for tethered and weakly binding states with stochastic
transitions whose rates do not depend on spatial position. The framework also extends
to complex models with diffusion and binding reactions in higher dimensions, where
the moments of times and spatial displacements in each state may be estimated using
simulation and the calculation of effective transport quantities reduces to calculation
of these moments.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

In this appendix, we provide tables with parameter values from the models considered
in Sect. 5.
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Table 1 Parameters for the plus-end motor (conventional kinesin-1) and minus-end motor (cytoplasmic
dynein) in Example 4 (Sect. 2.3) and in Sect. 5.2, from Klumpp and Lipowsky (2005), Müller et al. (2008)

Motor Parameter Meaning Value

Plus-end motor Fs+ Stall force 6 pN

Fd+ Detachment force 3 pN

ε0+ Load-free unbinding rate 1 s−1

π+ Binding rate 5 s−1

v f + Forward velocity 1 µm/s

vb+ Backward velocity 0.006 µm/s

Minus-end motor Fs− Stall force 1.1 pN

Fd− Detachment force 0.75 pN

ε0− Load-free unbinding rate 0.27 s−1

π0− Binding rate 1.6 s−1

v f − Forward velocity 0.65 µm/s

vb− Backward velocity 0.072 µm/s

The notation in Example 3 (Sects. 2.3 and 5.1) corresponds to the plus-end motor in this table (kinesin-1)

Table 2 Parameters for the DDB
complex from Ohashi et al.
(2019) in the reattachment
model in Sect. 5.3

Parameter Meaning Value

Fs Stall force 7 pN

Fd Detachment force 3 pN

ε0− Load-free unbinding rate 0.25 s−1

π0− Binding rate 1.5 s−1

v f Forward velocity 1 µm/s

vb Backward velocity 0.006 µm/s

Table 3 Parameters from Allard
et al. (2019) for the microtubule
sliding model in Sect. 5.4

Parameter Meaning Value

K Maximal number of motors 35

κ0 Force-less transition rate 0.5 s−1

γ Dimensionless load sensitivity 3

Vm Single kinesin velocity 0.57 µm/s

References

Allard J, DoumicM,MogilnerA,OelzD (2019) Bidirectional sliding of two parallelmicrotubules generated
by multiple identical motors. J Math Biol 79:1–24

Bergman JP, Bovyn MJ, Doval FF, Sharma A, Gudheti MV, Gross SP, Allard JF, Vershinin MD (2018)
Cargo navigation across 3d microtubule intersections. Proc Natl Acad Sci 115(3):537–542

Bhat UN, Miller GK (2002) Elements of applied stochastic processes, vol 3. Wiley-Interscience, Hoboken
Bressloff PC, Newby JM (2011) Quasi-steady-state analysis of two-dimensional random intermittent search

processes. Phys Rev E 83(6):061139
Bressloff PC, Newby JM (2013) Stochastic models of intracellular transport. Rev Mod Phys 85(1):135
Bressloff PC, Xu B (2015) Stochastic active-transport model of cell polarization. SIAM J Appl Math

75(2):652–678
Brooks EA (1999) Probabilistic methods for a linear reaction-hyperbolic system with constant coefficients.

Ann Appl Probab 9:719–731

123



Renewal Reward Perspective on Linear Switching Diffusion… Page 35 of 36 126

Ciocanel MV (2017) Modeling intracellular transport during messenger RNA localization in Xenopus
oocytes. Ph.D. thesis, Brown University

Ciocanel V, Kreiling JA, Gagnon JA, Mowry KL, Sandstede B (2017) Analysis of active transport by
fluorescence recovery after photobleaching. Biophys J 112(8):1714–1725

Ciocanel MV, Sandstede B, Jeschonek SP, Mowry KL (2018) Modeling microtubule-based transport and
anchoring of mRNA. SIAM J Appl Dyn Syst 17(4):2855–2881

Cioranescu D, Donato P (1999) An introduction to homogenization. Oxford University Press, New York
Cox DR (1962) Renewal theory. Methuen, London
Cox SM, Matthews PC (2002) Exponential time differencing for stiff systems. J Comput Phys 176(2):430–

455
Dobrow RP (2016) Introduction to stochastic processes with R. Wiley, New York
Encalada SE, Szpankowski L, Xia Ch, Goldstein LS (2011) Stable kinesin and dynein assemblies drive the

axonal transport of mammalian prion protein vesicles. Cell 144(4):551–565
Feng Q, Mickolajczyk KJ, Chen GY, Hancock WO (2018) Motor reattachment kinetics play a dominant

role in multimotor-driven cargo transport. Biophys J 114(2):400–409
Gagnon JA, Kreiling JA, Powrie EA, Wood TR, Mowry KL (2013) Directional transport is mediated by a

dynein-dependent step in an RNA localization pathway. PLOS Biol 11(4):e1001551
GitHub (2019) Sample Matlab and Mathematica code for effective velocity and diffusivity calcula-

tion. https://github.com/scottmckinley/stochastics-lab/tree/master/effective-transport. Accessed 10
Oct 2019

Hancock WO (2014) Bidirectional cargo transport: moving beyond tug of war. Nat Rev Mol Cell Biol
15(9):615

Hughes J, HancockWO, Fricks J (2011) Amatrix computational approach to kinesin neck linker extension.
J Theor Biol 269(1):181–194

Hughes J, Hancock WO, Fricks J (2012) Kinesins with extended neck linkers: a chemomechanical model
for variable-length stepping. Bull Math Biol 74(5):1066–1097

Hunter JJ (2008) Variances of first passage times in a markov chain with applications to mixing times.
Linear Algebra Appl 429(5–6):1135–1162

Jung P, Brown A (2009) Modeling the slowing of neurofilament transport along the mouse sciatic nerve.
Phys Biol 6(4):046002

Klumpp S, Lipowsky R (2005) Cooperative cargo transport by several molecular motors. Proc Natl Acad
Sci USA 102(48):17284–17289

Kramer PR, Latorre JC, Khan AA (2010) Two coarse-graining studies of stochastic models in molecular
biology. Commun Math Sci 8(2):481–517

Krishnan A, Epureanu BI (2011) Renewal-reward process formulation of motor protein dynamics. Bull
Math Biol 73(10):2452–2482

Kubo R (1963) Stochastic Liouville equations. J Math Phys 4(2):174–183
Kunwar A, Mogilner A (2010) Robust transport by multiple motors with nonlinear force-velocity relations

and stochastic load sharing. Phys Biol 7(1):016012
Kunwar A, Tripathy SK, Xu J, Mattson MK, Anand P, Sigua R, Vershinin M, McKenney RJ, Clare CY,

Mogilner A et al (2011) Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-
droplet transport. Proc Natl Acad Sci 108(47):18960–18965

Lawler GF (1995) Introduction to stochastic processes. Chapman & Hall, New York
Li Y, Brown A, Jung P (2014) Deciphering the axonal transport kinetics of neurofilaments using the fluo-

rescence photo-activation pulse-escape method. BMC Neurosci 15(Suppl 1):P132
McKinley SA, Athreya A, Fricks J, Kramer PR (2012) Asymptotic analysis of microtubule-based transport

by multiple identical molecular motors. J Theor Biol 305:54–69
Miles CE, Lawley SD,Keener JP (2018)Analysis of nonprocessivemolecularmotor transport using renewal

reward theory. SIAM J Appl Math 78(5):2511–2532
Müller MJ, Klumpp S, Lipowsky R (2008) Tug-of-war as a cooperative mechanism for bidirectional cargo

transport by molecular motors. Proc Natl Acad Sci 105(12):4609–4614
Müller MJ, Klumpp S, Lipowsky R (2010) Bidirectional transport by molecular motors: enhanced proces-

sivity and response to external forces. Biophys J 98(11):2610–2618
Neumann S, Chassefeyre R, Campbell GE, Encalada SE (2017) Kymoanalyzer: a software tool for the

quantitative analysis of intracellular transport in neurons. Traffic 18(1):71–88
Newby J, Bressloff PC (2010a) Local synaptic signaling enhances the stochastic transport of motor-driven

cargo in neurons. Phys Biol 7(3):036004

123

https://github.com/scottmckinley/stochastics-lab/tree/master/effective-transport


126 Page 36 of 36 M. Ciocanel et al.

Newby J, Bressloff PC (2010b) Random intermittent search and the tug-of-war model of motor-driven
transport. J Stat Mech Theory Exp 04:P04014

Newby JM, Bressloff PC (2010c) Quasi-steady state reduction of molecular motor-basedmodels of directed
intermittent search. Bull Math Biol 72(7):1840–1866

Newby J, Schiller JL, Wessler T, Edelstein J, Forest MG, Lai SK (2017) A blueprint for robust crosslinking
of mobile species in biogels with weakly adhesive molecular anchors. Nat Commun 8(1):1–10

Ohashi KG, Han L,Mentley B,Wang J, Fricks J, HancockWO (2019) Load-dependent detachment kinetics
plays a key role in bidirectional cargo transport by kinesin and dynein. Traffic 20(4):284–294

Palacios JL (2009) On the moments of hitting times for random walks on trees. J Probab Stat 2009:1–4
Pavliotis GA (2005) A multiscale approach to Brownian motors. Phys Lett A 344(5):331–345
Pavliotis G, Stuart A (2008) Multiscale methods: averaging and homogenization. Springer, Berlin
Popovic L, McKinley SA, Reed MC (2011) A stochastic compartmental model for fast axonal transport.

SIAM J Appl Math 71(4):1531–1556
Reed MC, Venakides S, Blum JJ (1990) Approximate traveling waves in linear reaction-hyperbolic equa-

tions. SIAM J Appl Math 50(1):167–180
Reimann P, Van den Broeck C, Linke H, Hänggi P, Rubi J, Pérez-Madrid A (2001) Giant acceleration of

free diffusion by use of tilted periodic potentials. Phys Rev Lett 87(1):010602
Reimann P, Van den Broeck C, Linke H, Hänggi P, Rubi J, Pérez-Madrid A (2002) Diffusion in tilted

periodic potentials: enhancement, universality, and scaling. Phys Rev E 65(3):031104
Resnick S (1992) Adventures in stochastic processes. Birkhäuser Boston Inc., Boston
Serfozo R (2009) Basics of applied stochastic processes. Springer, Berlin
Shtylla B, Keener JP (2015) Mathematical modeling of bacterial track-altering motors: track cleaving

through burnt-bridge ratchets. Phys Rev E 91(4):042711
Smith JD, McKinley SA (2018) Assessing the impact of electrostatic drag on processive molecular motor

transport. Bull Math Biol 80:1–36
Tjioe M, Shukla S, Vaidya R, Troitskaia A, Bookwalter CS, Trybus KM, Chemla YR, Selvin PR (2019)

Multiple kinesins induce tension for smooth cargo transport. eLife 8:e50974
Trong PK, Doerflinger H, Dunkel J, St Johnston D, Goldstein RE (2015) Cortical microtubule nucleation

can organise the cytoskeleton of Drosophila oocytes to define the anteroposterior axis. eLife 4:e06088
Wang H, Peskin CS, Elston TC (2003) A robust numerical algorithm for studying biomolecular transport

processes. J Theor Biol 221(4):491–511
Whitt W (2002) Stochastic-process limits: an introduction to stochastic-process limits and their application

to queues. Springer, Berlin
Yin G, Zhu C (2010) Hybrid switching diffusions, stochastic modelling and applied math, vol 63. Springer,

New York
Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A, Davis I, St Johnston D (2008) In vivo imaging

of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134(5):843–853
Zmurchok C, Small T, Ward MJ, Edelstein-Keshet L (2017) Application of quasi-steady-state methods to

nonlinear models of intracellular transport by molecular motors. Bull Math Biol 79(9):1923–1978.
https://doi.org/10.1007/s11538-017-0314-1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Maria-Veronica Ciocanel1 · John Fricks2 · Peter R. Kramer3 ·
Scott A. McKinley4

1 Department of Mathematics and Biology, Duke University, Durham, USA

2 School of Mathematical and Statistical Sciences, Arizona State University, Tempe, USA

3 Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, USA

4 Department of Mathematics, Tulane University, New Orleans, USA

123

https://doi.org/10.1007/s11538-017-0314-1
http://orcid.org/0000-0001-6859-4659

	Renewal Reward Perspective on Linear Switching Diffusion Systems in Models of Intracellular Transport
	Abstract
	1 Introduction
	1.1 PDE Methods for Markovian Switching
	1.2 Summary of Method Based on Regeneration Cycles

	2 Mathematical Framework and Examples
	2.1 Decomposition into Regenerative Cycles and Renewal Reward Structure
	2.2 Notation for Events within Each Regeneration Cycle
	2.3 Examples

	3 Analysis within a Single Cycle
	4 Application to Models of Intracellular Transport
	4.1 2-State Advection–diffusion Model of Particle Transport
	4.2 4-State Advection–Reaction–Diffusion Model of Particle Transport

	5 Application to Cooperative and Tug-of-War Models of Cargo Transport
	5.1 Cooperative Models of Cargo Transport
	5.2 Tug-of-War Models of Cargo Transport
	5.3 Reattachment in Models of Cargo Transport
	5.4 Microtubule Sliding Model

	6 Discussion
	Appendix
	References




