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a b s t r a c t 

Many-objective truss structure problems from small to large-scale problems with low to high 
design variables are investigated in this study. Mass, compliance, first natural frequency, and 
buckling factor are assigned as objective functions. Since there are limited optimization methods 
that have been developed for solving many-objective truss optimization issues, it is important to 
assess modern algorithms performance on these issues to develop more effective techniques in the 
future. Therefore, this study contributes by investigating the comparative performance of eighteen 
well-established algorithms, in various dimensions, using four metrics for solving challenging 
truss problems with many objectives. The statistical analysis is performed based on the objective 
function best mean and standard deviation outcomes, and Friedman’s rank test. MMIPDE is the 
best algorithm as per the overall comparison, while SHAMODE with whale optimisation approach 
and SHAMODE are the runners-up. 

• A comparative test to measure the efficiency of eighteen state-of-the-practice methods is per- 
formed. 

• Small to large-scale truss design challenges are proposed for the validation. 
• The performance is measured using four metrics and Friedman’s rank test. 
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Background 

Meta-heuristics (MHs) methods are comprehensive optimizer paradigms or black-box methods that might be used for nearly all 
optimisation issues. As a result, several MHs have been developed over time and are frequently utilized to solve real-world challenging
optimization issues [1] . The rationale for its robust search mechanism is its simple and easy execution, gradient-free characteristics,
and the balance between its two search blueprints: local intensification (exploitation) and global diversification (exploration) [2] . They 
also showed their superior performance while addressing multi-objective optimization problems (MOOPs), since they demonstrated 
their better potential in finding a Pareto front in a single optimization cycle [3–5] . 

However, a large-scale design challenge such as truss optimization problems with many design variables may make employing MHs 
challenging [6 , 7] . Moreover, the search capacity of MHs deteriorated significantly as the number of objectives increased, thus, this
poses challenges diversity, convergence, and computational complexity. A category of MOOPs with four or more objectives is called 
many-objective optimization problems (MaO-OPs) [8] . These issues can be frequently noticed in real-life engineering and industrial 
design issues such as indirect irradiated solar receiver modeling and optimization [9] , automotive engine calibration problems [10] ,
water distribution systems [11] , control system design [12] , flow shop scheduling problem [13] , truss optimization [14] , and land use
management problem [15] . It comes as no surprise that managing multiple objectives has been a major focus of research among the
academic community in recent times, given the complexity that arises from handling a large number of objectives. Literature shows
that while implementation of widely used Pareto-dominance based evolutionary approaches like NSGA-II [16] and SPEA2 [17] to 
problems with so many objectives may cause significant challenges [18 , 19] : 

1. The problem of becoming non-dominated by virtually all solutions in each population eventually results in severe convergence 
ability deterioration. 

2. Convergence and diversification conflict aggravation due to objective space dimensionality exponential increase. 
3. The possibility of least efficient offspring generation in high-dimension objective space due to constraints on population size posed 

by computational efficiency concerns. 
4. Significant rise in computational complexity with Hypervolume (HV)-based performance estimation. 
5. Difficulty in solution visualization that might face by a decision-maker (DM). 

To alleviate the aforementioned challenges and scalability of optimization techniques to address MaO-OPs typically three avenues 
were adopted in the literature. First is the method of enhancement of the selection process in the direction of the Pareto front (PF)
by modifying Pareto-dominance, allocating various rankings to non-dominated solutions, utilization of various fitness assessment 
techniques [20–22] . The second avenue is the incorporation of preference mechanism [23 , 24] , and the third one is the reduction of
objective space (by decreasing objectives numbers) such as decomposition-based mechanism [25–27] . Several MHs have been estab- 
lished in recent years to answer MaO-OPs, but, they are typically limited to unconstrained benchmarks [28] . Moreover, real-world
MaO-OPs are comprised of several design restrictions and conflicting objectives that made them more challenging. Consequently, 
there is a need to examine the key performance measure (i.e., the balance of diversification and intensification) of MHs algorithms
for practical challenging MaO-OPs. 

A truss is a structure designed to sustain large loads, prevent deflection, and achieve long spans with minimal weight having
applications in bridges, ceilings, industrial buildings, towers, etc. Due to its wide engineering applications, lots of research efforts 
regarding design optimization (both single-& multi-objectives) of the truss have been reported in the literature over the last two
decades. The truss mass, nodal displacement, natural frequency, compliance, and frequency response function are often utilized 
objectives, whereas size, shape, and topology are design variables that were integrated separately or concurrently. The truss is
subjected to a variety of mechanical behaviours when in use, including stress, displacement, buckling, and vibration thus these are
typical design constraints accounted for optimization in studies. However, due to the inclusion of these constraints, the optimization
problem becomes more implicit, non-linear, and non-convex which is often too complicated to solve. Thus, derivative-free MHs are
executed for solving these problems which showed high success rates in finding an optimal solution with easiness and flexibility
[29–34] . 

A typical conventional single-objective truss optimization issue has the goal to minimize mass while accounting for numerous 
design constraints for the truss’s safety needs under various loading circumstances. However, the optimal solutions reported were 
found to lie on constrained edges (i.e. at the threshold of safety and failure) and thus erratic. To resolve such issues multi-objective
(MO) design approaches were adopted by including a structure reliability indicator as another objective with mass [35] . MOOPs are
frequently investigated in literature as they more or less mimic the real-world environment. Contrary to a single objective they pose
heaps of optimal solutions often called a Pareto set, based on which DM makes its choice. As stated before, MH shows its competency
while solving these MOOPs and is thus significantly investigated for truss optimization problems. A few notable examples are Heat
Transfer Search (HTS) [6 , 7 , 36] , Genetic Algorithm [37 , 38] , Passing Vehicle Search (PVS) [3] , Immune Algorithm [39] , HTS-PVS
[4] , Adaptive Symbiotic Organisms Search [40] , Plasma Generation Optimizer [41] , Chaotic meta-heuristic algorithm [42] , Nature
inspired optimization tools for optimization [43] and Modified Differential Evolution (DE) [44] . 

The real-world truss design problems pose many load cases that result in many reliabilities objectives inclusion such as structural
compliance, natural frequencies, and buckling factor. This rise in the number of objectives eventually leads the truss design problems
towards MaO-OPs. With several competing goals, the complexity of the design grows rapidly in size, making the truss optimization
problem quickly intractable and challenging to solve. Despite such significant engineering and industrial design issue, MaO-OPs 
of truss structure is lacking in the literature. Pholdee et al . [14] first performed a baseline investigation for many-objective truss
optimization. However, apart from that, very limited further investigation has been made so far [45 , 46] . Recently a considerable
2 
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number of novel MHs have been developed however their efficacy and utility for many-objective truss optimization have yet to be
examined. 

The current study has therefore examined a performance comparison of recently proposed many-objective MHs for MaO-OPs of the 
truss structure. Concurrently, for static and dynamic applications, an examination of the size optimization of the truss was performed.
The design problem poses four objective functions viz. mass, compliance, first natural frequency, and compression-buckling ratio 
subjected to numerous design constraints. Eighteen distinguished MHs viz. MOALO [47] , MODA [48] , MOGOA [49] , MOGWO [50] ,
MOMVO [51] , MOWCA [52] , MSSA [53] , SHAMODE [54] , SHAMODE-WO [54] , NSGA-II [16] , RPBILDE [55] , DEMO [56] , MOEA/D
[57] , UPS-EMOA [58] , NSGA-III [28] , RVEA [23] , MnKnEA [22] , and MMIPDE [35] are evaluated . Eight widely used planar and
spatial truss benchmark structures are examined based on four performance measures. 

This study contributes as follows: 

• A real-world many objective structures design optimization model is proposed and investigated having four conflicting objectives 
subjected to several design constraints. 

• An extensive performance study of eighteen popular MHs with complicated eight planar and spatial trusses with diverse properties 
is conducted. 

• Four performance metrics and the convergence history of all algorithms are examined for all algorithms. 
• A popular Friedman’s rank test is performed to get a statistical measure of the eighteen distinguish algorithms. 

Method details 

To solve MaO-OPs regarding the truss, eighteen MHs are employed. These optimization methodologies are stated to be well-
established, with some being regarded as the finest optimisers for solving constrained many-objective test problems. All evaluatedMHs 
and their basic approach are explained as follows: 

MO ant lion optimiser (MOALO) [47] 
Inspired by MOPSO, MOALO incorporates a leader selection and archive maintenance mechanism. A repository of PFs is main-

tained here, where a roulette wheel method is employed to choose a non-dominated solution (NDS) from the archive. Convergence is
derived from basic ALO that mimics the antlion’s hunting behaviour and their interaction with their prey (ants). Niching technique
is utilized for solution distribution assessment in the archive. Like MOPSO, the leaders (antlions) opted to have the least populated
territory. The most populous solutions are eliminated when the archive is full to make room for new solutions. 

MO dragonfly algorithm (MODA) [48] 

A MO variation of swarm intelligence-based DA is known as MODA. During the optimization process, an archive is provided for
storing and retrieving the best approximate NDS. Here the positions are updated similarly to DA while the source of food is selected
from the repository. The convergence and coverage behaviour of MODA is inspired by MOPSO. Segments of search space are created
to locate the solutions in the least populated regions whereas leader selection is done as per the mechanism of a roulette wheel. 

MO grasshopper optimisation algorithm (MOGOA) [49] 
Inspired by GOA’s efficient peculiar adaptive method that creates a harmony between exploration and exploitation, MOGOA was 

developed. The natural swarming behaviour of grasshoppers is mathematically modelled for MOOPs. To convert the basic GOA into
a MO version an archive and target selection methodology is incorporated similar to MOPSO in MOGOA that helps in finding PFs. 

MO grey wolf optimiser (MOGWO) [50] . 
MOGWO mimics the grey wolf hunting approach and their social hierarchy. Analogous to MOPSO, two components i.e. archive 

and leader selection mechanism is adopted for a transition of basic GWO into a MO version. To store and maintain the NDS external
archive is used whereas to improve the repository results a grid mechanism is integrated with basic GWO. Here leader selection
methodology is implemented (based on 3 best results viz. 𝛼, 𝛽, and 𝛿) to upgrade and replace PFs. 

MO multiverse optimisation (MOMVO) [51] 
It is inspired by the physics hypotheses postulating the possibility of multiple universes and simulating their interaction. Equivalent

to MOPSO and PAES, a roulette wheel-based leader selection method is incorporated to update and select the NDS, and an archive is
utilized to keep these solutions. Here white, black, and wormholes are taken as references for other solutions position updates. 

MO water cycle algorithm (MOWCA) [52] 
MOWCA is founded on the premise of the natural water cycle phenomenon and replicates the passage of streams and rivers

toward the sea. A crowding distance method is employed here to select the best solution that includes rivers and seas. Furthermore,
to construct PFs, NDS are preserved in the archive. 

MO Salp swarm algorithm (MSSA) [53] 
MSSA imitates a navigating and foraging action of salps in the sea by forming a salp chain. The front salp of the chain is the

leader which guides the remaining slaps (followers) towards the food source. Identical to MOPSO, MSSA stores the best NDS in an
archive (repository) obtained during optimization. The leader is selected through the ranking process and employment of roulette 
wheel methodology based on which the position of other salps is modified. 
3 



N. Panagant, S. Kumar, G.G. Tejani et al. MethodsX 10 (2023) 102181 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Success history-based adaptive MO DE (SHAMODE) [54] 
SHAMODE is the MO method of the SHADE algorithm that employs the self-adaptive technique for controlling parameter tuning

of DE. Based on the success history memory new controlling parameter values is adapted that improve search efficiency. It starts with
population initialization and the formation of an external archive. Both are updated iteratively as per DE operators and new NDS
are stored in the repository. The search ends after reaching the termination criteria and the most updated solutions obtained are set
equal to the approximate PFs. 

Success history-based adaptive MO DE with whale optimisation (SHAMODE-WO) [54] 
To enhance SHAMODE search diversity, the spiral motion operator of the Whale Optimization Algorithm is combined with the 

binomial crossover of DE. Here the mutation vector is get updated to a new mutation vector according to the spiral movement
technique before the implementation of a crossover step. 

NSGA-II [16] 
NSGA-II is an upgradation of NSGA and perhaps the most widely acknowledges MOEA. To upgrade the NSGA convergence prop-

erty, here an Elitism mechanism is incorporated. Identical to GA, this method creates offspring sets from the parent with crossover
and mutation operators. The solution updating procedure is repeated until the stop condition is met. The search efficiency is enhanced
by using NDS and crowding distance mechanism. 

Hybridisation of real-code population-based incremental learning and DE (RPBILDE) [55] 
RPBILDE is a hybrid MO evolutionary algorithm that was generated by integrating the DE operator into the basic approach of

RPBIL. The population is generated based on a probability matrix initially which is then hybridized with existing NDS. Here both the
probability matrix and NDS keep on updating unit termination condition is not reached. 

DE for MO optimisation (DEMO) [56] 
DEMO is a MO variant of DE that merges the benefits of DE with Pareto-based ranking and crowd distance sorting methods. Alike

NSGA-II, DEMO assumes the elitism approach. The key dissimilarity is that it uses DE based mutation and crossover, rather than
genetic algorithm procedures.. 

MO evolutionary algorithm based on decomposition (MOEA/D) [57] 
MOEA/D is another famous MOEA that uses the basic scalarization technique. Here the MOOPs are explicitly decomposed into

scalar subproblems that are optimized simultaneously by using neighbour scalar aggregation function information. Moreover, like 
other population-based MH methodologies, it uses a NDS method to obtain PFs. Iterative updating of solutions ends after reaching
the termination criteria. 

Unrestricted population size evolutionary MO optimisation algorithm (UPS-EMOA) [58] 
As the name suggested UPS-EMOA allowed a peculiar greater size of PF against the widely used solution filtering approach of

MHs to maintain constant archive size. The notion here is to enhance the solution diversity by increasing the number of solutions.
For creating offspring, the DE operator is used while solutions are stored in a repository that allowed storage of solutions according
to computer capacity. 

Reference-point-based many-objective evolutionary algorithm (NSGA-III) [28] 
To make NSGA-II compatible with MaO-OPs, an improved version called NSGA-III is developed. A predefined reference point 

set that serves as a reference allocation for the final output is used in NSGA-III for diversity maintenance. In solution selection, the
NSGA-III uses the least perpendicular distances to these reference locations as a criterion. In another word, it highlights non-dominated
population members who are close to reference points. 

Reference vector guided evolutionary algorithm for MaO-OPs (RVEA) [59] 
RVEA employs the elitism technique for population generation and selection, much like NSGA-II. Conventional crossover and 

mutation procedure of GA is applied to create the offspring population. To achieve a balance between convergence and diversity,
the angle penalized distance scalarization technique, like MOEA/D, is employed here. Moreover, these reference vectors distribution 
is dynamically adjusted based on adaptive and regeneration techniques. Here the predefined reference vectors set can be uniformly
generated or user preference specified. 

Knee point driven evolutionary algorithm for MaO-Ops (MnKnEA) [60] 
MnKnEA uses knee point as a additional guideline for selecting next-generation parents apart from the non-dominance selection 

procedure. In absence of user-specific presences, knee points which is the PFs subset are naturally preferred for selection in every pop-
ulation. This is the rough illustration of preference mechanism bias towards larger HV that eventually helps in setting the convergence
and diversity of the search. Knee points are identified based on an adaptive strategy here. 

MO meta-heuristic with iterative parameter distribution estimation (MMIPDE) [61] 
MMIPDE is a dominance-based MO MHs that has a self-adaptive mechanism achieved through distribution evaluation. A modified 

DE reproduction technique is used while the controlling parameters are estimated based on a population-based incremental learning 
approach. The algorithm starts with the initialization of a probability matrix and initial Pareto archive. Based on a NDS scheme, high-
and low-level archives update iteratively. The algorithm stops when termination criteria is reached. 
4 
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The aforementioned algorithms MATLAB codes are primarily given by their developers; however, some are developed by the 
authors of this study. To have a fair comparison between all evaluated optimization techniques, authors employed analogous hardware 
and computer language. 

Problem statement 

A mathematical programming problem of truss structure can be stated as follows. 

𝐹 𝑖𝑛𝑑, 𝑋 = 

{
𝐴 1 , 𝐴 2 , .., 𝐴 𝑚 

}
(1) 

To minimize the mass of truss, minimize compliance, maximize first natural frequency, and minimize maximum buckling factor: 

𝐹 1 ( 𝑋 ) = 𝑚𝑎𝑠𝑠 = 

𝑚 ∑
𝑖 =1 

𝐴 𝑖 𝜌 𝐿 𝑖 (2) 

𝐹 2 ( 𝑋 ) = 𝑐 𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐 𝑒 = 𝛿𝑇 ∗ 𝐹 (3) 

𝐹 3 ( 𝑋 ) = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 1∕ 𝑓 1 (4) 

𝐹 4 ( 𝑋 ) = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑢𝑐 𝑘𝑙𝑖𝑛𝑔 𝑓𝑎𝑐 𝑡𝑜𝑟 = max 
⎛ ⎜ ⎜ ⎝ 
|||𝜎𝑐𝑜𝑚𝑝 

𝑗 

|||
𝜎𝑐𝑟 
𝑗 

⎞ ⎟ ⎟ ⎠ , (5) 

Subject to: 

Behavior constraints: 

𝑔 1 ( 𝑋 ) ∶ 𝑆𝑡𝑟𝑒𝑠𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, 
max 

(|||𝜎𝑗 |||
)
− 𝜎𝑎𝑙 𝑙 𝑜𝑤𝑎𝑏𝑙 𝑒 

𝜎𝑎𝑙 𝑙 𝑜𝑤𝑎𝑏𝑙 𝑒 

≤ 0 (6) 

𝑔 2 ( 𝑋 ) ∶ 𝐸𝑢𝑙𝑒𝑟 𝑏𝑢𝑐 𝑘𝑙𝑖𝑛𝑔 𝑐 𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, max 
⎛ ⎜ ⎜ ⎝ 
|||𝜎𝑐𝑜𝑚𝑝 

𝑗 

||| − 𝜎𝑐𝑟 
𝑗 

𝜎𝑐𝑟 
𝑗 

⎞ ⎟ ⎟ ⎠ ≤ 0 , 𝑤ℎ𝑒𝑟𝑒 𝜎𝑐𝑟 
𝑗 

= 

𝑘 𝐴 𝑗 𝐸 

𝐿 

2 
𝑗 

(7) 

Side constraints: 

𝐶𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐 𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑐 𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, 𝐴 

𝑚𝑖𝑛 
𝑖 

≤ 𝐴 𝑖 ≤ 𝐴 

𝑚𝑎𝑥 
𝑖 

(8) 

where, 
𝐴 𝑖 is a cross-section of i-th element 

𝐴 

𝑚𝑖𝑛 
𝑖 

is a minimum value of A 

𝐴 

𝑚𝑎𝑥 
𝑖 

is a maximum value of A 

𝜌 is a density of truss material 

𝐿 𝑖 is a length of i-th truss member 

𝛿 is a displacement vector from finite element analysis 

𝐹 is a load vector from finite element analysis 

𝑓 1 is the first natural frequency 

𝜎
𝑐𝑜𝑚𝑝 

𝑖 
is compressive stress of i-th truss member 

𝜎𝑐𝑟 
𝑖 

is critical compressive stress of i-th truss member 

i is an index of a compressive truss member 

m is number of compressive truss members 

j is an index of a degrees of freedom 

n is number of degrees of freedom 

k is Euler buckling coefficient which is set to 3.96 

𝜎𝑐𝑟 
𝑖 

is allowable buckling stress of i-th compressive member 

E is the modulus of elasticity 

A i is the cross-section area of i-th compressive member. 

L i is the length of the i-th compressive member 

Elemental cross-sections are assumed to be countable variables as beam regular sections which ensure the practicability of the 
structure. The ground structure of the 10–, 25–, 37–, 60–, 72–, 120–, 200–, and 942–bar trusses are presented in Figs. 1–4 . Certain
elements of the evaluated trusses are grouped as per the structural symmetricity. Therefore, the numbers of design variables of the
10– bar truss, 25– bar truss, 37– bar truss, 60– bar truss, 72– bar truss, 120– bar truss, 200– bar truss, and 942–bar truss are taken
into 10 groups, 8 groups, 15 groups, 25 groups, 16 groups, 7 groups, 29 groups, and 59 groups respectively. It is assumed that
the properties and permittable limits of all trusses are the same. Mass Density, elastic modulus, and permittable stress are assumed
as 7850 kg/m 

3 , 200 GPa, and 400 MPa respectively. The design considerations such as design variables, material density, Young’s
modulus, constraints, and loading conditions are shown in Table 1 . 
5 
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Table 1 

Design considerations of the truss problems. 

The 10-bar truss The 25-bar truss The 37-bar truss The 60-bar truss The 72-bar truss The 120-bar truss The 200-bar truss The 942-bar truss 

Design variables 𝐴 𝑖, 𝑖 = 1 , 2 , … , 10 𝐴 𝑖, 𝑖 = 1 , 2 , … , 8 𝐴 𝑖, 𝑖 = 1 , 2 , … , 15 𝐴 𝑖, 𝑖 = 1 , 2 , … , 25 𝐴 𝑖, 𝑖 = 1 , 2 , … , 16 𝐴 𝑖, 𝑖 = 1 , 2 , … , 7 𝐴 𝑖, 𝑖 = 1 , 2 , … , 29 𝐴 𝑖, 𝑖 = 1 , 2 , … , 59 
Stress Constraints 𝜎max = 400 MPa 𝜎max = 400 MPa 𝜎max = 400 MPa 𝜎max = 400 MPa 𝜎max = 400 MPa 𝜎max = 400 MPa 𝜎max = 400 MPa 𝜎max = 400 MPa 
Density 𝜌 = 7850 kg/m 

3 𝜌 = 7850 kg/m 

3 𝜌 = 7850 kg/m 

3 𝜌 = 7850 kg/m 

3 𝜌 = 7850 kg/m 

3 𝜌 = 7850 kg/m 

3 𝜌 = 7850 kg/m 

3 𝜌 = 7850 kg/m 

3 

Young’s modulus E = 200 GPA E = 200 GPA E = 200 GPA E = 200 GPA E = 200 GPA E = 200 GPA E = 200 GPA E = 200 GPA 
Size variables 𝐴 𝑖, ∈ 𝑆, 

𝑖 = 1 , 2 , … , 10 
𝑆 = [1, 1.5, 2, 
…,21] ∗ 1e-3 m 

2 

𝐴 𝑖, ∈ 𝑆, 
𝑖 = 1 , 2 , … , 8 
𝑆 = [1, 1.5, 2, 
…,21] ∗ 1e-3 m 

2 

𝐴 𝑖, ∈ 𝑆, 
𝑖 = 1 , 2 , … , 8 
𝑆 = [1, 1.5, 2, 
…,21] ∗ 1e-3 m 

2 

𝐴 𝑖, ∈ 𝑆, 
𝑖 = 1 , 2 , … , 8 
𝑆 = [1, 1.5, 2, 
…,21] ∗ 1e-3 m 

2 

𝐴 𝑖, ∈ 𝑆, 
𝑖 = 1 , 2 , … , 8 
𝑆 = [1, 1.5, 2, 
…,21] ∗ 1e-3 m 

2 

𝐴 𝑖, ∈ 𝑆, 
𝑖 = 1 , 2 , … , 8 
𝑆 = [1, 1.5, 2, 
…,21] ∗ 1e-3 m 

2 

𝐴 𝑖, ∈ 𝑆, 
𝑖 = 1 , 2 , … , 8 
𝑆 = [1, 1.5, 2, 
…,21] ∗ 1e-3 m 

2 

𝐴 𝑖, ∈ 𝑆, 
𝑖 = 1 , 2 , … , 59 
𝑆 = [1, 1.5, 2, 
…,21] ∗ 1e-1 m 

2 

Loading 
conditions 

𝑃 𝑦 2 = 𝑃 𝑦 4 = 
−1000 KN 

𝑃 𝑥 1 = 100 𝐾𝑁, 

𝑃 𝑦 1 = 𝑃 𝑧 1 = 
𝑃 𝑦 2 = 𝑃 𝑧 2 = 
− 1000 𝐾𝑁, 

𝑃 𝑥 3 = 
50 𝐾𝑁, 𝑃 𝑥 6 = 
60 KN 

𝑃 𝑦 2 , 𝑃 𝑦 3 , 𝑃 𝑦 4 , … , 

𝑃 y10 = − 100 𝐾𝑁

Case 1: 𝑃 𝑥 1 = 
−1000 𝐾𝑁, 𝑃 𝑥 7 = 
900 𝐾𝑁

Case 2: 𝑃 𝑥 15 = 
𝑃 𝑥 18 = −800 𝐾𝑁 , 
𝑃 𝑦 15 = 𝑃 𝑦 18 = 
300 𝐾𝑁

Case 3: 𝑃 𝑥 22 = 
−2000 𝐾𝑁 and 
𝑃 𝑦 22 = 1000 𝐾𝑁

Case 1: 𝐹 17 𝑥 = 
𝐹 17 𝑦 = 2000 KN , 
𝐹 17 𝑧 = 
− 2000 KN 

Case 2: 𝐹 17 𝑧 = 
𝐹 18 𝑧 = 𝐹 19 𝑧 = 
𝐹 20 𝑧 = −2000 KN 

𝑃 𝑧 28 , 𝑃 𝑧 29 , 𝑃 𝑧 30 , … , 

𝑃 𝑧 36 = 
− 500 𝐾𝑁, 

𝑃 𝑧 37 , 𝑃 𝑧 38 , 𝑃 𝑧 39 , … , 

𝑃 𝑧 48 = 
− 1500 𝐾𝑁 , 

𝑃 𝑧 49 = 
− 3000 𝐾𝑁

𝑃 𝑥 1 , 𝑃 𝑥 6 , 𝑃 𝑥 15 , 

𝑃 𝑥 20 , 𝑃 𝑥 29 , 𝑃 𝑥 34 , 

𝑃 𝑥 43 , 𝑃 𝑥 48 , 𝑃 𝑥 57 , 

𝑃 𝑥 71 = 10 𝐾𝑁

𝑃 𝑦 1 , 𝑃 𝑦 2 , … , 𝑃 𝑦 6 , 

𝑃 𝑦 8 , 𝑃 𝑦 10 , 𝑃 𝑦 12 , 

𝑃 𝑦 14 , 𝑃 𝑦 15 , … , 𝑃 𝑦 20 
𝑃 𝑦 22 , 𝑃 𝑦 24 , 𝑃 𝑦 26 , 

𝑃 𝑦 28 , 𝑃 𝑦 29 , … , 𝑃 𝑦 34 , 

𝑃 𝑦 36 , 𝑃 𝑦 40 , 

𝑃 𝑦 36 , 𝑃 𝑦 38 , 𝑃 𝑦 40 , 

𝑃 𝑦 42 , 𝑃 𝑦 43 , … , 𝑃 𝑦 48 
𝑃 𝑦 50 , 𝑃 𝑦 52 , 𝑃 𝑦 54 , 

𝑃 𝑦 56 , 𝑃 𝑦 57 , … , 𝑃 𝑦 62 , 

𝑃 𝑦 64 , 𝑃 𝑦 66 , 𝑃 𝑦 68 , 

𝑃 𝑦 70 , 𝑃 𝑦 71 , … , 𝑃 𝑦 75 , 

= − 100 𝐾𝑁

At each node: 
vertical loading: 
Section 1; 
𝑃 𝑧 = −6 KN 
Section 2; 
𝑃 𝑧 = −12 KN 
Section 3; 
𝑃 𝑧 = −18 KN 
Lateral loading: 
Right-hand side; 
𝑃 𝑥 = 3 KN 
Left-hand side; 
𝑃 𝑥 = 2 KN 
Lateral Loading: 
𝑃 𝑦 = 2 KN 
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Fig. 1. Trusses: (A) 10-bar truss, (B) 37-bar truss, (C) 60-bar truss, (D) 120-bar truss, and (E) 200-bar truss. 

 

 

 

 

The HV, Generational Distance (GD), Inverted GD (IGD), and Spacing-to-Extent (STE) are taken as performance metrics to measure
the comparative performance. HV calculates the spread and advancement of a PF. GD and IGD calculate distances between an obtained
PF and a reference front while STE measures the ratio of spacing to extent of a front. Here, the reference front of each problem is
NDS gathered from the results of all optimizations run. 

The HV indicator is the volume in hyper-space between the reference point and PF. The reference point is the extremum point
gathered from the union of all obtained solutions. HV can be calculated with Eq. (9) . 

𝐻𝑉 = ∪|𝑁𝑃 |
𝑖 =1 𝑉 𝑖 (9) 

where, V i is the volume between i-th NDS and the reference. The higher HV indicates better spread and/or advancement of PF. 
The GD and IGD are performance indicators examined and stated in Eq. (10) and Eq. (11) : 

𝐺𝐷 = 

√ ∑|𝑁𝑃 |
𝑖 =1 𝐸 𝐷 𝑖 

2 

|𝑁𝑃 | (10) 
7 
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Fig. 2. The 25-bar 3D truss. 

Fig. 3. The 72-bar 3D truss. 

 

 

 

 

 

 

𝐼 𝐺𝐷 = 

√ ∑|𝑁 𝑃 ′|
𝑖 =1 𝐸 𝐷 

′
𝑖 
2 

|𝑁 𝑃 | (11) 

where |𝑁𝑃 | and |𝑁 𝑃 ′| indicates the obtained PF and the reference PF count respectively. 𝐸 𝐷 𝑖 is the Euclidian distance measured 
between the i th solution in obtained PF and the nearest solution in true PF while 𝐸 𝐷 

′
𝑖 is the Euclidian distance measured between

the i th solution of true PF and the closest solution from obtained PF. Both GD and IGD indicate distance from the obtained front and
the reference front, but in different manner. The Pareto with lower GD and IGD is closer to the reference front. 

The Front Spacing-to-Extent is the ratio between spacing to extent which calculated with Eq. (12) . 

Front Spacing − to − Extent ( FSTE ) = Spacing ∕ Extent = 

1 |𝑁𝑃 |−1 
∑|𝑁𝑃 |

𝑖 =1 
(
𝑑 𝑖 − 𝑑 

)2 
∑𝑀 

𝑗=1 
|||𝑓 𝑚𝑎𝑥 𝑗 

− 𝑓 𝑚𝑖𝑛 
𝑗 

|||
(12) 

Where, 𝑑 𝑖 is Euclidian distance of i-th objective function vector from obtained Pareto to its closest adjacent, 𝑑 is mean value of
𝑑 𝑖 , 𝑓 

𝑚𝑎𝑥 
𝑗 

is the highest value, and 𝑓 𝑚𝑖𝑛 
𝑗 

is the lowest value. The lower spacing values indicates superior PF while the higher values
of extent represent better extension. By combining both metrics, the FSTE metric can indicate quality of a PF in both spacing and
extension aspect. 

Here, four metrics are tested to measure performance of algorithms in different aspect. Lower values of GD, IGD , and FSTE represent
better PF while the HV with higher values is better. 
8 
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Fig. 4. The 942-bar tower truss. 
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Table 2 

Mean hypervolume obtained from the eighteen algorithms (the bold indicates the best solution). 

Mean HV 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar 

MOALO 1.1569E + 09 5.5507E + 08 2.0671E + 08 3.7422E + 08 1.8157E + 09 4.4132E + 10 5.0260E + 09 1.7696E + 14 
MODA 1.1866E + 09 7.7936E + 08 2.2954E + 08 5.4899E + 08 2.5538E + 09 6.3648E + 10 5.9429E + 09 1.6556E + 14 
MOGOA 1.4709E + 09 6.3441E + 08 2.1170E + 08 5.3963E + 08 2.4820E + 09 5.8884E + 10 6.1080E + 09 1.9051E + 14 
MOGWO 1.1697E + 09 4.7264E + 08 1.5390E + 08 5.3081E + 08 2.3276E + 09 4.1554E + 10 1.0438E + 10 3.3152E + 14 
MOMVO 2.6981E + 09 1.2515E + 09 3.5168E + 08 1.1022E + 09 5.1416E + 09 7.1977E + 10 1.4825E + 10 4.5000E + 14 
MOWCA 1.5012E + 09 6.2957E + 08 2.3379E + 08 7.2933E + 08 3.2077E + 09 7.9572E + 10 8.6812E + 09 2.3225E + 14 
MSSA 1.2643E + 09 5.0571E + 08 1.8632E + 08 6.0835E + 08 2.6408E + 09 4.5320E + 10 6.6409E + 09 1.8404E + 14 
SHAMODE 7.3578E + 09 2.8587E + 09 8.4253E + 08 2.4381E + 09 9.5994E + 09 2.8284E + 11 2.1764E + 10 5.0047E + 14 
SHAMODE-WO 6.7284E + 09 2.7440E + 09 8.0726E + 08 2.4371E + 09 1.1161E + 10 2.8106E + 11 2.6122E + 10 8.9145E + 14 

NSGA-II 2.2553E + 09 1.1044E + 09 3.6532E + 08 9.7769E + 08 2.7930E + 09 9.5935E + 10 9.7116E + 09 2.1618E + 14 
RPBILDE 5.4344E + 09 2.4479E + 09 7.4257E + 08 2.3228E + 09 9.9342E + 09 2.5049E + 11 2.4631E + 10 5.8492E + 14 
DEMO 2.2955E + 09 9.3215E + 08 4.1299E + 08 7.3093E + 08 3.0482E + 09 8.2183E + 10 1.0483E + 10 3.3517E + 14 
MOEA/D 1.1513E + 09 6.3847E + 08 1.9737E + 08 6.2943E + 08 2.5673E + 09 4.0995E + 10 1.2761E + 10 2.2980E + 14 
UPSEMOA 2.4626E + 09 8.4241E + 08 4.9260E + 08 1.0965E + 09 3.1990E + 09 1.0267E + 11 1.0434E + 10 3.6855E + 14 
NSGA-III 1.8658E + 09 8.5182E + 08 2.3078E + 08 8.0817E + 08 4.0170E + 09 1.2652E + 11 1.1527E + 10 3.2636E + 14 
RVEA 1.0710E + 09 4.3762E + 08 1.6977E + 08 2.4430E + 08 1.5193E + 09 5.9003E + 10 3.9219E + 09 1.1875E + 14 
MnKnEA 1.0046E + 09 6.0190E + 08 3.9344E + 08 1.0889E + 09 2.2821E + 09 2.5969E + 11 6.6643E + 09 1.9059E + 14 
MMIPDE 8.5526E + 09 3.5510E + 09 9.4471E + 08 3.3886E + 09 1.4015E + 10 3.4300E + 11 2.6236E + 10 3.0391E + 14 

Table 3 

Standard deviation of hypervolume obtained from the eighteen algorithms (the bold indicates the best solution). 

STD of HV 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar 

MOALO 2.7776E + 08 1.7736E + 08 4.7655E + 07 3.2834E + 07 5.7410E + 08 1.2012E + 10 6.7629E + 08 6.4719E + 09 

MODA 3.0421E + 08 2.4157E + 08 5.4874E + 07 8.9850E + 07 8.1571E + 08 1.1323E + 10 9.2086E + 08 7.9380E + 09 
MOGOA 4.8583E + 08 1.5476E + 08 5.6265E + 07 9.1157E + 07 5.3977E + 08 1.8179E + 10 9.8976E + 08 1.2394E + 10 
MOGWO 1.1574E + 08 7.1626E + 07 2.9801E + 07 6.0604E + 07 5.4675E + 08 6.1858E + 09 1.7915E + 09 2.3127E + 10 
MOMVO 9.8099E + 08 5.2932E + 08 9.8997E + 07 3.1918E + 08 2.3930E + 09 3.1222E + 10 5.3996E + 09 3.4144E + 10 
MOWCA 6.7942E + 08 2.6378E + 08 6.5811E + 07 1.6829E + 08 8.7991E + 08 2.8921E + 10 2.0343E + 09 1.3677E + 10 
MSSA 2.6518E + 08 9.4505E + 07 4.7568E + 07 1.0582E + 08 8.0461E + 08 1.8820E + 10 1.4321E + 09 7.8607E + 09 
SHAMODE 1.0628E + 09 2.6342E + 08 8.5638E + 07 3.5414E + 08 1.8934E + 09 2.9074E + 10 3.2369E + 09 2.1001E + 10 
SHAMODE-WO 1.0564E + 09 2.9142E + 08 8.4359E + 07 3.8500E + 08 1.8922E + 09 2.9803E + 10 3.9778E + 09 4.7654E + 10 
NSGA-II 6.1738E + 08 3.4470E + 08 8.4958E + 07 2.7085E + 08 8.7264E + 08 3.1762E + 10 1.9589E + 09 6.6350E + 09 
RPBILDE 1.2225E + 09 3.6316E + 08 1.0673E + 08 3.0667E + 08 1.6112E + 09 3.0704E + 10 5.7064E + 09 4.6584E + 10 
DEMO 8.4052E + 08 2.6188E + 08 8.7071E + 07 1.3386E + 08 6.2494E + 08 1.9987E + 10 3.5405E + 09 2.8079E + 10 
MOEA/D 2.3375E + 08 1.2787E + 08 2.9406E + 07 1.2376E + 08 3.7858E + 08 7.6319E + 09 4.8808E + 09 3.9894E + 10 
UPSEMOA 7.5497E + 08 2.0112E + 08 1.0943E + 08 2.0055E + 08 8.3086E + 08 2.4422E + 10 1.5545E + 09 1.8042E + 10 
NSGA-III 4.6099E + 08 2.2121E + 08 6.3869E + 07 1.9971E + 08 8.4320E + 08 3.6780E + 10 1.5693E + 09 1.8928E + 10 
RVEA 1.7100E + 08 1.1545E + 08 1.9469E + 07 1.4350E + 08 2.2020E + 08 1.3112E + 10 7.7930E + 08 8.2212E + 09 
MnKnEA 9.1670E + 07 2.5969E + 08 5.9871E + 07 1.4728E + 08 4.1002E + 08 3.0380E + 10 5.7240E + 08 7.5733E + 09 
MMIPDE 1.8228E + 09 3.1080E + 08 8.0064E + 07 4.4363E + 08 1.9393E + 09 3.1064E + 10 4.7640E + 09 8.1560E + 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method validation 

The eighteen considered algorithms are tested with 30 separate runs of each of the algorithms. All the considered trusses are
investigated by assuming a population size of 100 and with the termination criteria being a maximum of 10000 function evaluations.
The algorithms used in this study are gathered from two sources i.e. the best-known algorithms and newly published MO meta-
heuristics. Eight well-known truss optimisation problems with four objectives and two constraints are used to test the considered 
algorithms. The HV, GD, IGD, and STE performance indicators are used to test the performance. Also, Friedman’s rank test is carried
out to support the four performance indicators. Most of the optimization algorithms were downloaded from their authors, thus, the
default parameters settings by those researchers are used. Nevertheless, there are five algorithms NSGA-II, RPBILDE, DEMO, MOEA/D, 
and UPSEMOA that were coded by the authors where their parameter settings can be found in [55] . The traditional exterior penalty
function method is used to manage the design constraints with the exception of SHAMODE, SHAMODE-WO, NSGA-II, RPBILDE, 
DEMO, MOEA/D, UPSEMOA, and MMIPDE where the constraint handling approach in [59] is embedded to their codes. 

The solutions obtained mean values of HV, GD, IGD, and STE are presented in Tables 2 , 5 , 8 , and 11 whereas the standard deviation
(STD) values of HV, GD, IGD, and STE are presented in Tables 3 , 6 , 9 , and 12 . Friedman’s rank test is used to rank the algorithms as
a statistical review and solutions are presented in Tables 4 , 7 , 10 , and 13 respectively. The bold indicates the best solution obtained
for each of the problems. As stated previously, a higher value of HV discloses the better solutions while a lower value of GD, IGD,
and STE indicated better solutions. 

Table 2 presents the mean HV obtained from the eighteen algorithms. It is noticed from the table that MMIPDE obtains the best
solutions in 10–bar, 25–bar, 37–bar, 60–bar, 72–bar, 120–bar, and 200–bar trusses while SHAMODE-WO obtains the best solution 
for the remaining 942–bar truss. Table 3 presents STD of HV obtained from the eighteen algorithms. It is noticed from the table that
MOALO obtains the best solutions in 60–bar and 942–bar trusses, MOGWO obtains the best solutions in 25–bar and 120–bar trusses,
10 
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Table 4 

Friedman’s rank of hypervolume obtained from the eighteen algorithms (the bold indicates the best solution). 

Friedman’s 
rank of HV 

10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar Overall 
Friedman’s 
value 

Overall 
Friedman 
rank 

MOALO 13.37 13.50 13.07 16.73 15.03 15.40 15.00 16.80 118.90 17 
MODA 13.27 9.73 12.13 13.43 11.23 11.53 13.90 14.33 99.57 12 
MOGOA 11.00 11.70 12.90 13.90 11.50 13.07 13.33 12.43 99.83 14 
MOGWO 13.03 14.87 16.00 13.87 12.30 15.80 8.17 5.77 99.80 13 
MOMVO 6.63 6.83 8.20 6.80 6.10 11.30 5.77 4.77 56.40 5 
MOWCA 11.57 12.23 11.90 10.37 8.70 10.27 9.97 10.43 85.43 9 
MSSA 12.37 14.33 14.00 12.27 10.93 14.73 12.60 13.70 104.93 16 
SHAMODE 2.20 2.53 2.47 2.90 3.30 2.60 3.57 5.77 25.33 4 
SHAMODE-WO 2.57 2.97 2.83 2.80 2.47 2.80 2.27 2.60 21.30 2 
NSGA-II 7.43 6.83 7.47 7.63 10.60 8.53 8.90 10.97 68.37 8 
RPBILDE 3.57 3.50 3.33 3.13 3.07 3.63 2.73 1.63 24.60 3 
DEMO 7.50 7.83 6.77 9.93 9.17 9.37 8.40 8.53 67.50 7 
MOEA/D 13.23 11.53 13.27 11.90 11.33 15.63 6.93 7.70 91.53 10 
UPSEMOA 6.83 8.73 5.93 6.20 8.40 7.90 8.00 6.83 58.83 6 
NSGA-III 11.10 11.33 14.17 13.23 11.87 8.13 15.00 13.23 98.07 11 
RVEA 16.33 16.47 17.37 17.93 17.57 14.23 17.30 16.20 133.40 18 
MnKnEA 17.30 15.03 7.80 6.80 16.17 4.97 16.90 16.17 101.13 15 
MMIPDE 1.70 1.03 1.40 1.17 1.27 1.10 2.27 3.13 13.07 1 

Table 5 

Mean generational distance obtained from the eighteen algorithms (the bold indicates the best solution). 

Mean GD 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar 

MOALO 1.4400E + 02 8.0219E + 01 6.0633E + 01 5.9679E + 01 1.4198E + 02 8.8421E + 02 3.6227E + 02 9.2777E + 02 
MODA 1.2786E + 02 7.9614E + 01 4.6949E + 01 6.9243E + 01 1.2590E + 02 8.2391E + 02 3.9014E + 02 9.7983E + 02 
MOGOA 1.3638E + 02 8.5465E + 01 5.7853E + 01 7.5871E + 01 1.6532E + 02 8.2986E + 02 4.2587E + 02 1.1377E + 03 
MOGWO 7.8490E + 01 5.0609E + 01 2.2361E + 01 8.4865E + 01 8.9190E + 01 9.7335E + 02 1.5506E + 02 7.8809E + 02 

MOMVO 8.0339E + 01 6.4083E + 01 2.9056E + 01 6.4133E + 01 1.1175E + 02 8.3179E + 02 3.4293E + 02 1.1577E + 03 
MOWCA 6.5551E + 01 6.4413E + 01 3.0453E + 01 6.6093E + 01 1.1512E + 02 7.8794E + 02 1.9422E + 02 8.6543E + 02 
MSSA 8.9910E + 01 7.5377E + 01 4.0285E + 01 6.4154E + 01 1.1811E + 02 9.2289E + 02 4.0087E + 02 9.9194E + 02 
SHAMODE 8.5749E + 01 7.1267E + 01 3.6508E + 01 6.3965E + 01 1.1620E + 02 8.4463E + 02 1.8271E + 02 8.1739E + 02 
SHAMODE-WO 8.3903E + 01 6.8807E + 01 3.4880E + 01 6.4544E + 01 1.2009E + 02 8.4567E + 02 1.8668E + 02 8.1245E + 02 
NSGA-II 7.0296E + 01 5.9627E + 01 3.0007E + 01 5.5841E + 01 8.8083E + 01 6.2773E + 02 1.9081E + 02 8.4026E + 02 
RPBILDE 8.7698E + 01 6.9407E + 01 3.9547E + 01 6.7725E + 01 1.3556E + 02 8.6943E + 02 2.3914E + 02 9.3975E + 02 
DEMO 7.2100E + 01 5.6032E + 01 3.9204E + 01 4.6456E + 01 9.0219E + 01 6.0782E + 02 1.9200E + 02 8.2837E + 02 
MOEA/D 5.0307E + 01 4.1783E + 01 2.6925E + 01 5.4659E + 01 1.8021E + 02 6.0247E + 02 1.7901E + 02 1.3133E + 03 
UPSEMOA 6.2836E + 01 4.7715E + 01 3.4324E + 01 5.2313E + 01 7.9259E + 01 6.2898E + 02 1.8472E + 02 8.3904E + 02 
NSGA-III 1.3991E + 02 8.4541E + 01 5.0309E + 01 1.2507E + 02 1.6937E + 02 9.5622E + 02 1.4212E + 03 1.9621E + 03 
RVEA 4.1085E + 02 2.1526E + 02 1.1290E + 02 2.6667E + 09 5.3381E + 02 1.8489E + 03 2.5943E + 03 4.2704E + 03 
MnKnEA 2.0684E + 02 1.8488E + 02 3.2826E + 01 7.2832E + 01 2.3489E + 02 9.7050E + 02 1.2857E + 03 2.1579E + 03 
MMIPDE 9.8400E + 01 8.0461E + 01 4.5589E + 01 6.6108E + 01 1.3980E + 02 9.2824E + 02 2.4243E + 02 7.9695E + 02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RVEA obtains the best solutions in 37–bar and 72–bar trusses, MnKnEA obtains the best solutions in 10–bar and 72–bar trusses. It
is also observed that there is no significant difference in STD when compared with MMIPDE and SHAMODE-WO. Table 4 presents
Friedman’s rank of HV obtained from the eighteen algorithms. It is noticed from the table that MMIPDE obtains the best solutions
in 10–bar, 25–bar, 37–bar, 60–bar, 72–bar, 120–bar, and 200–bar trusses while SHAMODE-WO obtains the best solutions in 942–
bar truss. Both MMIPDE and SHAMODE–WO provided the best results in 200–bar truss with equal Friedman’s rank. The overall
performance of MMIPDE based on HV results is the best among the evaluated MHs and SHAMODE–WO performs second best. 

Table 5 presents mean GD obtained from the eighteen algorithms. It is noticed from result table that MOEA/D obtains the best
solutions in 10–bar, 25–bar, and 120–bar trusses; MOGWO obtains the best solutions 37–bar, 200–bar, and 942–bar trusses; while
DEMO and UPSEMOA obtain the best solutions in 60–bar and 72–bar trusses, respectively. Table 6 presents STD of GD obtained
from the eighteen algorithms. It is noticed from the table that MOGWO obtains the best solutions in 10–bar, 25–bar, 37–bar, and
72–bar trusses, while SHAMODE–WO, RPBILDE, SHAMODE, and MMIPDE obtains the best solutions in 60–bar, 120–bar, 200–bar, 
and 942–bar trusses, respectively. Table 7 presents Friedman’s rank of GD obtained from the eighteen algorithms. It is noticed from
the table that MOEA/D obtains the best solutions in 10–bar and 25–bar trusses; DEMO obtains the best solutions in 60–bar and
120–bar trusses; MOGWO obtains the best solutions in 37–bar and 200–bar trusses; while UPSEMOA and MMIPDE obtain the best
solutions in 72–bar and 942–bar trusses. The overall performance of UPSEMOA based on GD results is the best among the evaluated
algorithms whereas NSGA–II performs second best. Also, MMIPDE reported significant performance in solving the large-size trusses. 

Tables 8 and Table 9 present mean values and STD of inverted generational distance obtained from the eighteen algorithms. It
is noticed from the tables that MMIPDE obtains the best solutions in 25–bar, 37–bar, 60–bar, 72–bar, 120–bar, and 942–bar trusses
11 
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Table 6 

Standard deviation of generational distance obtained from the eighteen algorithms (the bold indicates the best solution). 

STD of GD 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar 

MOALO 3.1462E + 01 1.4411E + 01 1.8143E + 01 7.6371E + 00 3.5024E + 01 1.5151E + 02 8.1195E + 01 2.3518E + 02 
MODA 3.2922E + 01 1.1117E + 01 1.0868E + 01 9.7136E + 00 2.2768E + 01 1.0351E + 02 1.0588E + 02 1.4687E + 02 
MOGOA 2.8911E + 01 1.8839E + 01 1.3321E + 01 1.4537E + 01 5.7807E + 01 1.4970E + 02 1.5103E + 02 2.0637E + 02 
MOGWO 4.5724E + 00 2.8489E + 00 2.2057E + 00 8.4343E + 00 9.6726E + 00 1.0857E + 02 1.2536E + 01 6.7882E + 01 
MOMVO 8.2760E + 00 1.1582E + 01 4.3389E + 00 4.9544E + 00 1.6882E + 01 1.7191E + 02 8.2364E + 01 1.6173E + 02 
MOWCA 1.8274E + 01 1.6774E + 01 3.5943E + 00 6.4387E + 00 1.2079E + 01 1.4603E + 02 3.4133E + 01 9.0976E + 01 
MSSA 1.9325E + 01 7.3881E + 00 6.8544E + 00 6.1999E + 00 2.8570E + 01 1.6739E + 02 1.0679E + 02 1.1006E + 02 
SHAMODE 5.0156E + 00 4.5669E + 00 4.4051E + 00 3.9283E + 00 1.2086E + 01 4.6223E + 01 8.5485E + 00 4.1389E + 01 
SHAMODE-WO 5.5889E + 00 4.1893E + 00 4.0149E + 00 2.9352E + 00 1.1004E + 01 4.8550E + 01 1.1652E + 01 4.9961E + 01 
NSGA-II 7.3481E + 00 1.0410E + 01 4.1403E + 00 4.7493E + 00 1.1567E + 01 8.5453E + 01 1.9110E + 01 4.9856E + 01 
RPBILDE 1.0774E + 01 4.3885E + 00 3.7071E + 00 3.2265E + 00 1.6548E + 01 3.3518E + 01 2.1217E + 01 9.4699E + 01 
DEMO 2.4246E + 01 9.8435E + 00 5.3978E + 00 3.8840E + 00 1.2081E + 01 7.6839E + 01 4.2702E + 01 6.1303E + 01 
MOEA/D 7.0101E + 00 6.0826E + 00 2.2510E + 00 3.6269E + 00 1.8266E + 01 1.4713E + 02 6.4031E + 01 6.4186E + 02 
UPSEMOA 1.0601E + 01 1.0136E + 01 3.3770E + 00 5.1602E + 00 1.1556E + 01 7.6227E + 01 2.8367E + 01 6.7166E + 01 
NSGA-III 3.2208E + 01 1.2184E + 01 1.3678E + 01 4.2531E + 01 5.7463E + 01 1.0576E + 02 4.4318E + 02 4.6016E + 02 
RVEA 1.7147E + 02 9.1406E + 01 3.3304E + 01 4.4978E + 09 2.5561E + 02 3.4437E + 02 6.7471E + 02 1.2496E + 03 
MnKnEA 6.4100E + 01 9.7955E + 01 3.7923E + 00 6.3529E + 00 5.7638E + 01 8.2303E + 01 3.7782E + 02 5.6975E + 02 
MMIPDE 7.4760E + 00 4.4598E + 00 4.8365E + 00 4.1562E + 00 1.6377E + 01 4.0040E + 01 2.8355E + 01 3.7209E + 01 

Table 7 

Friedman’s rank of generational distance obtained from the eighteen algorithms (the bold indicates the best solution). 

Friedman’s rank 
of GD 

10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar Overall 
Friedman’s 
value 

Overall 
Friedman 
rank 

MOALO 14.53 12.17 14.77 6.37 11.37 10.50 12.60 7.73 90.03 13 
MODA 13.03 12.30 12.97 10.97 9.47 8.97 12.93 10.10 90.73 14 
MOGOA 14.13 13.10 15.30 12.33 12.53 9.00 12.77 12.73 101.90 15 
MOGWO 6.50 3.13 1.27 15.43 3.33 13.77 2.03 4.03 49.50 5 
MOMVO 7.37 7.50 4.40 9.13 7.10 9.17 12.17 13.30 70.13 9 
MOWCA 4.37 7.80 5.10 9.63 7.80 7.80 5.80 6.93 55.23 6 
MSSA 8.83 11.40 10.87 8.90 8.17 11.30 13.23 10.83 83.53 11 
SHAMODE 9.13 9.47 9.27 8.60 7.97 9.37 4.87 5.17 63.83 8 
SHAMODE-WO 8.33 8.53 8.10 9.10 8.93 9.53 5.00 5.10 62.63 7 
NSGA-II 4.87 5.83 4.80 4.13 2.90 3.50 5.77 6.43 38.23 2 
RPBILDE 9.43 8.97 11.33 11.07 11.57 10.47 9.23 9.67 81.73 10 
DEMO 5.00 5.07 10.70 1.43 3.60 2.87 5.20 5.53 39.40 3 
MOEA/D 1.53 1.63 2.70 3.63 15.33 3.40 3.97 12.80 45.00 4 
UPSEMOA 3.63 3.23 7.77 3.10 1.67 3.27 5.07 6.17 33.90 1 

NSGA-III 14.57 13.17 13.60 16.57 13.00 13.37 16.77 16.20 117.23 17 
RVEA 17.93 17.53 17.87 17.97 17.77 17.97 17.87 17.87 142.77 18 
MnKnEA 16.20 17.00 6.73 12.93 16.33 14.00 16.37 16.53 116.10 16 
MMIPDE 11.60 13.17 13.47 9.70 12.17 12.77 9.37 3.87 86.10 12 

Table 8 

Mean inverted generational distance obtained from the eighteen algorithms (the bold indicates the best solution). 

Mean IGD 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar 

MOALO 1.4806E + 03 6.8123E + 02 4.0726E + 02 1.9630E + 03 1.1247E + 03 1.1240E + 04 2.0294E + 03 2.6903E + 04 
MODA 1.9255E + 03 4.7305E + 02 3.5161E + 02 1.2993E + 03 9.8828E + 02 7.4820E + 03 2.4706E + 03 2.9288E + 04 
MOGOA 1.6072E + 03 5.5153E + 02 4.6179E + 02 1.5430E + 03 1.2034E + 03 7.4694E + 03 2.4801E + 03 3.0877E + 04 
MOGWO 2.8172E + 03 8.9487E + 02 5.4139E + 02 1.5724E + 03 1.4497E + 03 1.2723E + 04 1.6000E + 03 2.2374E + 04 
MOMVO 1.6829E + 03 6.0506E + 02 5.1983E + 02 1.7362E + 03 1.3575E + 03 1.4699E + 04 2.7172E + 03 2.6582E + 04 
MOWCA 2.6927E + 03 1.1003E + 03 6.0056E + 02 1.8738E + 03 1.5021E + 03 1.2045E + 04 2.2846E + 03 2.8915E + 04 
MSSA 2.2356E + 03 8.8947E + 02 5.1974E + 02 1.6632E + 03 1.3337E + 03 8.9539E + 03 2.5426E + 03 3.2877E + 04 
SHAMODE 2.1623E + 02 1.5542E + 02 1.0102E + 02 8.3572E + 02 5.7391E + 02 2.6856E + 03 1.5055E + 03 1.4006E + 04 
SHAMODE-WO 2.3816E + 02 1.3304E + 02 5.9742E + 01 6.1202E + 02 3.7066E + 02 2.2832E + 03 4.9125E + 02 4.2276E + 03 
NSGA-II 6.2535E + 02 2.8857E + 02 3.3907E + 02 1.0375E + 03 7.8724E + 02 3.0351E + 03 1.5541E + 03 2.1957E + 04 
RPBILDE 4.6112E + 02 2.1148E + 02 2.4192E + 02 9.7155E + 02 5.9368E + 02 3.7877E + 03 9.7191E + 02 1.7119E + 04 
DEMO 5.0990E + 02 2.2795E + 02 1.8146E + 02 1.0931E + 03 4.3656E + 02 2.7457E + 03 1.0657E + 03 2.0908E + 04 
MOEA/D 2.4700E + 03 5.6256E + 02 2.9010E + 02 1.4326E + 03 7.3300E + 02 9.1046E + 03 2.4763E + 03 1.8657E + 04 
UPSEMOA 8.4647E + 02 3.8176E + 02 2.9671E + 02 1.2672E + 03 9.2230E + 02 3.8405E + 03 1.2976E + 03 2.1356E + 04 
NSGA-III 2.2665E + 03 9.8649E + 02 5.4152E + 02 1.8109E + 03 1.3630E + 03 9.5370E + 03 3.1080E + 03 3.5940E + 04 
RVEA 1.7440E + 03 6.7328E + 02 6.3699E + 02 2.6667E + 09 1.4208E + 03 5.6594E + 03 3.1604E + 03 3.3263E + 04 
MnKnEA 2.2016E + 03 7.6360E + 02 3.4608E + 02 1.7141E + 03 1.2245E + 03 5.3009E + 03 2.7698E + 03 3.3200E + 04 
MMIPDE 3.3391E + 02 7.6946E + 01 4.8572E + 01 1.1536E + 02 1.6118E + 02 1.2473E + 03 4.7512E + 02 1.3845E + 03 

12 
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Table 9 

Standard deviation of inverted generational distance obtained from the eighteen algorithms (the bold indicates the best solution). 

STD of IGD 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar 

MOALO 4.5024E + 02 2.0692E + 02 8.8295E + 01 2.5944E + 02 3.4872E + 02 2.3563E + 03 3.9079E + 02 4.5359E + 03 
MODA 5.5839E + 02 1.8637E + 02 1.0637E + 02 2.3293E + 02 2.8050E + 02 1.4503E + 03 3.2171E + 02 2.8183E + 03 
MOGOA 6.2032E + 02 1.8969E + 02 9.9508E + 01 2.4216E + 02 2.2989E + 02 2.6143E + 03 3.0842E + 02 3.0285E + 03 
MOGWO 2.9454E + 02 9.0443E + 01 7.4452E + 01 2.3610E + 02 1.5734E + 02 1.6042E + 03 6.8806E + 02 7.6460E + 03 
MOMVO 6.7253E + 02 2.5327E + 02 1.3495E + 02 3.0747E + 02 2.9567E + 02 3.7828E + 03 5.6882E + 02 3.1849E + 03 
MOWCA 8.7800E + 02 2.8010E + 02 1.6139E + 02 3.1625E + 02 3.2573E + 02 2.3345E + 03 3.9972E + 02 2.8464E + 03 
MSSA 5.7647E + 02 2.4049E + 02 9.2814E + 01 2.5003E + 02 3.5138E + 02 2.2285E + 03 2.6927E + 02 2.8731E + 03 
SHAMODE 9.7452E + 01 5.8236E + 01 3.2775E + 01 1.3049E + 02 1.3946E + 02 1.0299E + 03 3.2223E + 02 2.7235E + 03 
SHAMODE-WO 1.2693E + 02 3.8697E + 01 2.2325E + 01 1.4512E + 02 1.2047E + 02 7.7296E + 02 1.6171E + 02 1.3338E + 03 
NSGA-II 3.0270E + 02 1.0797E + 02 7.2902E + 01 2.3445E + 02 1.7766E + 02 8.6510E + 02 3.1984E + 02 3.3215E + 03 
RPBILDE 3.1224E + 02 1.1938E + 02 8.6374E + 01 1.9441E + 02 1.5647E + 02 1.5535E + 03 1.8108E + 02 2.1719E + 03 
DEMO 1.6066E + 02 7.3685E + 01 4.6788E + 01 1.9351E + 02 1.3673E + 02 1.0645E + 03 2.5239E + 02 2.0243E + 03 
MOEA/D 7.3338E + 02 1.8238E + 02 6.1920E + 01 2.9935E + 02 2.5432E + 02 2.4556E + 03 3.8668E + 02 5.1003E + 03 
UPSEMOA 3.2691E + 02 1.2787E + 02 6.1834E + 01 1.7838E + 02 1.9454E + 02 1.0970E + 03 2.6360E + 02 1.9081E + 03 
NSGA-III 6.0213E + 02 2.6356E + 02 1.8319E + 02 2.5500E + 02 2.4636E + 02 2.9343E + 03 2.9779E + 02 2.3882E + 03 
RVEA 5.8902E + 02 2.4681E + 02 1.3633E + 02 4.4978E + 09 4.5441E + 02 2.3773E + 03 4.9636E + 02 2.5856E + 03 
MnKnEA 5.3476E + 02 2.1735E + 02 4.6025E + 01 1.9827E + 02 2.6043E + 02 7.5656E + 02 3.3484E + 02 2.5413E + 03 
MMIPDE 2.9215E + 02 2.9586E + 01 1.8824E + 01 4.5938E + 01 7.2272E + 01 5.3460E + 02 1.2606E + 02 2.7976E + 02 

Table 10 

Friedman’s rank of inverted generational distance obtained from the eighteen algorithms (the bold indicates the best solution). 

Friedman’s rank 
of mean IGD 

10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar Overall 
Friedman’s 
value 

Overall 
Friedman 
rank 

MOALO 9.87 11.97 11.13 15.73 11.37 14.67 9.33 11.00 95.07 11 
MODA 12.30 9.43 9.57 8.33 9.73 11.00 12.63 12.53 85.53 9 
MOGOA 10.60 10.03 12.67 11.23 12.00 10.90 12.57 13.50 93.50 10 
MOGWO 16.27 15.13 14.90 11.50 15.13 16.17 7.43 8.70 105.23 14 
MOMVO 11.00 10.57 13.70 13.17 13.73 16.87 13.77 10.50 103.30 13 
MOWCA 15.07 16.33 15.13 14.40 15.17 15.40 11.43 12.20 115.13 17 
MSSA 13.70 14.63 14.30 12.33 13.63 12.87 13.30 15.07 109.83 15 
SHAMODE 2.27 3.27 3.10 3.67 4.87 4.07 6.60 3.70 31.53 3 
SHAMODE-WO 2.43 2.73 1.97 2.30 2.63 3.30 1.50 2.03 18.90 2 
NSGA-II 5.60 6.10 8.90 5.57 7.43 4.50 6.83 7.83 52.77 6 
RPBILDE 4.43 4.63 6.13 4.80 5.13 6.20 3.87 4.83 40.03 5 
DEMO 4.97 5.27 4.57 5.87 3.37 4.17 4.57 6.80 39.57 4 
MOEA/D 14.53 10.87 7.33 9.93 6.43 12.60 12.67 5.80 80.17 8 
UPSEMOA 6.87 7.93 7.27 7.90 9.00 6.10 5.67 7.23 57.97 7 
NSGA-III 13.60 15.83 13.97 14.07 14.07 13.33 16.57 17.13 118.57 18 
RVEA 11.17 12.00 16.17 16.03 13.87 9.07 16.13 15.60 110.03 16 
MnKnEA 13.40 13.07 8.93 13.17 12.30 8.53 14.50 15.53 99.43 12 
MMIPDE 2.93 1.20 1.27 1.00 1.13 1.27 1.63 1.00 11.43 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

while SHAMODE obtains the best solutions in 10–bar truss. Table 10 presents Friedman’s rank of HV obtained from the eighteen
algorithms. It is noticed from the table that MMIPDE obtains the best solutions in 25–bar, 37–bar, 60–bar, 72–bar, 120–bar, and
942–bar trusses; SHAMODE obtains the best solutions in 10–bar truss; SHAMODE–WO obtains the best solutions in 200–bar truss. 
The overall performance of MMIPDE based on GD results is the best among the evaluated MHs and SHAMODE–WO performs second
best. 

Table 11 presents mean STE obtained from the eighteen algorithms. It is noticed from the table that MMIPDE outperforms the
others. Table 12 presents STD of STE obtained from the eighteen algorithms. It is noticed from the table that MMIPDE obtains the best
solutions in 25–bar, 37–bar, 60–bar, 72–bar, 120–bar, 200–bar, 942–bar trusses while RPBILDE obtains the best solutions in 10–bar
truss. Table 13 presents Friedman’s rank of STE obtained from the eighteen algorithms. It is noticed from the table that MMIPDE
outperforms the others. The overall performance of MMIPDE based on STE results is the best among the evaluated MHs and MOGOA
performs second best. 

From the result tables, the effectiveness of the MHs in MO truss problems are evaluated by considering several characteristics
with the use of the HV, GD, IGD, and STE metrics. The HV values in most of the truss problems coincide with the IGD & STE results.
MMIPDE provides the best results in HV, IGD & STE. SHAMODE–WO is ranked second among the evaluated algorithms in HV, IGD
& STE. The results of GD are slightly different from the results of HV, IGD, & STE. One of the reasons for this slight difference in GD
results could be due to the measurement technique of GD. GD is the only measure of Euclidian distances of the received front to the
reference front. The GD can represent the advancement of the front, but it cannot capture the spread of obtained front. However, IGD
and HV are measures of both the improvement and the spread of PF. STE is a measure of the front extension and distribution. Thus,
HV, IGD, and STE are more reliable than GD. 
13 
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Table 11 

Mean Spacing-to-Extent obtained from the eighteen algorithms (the bold indicates the best solution). 

Mean STE 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar 

MOALO 1.4058E-02 2.1080E-02 1.7401E-02 1.8399E-02 2.0177E-02 1.9598E-02 1.7906E-02 1.9971E-02 
MODA 2.3243E-02 2.4375E-02 2.2079E-02 2.1627E-02 2.4601E-02 1.8621E-02 2.2207E-02 2.1171E-02 
MOGOA 1.0381E-02 1.2630E-02 1.1341E-02 9.4110E-03 1.4590E-02 1.2773E-02 8.8150E-03 9.1448E-03 
MOGWO 1.6228E-02 1.5713E-02 1.3308E-02 1.4800E-02 1.4586E-02 1.5969E-02 1.4629E-02 1.7575E-02 
MOMVO 1.4652E-02 1.6420E-02 1.3152E-02 1.2723E-02 1.6297E-02 1.4224E-02 1.7311E-02 1.1643E-02 
MOWCA 2.4132E-02 2.4000E-02 2.0847E-02 1.9541E-02 1.9535E-02 2.0824E-02 1.4541E-02 1.2231E-02 
MSSA 1.7990E-02 2.1458E-02 1.7520E-02 1.4835E-02 2.0780E-02 1.7066E-02 1.7266E-02 1.3334E-02 
SHAMODE 9.5951E-03 1.3958E-02 1.0188E-02 9.9350E-03 1.5642E-02 1.2517E-02 1.2496E-02 8.8132E-03 
SHAMODE-WO 9.2807E-03 1.3021E-02 9.8230E-03 1.0103E-02 1.3942E-02 1.1675E-02 1.2223E-02 1.1272E-02 
NSGA-II 1.2715E-02 1.6419E-02 1.4639E-02 9.3584E-03 1.4049E-02 1.2980E-02 9.9082E-03 8.7090E-03 
RPBILDE 9.6989E-03 1.3033E-02 1.0597E-02 9.5702E-03 1.4798E-02 1.2437E-02 1.2219E-02 9.1043E-03 
DEMO 1.7599E-02 1.7219E-02 1.6111E-02 1.9296E-02 1.5868E-02 2.0102E-02 1.0719E-02 7.8853E-03 
MOEA/D 3.2216E-02 2.3162E-02 1.6997E-02 2.5761E-02 1.3407E-02 2.3888E-02 2.4670E-02 2.0502E-02 
UPSEMOA 1.5691E-02 1.7495E-02 1.4894E-02 1.8478E-02 2.0276E-02 1.6335E-02 1.2004E-02 8.8472E-03 
NSGA-III 1.7752E-02 1.7630E-02 1.6782E-02 2.2849E-02 1.8651E-02 1.4456E-02 2.2267E-02 2.4113E-02 
RVEA 5.0073E-02 5.7258E-02 5.4782E-02 1.6667E + 19 5.8759E-02 3.3767E-02 1.2123E-01 6.2778E-02 
MnKnEA 1.6605E-02 2.9215E-02 1.3429E-02 1.1767E-02 2.7206E-02 1.3210E-02 3.1419E-02 3.2306E-02 
MMIPDE 6.4144E-03 5.5889E-03 4.9649E-03 3.1946E-03 6.7002E-03 4.2986E-03 4.3482E-03 2.3605E-03 

Table 12 

Standard deviation of Spacing-to-Extent obtained from the eighteen algorithms (the bold indicates the best solution). 

STD of STE 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar 

MOALO 3.3561E-03 6.9284E-03 5.5463E-03 6.6084E-03 3.3218E-03 6.1488E-03 4.7779E-03 6.8412E-03 
MODA 1.0061E-02 6.9392E-03 7.9053E-03 9.1518E-03 5.4421E-03 5.1437E-03 6.9953E-03 1.0864E-02 
MOGOA 3.7068E-03 3.6893E-03 3.9860E-03 3.2873E-03 5.2068E-03 3.8012E-03 3.6974E-03 7.4588E-03 
MOGWO 7.6182E-03 4.7067E-03 5.5221E-03 5.9783E-03 4.2892E-03 4.8662E-03 5.7617E-03 7.8930E-03 
MOMVO 5.3913E-03 6.7759E-03 5.6714E-03 5.4805E-03 3.8567E-03 5.4288E-03 6.8637E-03 5.3433E-03 
MOWCA 1.1528E-02 1.1618E-02 9.7556E-03 8.7482E-03 5.9482E-03 1.0748E-02 4.9980E-03 4.9278E-03 
MSSA 9.0717E-03 1.0451E-02 1.0323E-02 8.4406E-03 7.4219E-03 8.1412E-03 6.6403E-03 7.7244E-03 
SHAMODE 3.0743E-03 3.0917E-03 2.3670E-03 2.2144E-03 2.9143E-03 2.5108E-03 2.8246E-03 3.0601E-03 
SHAMODE-WO 3.6444E-03 2.1185E-03 2.1181E-03 3.3575E-03 1.9177E-03 1.5730E-03 2.4400E-03 3.4165E-03 
NSGA-II 6.6176E-03 4.8043E-03 5.8719E-03 3.3032E-03 4.1057E-03 2.8501E-03 2.9708E-03 3.0054E-03 
RPBILDE 2.9431E-03 2.7120E-03 1.8721E-03 2.5908E-03 3.1043E-03 2.3593E-03 3.1997E-03 3.8551E-03 
DEMO 7.0534E-03 5.0320E-03 8.2268E-03 1.1696E-02 4.1489E-03 8.8074E-03 4.0236E-03 2.7173E-03 
MOEA/D 1.3037E-02 6.4157E-03 6.1683E-03 1.1885E-02 4.2613E-03 8.0479E-03 1.3341E-02 1.5232E-02 
UPSEMOA 8.2042E-03 4.2306E-03 5.1610E-03 9.1233E-03 7.6190E-03 5.0682E-03 2.8482E-03 2.4004E-03 
NSGA-III 9.8004E-03 5.6975E-03 1.2166E-02 1.6785E-02 7.5630E-03 4.8560E-03 1.3048E-02 3.6745E-02 
RVEA 2.6529E-02 3.0642E-02 3.4046E-02 3.7905E + 19 4.2468E-02 9.9614E-03 7.5706E-02 3.8779E-02 
MnKnEA 1.5634E-02 2.8796E-02 4.1163E-03 4.7013E-03 9.5645E-03 2.9926E-03 1.2103E-02 1.2361E-02 
MMIPDE 3.4406E-03 1.0526E-03 1.4025E-03 5.9727E-04 1.6658E-03 6.4999E-04 8.2324E-04 2.2664E-04 

Table 13 

Friedman’s rank of Spacing-to-Extent obtained from the eighteen algorithms (the bold indicates the best solution). 

Friedman’s rank 
of mean STE 

10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar Overall 
Friedman’s 
value 

Overall 
Friedman 
rank 

MOALO 9.90 12.20 12.13 12.47 12.40 13.07 12.17 13.47 97.80 15 
MODA 13.43 13.90 14.00 13.40 14.83 12.30 13.57 13.40 108.83 17 
MOGOA 6.53 5.17 7.03 5.87 6.90 6.97 4.17 5.90 48.53 2 
MOGWO 9.70 8.50 8.27 10.03 7.37 10.03 9.20 12.17 75.27 9 
MOMVO 9.43 8.50 8.50 8.47 8.57 8.13 10.97 8.70 71.27 7 
MOWCA 13.07 12.27 13.40 12.93 11.37 11.90 9.50 9.33 93.77 14 
MSSA 10.63 11.33 11.10 9.67 11.67 9.63 11.10 9.60 84.73 12 
SHAMODE 5.37 6.60 5.50 5.90 8.27 7.03 7.80 6.47 52.93 5 
SHAMODE-WO 4.77 5.87 5.10 5.57 6.17 5.67 7.37 9.00 49.50 3 
NSGA-II 7.47 8.73 9.67 5.13 6.43 7.17 4.80 6.17 55.57 6 
RPBILDE 5.47 5.90 6.13 5.37 7.67 6.67 7.70 6.60 51.50 4 
DEMO 11.20 9.30 10.23 11.43 8.33 12.70 5.67 5.33 74.20 8 
MOEA/D 15.43 13.17 11.90 14.63 6.00 14.47 13.30 12.63 101.53 16 
UPSEMOA 9.90 10.10 10.50 11.87 11.37 10.63 7.40 6.63 78.40 10 
NSGA-III 10.37 9.60 9.50 12.07 10.30 8.80 11.90 11.43 83.97 11 
RVEA 17.13 17.03 17.80 17.43 17.30 17.23 17.67 17.33 138.93 18 
MnKnEA 8.80 11.63 9.03 7.73 14.93 7.57 15.63 15.80 91.13 13 
MMIPDE 2.40 1.20 1.20 1.03 1.13 1.03 1.10 1.03 10.13 1 
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Table 14 

Average Friedman’s rank from all indicators obtained from the eighteen algorithms (the bold indicates the best solution) 

Average 
Friedman’s 
rank 

10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar Overall 
Friedman’s 
value 

Overall 
Friedman 
rank 

MOALO 11.92 12.46 12.78 12.83 12.54 13.41 12.28 12.25 100.45 15 
MODA 13.01 11.34 12.17 11.53 11.32 10.95 13.26 12.59 96.17 14 
MOGOA 10.57 10.00 11.98 10.83 10.73 9.98 10.71 11.14 85.94 11 
MOGWO 11.38 10.41 10.11 12.71 9.53 13.94 6.71 7.67 82.45 10 
MOMVO 8.61 8.35 8.70 9.39 8.88 11.37 10.67 9.32 75.28 8 
MOWCA 11.02 12.16 11.38 11.83 10.76 11.34 9.18 9.73 87.39 12 
MSSA 11.38 12.93 12.57 10.79 11.10 12.13 12.56 12.30 95.76 13 
SHAMODE 4.74 5.47s 5.08 5.27 6.10 5.77 5.71 5.28 43.41 3 
SHAMODE-WO 4.53 5.03 4.50 4.94 5.05 5.33 4.03 4.68 38.08 2 
NSGA-II 6.34 6.88 7.71 5.62 6.84 5.93 6.58 7.85 53.73 5 
RPBILDE 5.73 5.75 6.73 6.09 6.86 6.74 5.88 5.68 49.47 4 
DEMO 7.17 6.87 8.07 7.17 6.12 7.28 5.96 6.55 55.17 6 
MOEA/D 11.18 9.30 8.80 10.03 9.78 11.53 9.22 9.73 79.56 9 
UPSEMOA 6.81 7.50 7.87 7.27 7.61 6.98 6.53 6.72 57.28 7 
NSGA_III 12.41 12.48 12.81 13.98 12.31 10.91 15.06 14.50 104.46 17 
RVEA 15.64 15.76 17.30 17.34 16.63 14.63 17.24 16.75 131.28 18 
MnKnEA 13.93 14.18 8.13 10.16 14.93 8.77 15.85 16.01 101.95 16 
MMIPDE 4.66 4.15 4.33 3.23 3.93 4.04 3.59 2.26 30.18 1 

Fig. 5. Mean HV Vs Iteration of the 10-bar tower truss. 

 

 

 

 

 

 

 

 

 

 

To measure the overall performance comparison among the eighteen algorithms, the average mean Friedman’s rank of all the 
evaluated algorithms is calculated and presented in Table 14 . The overall best performer as per the average Friedman rank is MMIPDE
while SHAMODE–WO and SHAMODE are the runners-up. MMIPDE reported the best average Friedman’s ranks in 7 out of 8 truss
designs. 

Figs. 5-12 present the convergence history of mean HV of the evaluated algorithms for the eight truss problems. Convergence
history illustrates that there are nearly four algorithms that perform better compared to others in all the evaluated problems. MMIPDE,
SHAMODE, SHAMODE–WO, and RPBILDE have reported good consistency and convergence rate. The remaining algorithms perform 

somewhat unreliable and reported lower values of mean HV for the evaluated problems. These comprise MOALO, MODA, MOGOA, 
MOGWO, MOMVO, MOWCA, MSSA, NSGA–II, DEMO, MOEA/D, UPSEMOA, NSGA–III, and MnKnEA while RVEA is at the bottom. 
MMIPDE seems to be a better performer across with low design to a higher number of design variables while SHAMODE–WO and
RPBILDE perform better compared to others in large–scale problems like the 942–bar and 200–bar trusses. SHAMODE–WO reported 
the second–best performer, but its performance improved while designing a large–scale problems. Overall, the results of MMIPDE 
show that MMIPDE is the most efficient MHs for designing many-objective optimisation of truss problems while the SHAMODE- 
WO and SHAMODE are subsequent performers. MMIPDE exploits an estimation of distribution algorithm (EDA) for assigning the 
control parameters during an optimization run while its reproduction is modified from the traditional DE. This implies that algorithm
self-adaptation by means of EDA is efficient for many-objective truss design. The comparative results from this paper are the most
updated baseline results for truss many-objctive design as more newly published algorithms have been added to the comparison.
Nevertheless, although some top performers have been found out, it hardly implies that such powerful algorithms will always be
powerful for other optimization problems. This is often referred to as the no-free-lunch theory stating that one algorithm that is
powerful for one particular problem is not always efficient for other optimization problems. 
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Fig. 6. Mean HV Vs Iteration of the 25-bar tower truss. 

Fig. 7. Mean HV Vs Iteration of the 37-bar tower truss. 

Fig. 8. Mean HV Vs Iteration of the 60-bar tower truss. 
16 



N. Panagant, S. Kumar, G.G. Tejani et al. MethodsX 10 (2023) 102181 

Fig. 9. Mean HV Vs Iteration of the 72-bar tower truss. 

Fig. 10. Mean HV Vs Iteration of the 120-bar tower truss. 

Fig. 11. Mean HV Vs Iteration of the 200-bar tower truss. 
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Fig. 12. Mean HV Vs Iteration of the 942-bar tower truss. 

 

 

 

 

 

 

 

 

Conclusions 

Design optimization for real-world structures poses many conflicting objectives and has numerous design constraints, making it 
a challenging task that requires significant effort to resolve. It is crucial to assess the performance of contemporary algorithms on
many-objective truss optimization problems, as there are limited optimization methods available for solving them, to create more ef-
ficient methods in the future. Therefore this study compared the performance of new and established multi-objective meta-heuristics 
to design many-objective trusses. Eight challenging trusses, mostly tested in literature, are modified and used to set up the many-
objective test problems. The optimization problems aim to find elemental cross-section areas that minimize mass, minimize maximum 

compliance, maximize first natural frequency, and minimize maximum buckling factor, subject to elemental stress constraints and 
buckling constraints. The MOALO, MODA, MOGOA, MOGWO, MOMVO, MOWCA, MSSA, SHAMODE, SHAMODE-WO, NSGA-II, RP- 
BILDE, DEMO, MOEA/D, UPSEMOA, NSGA-III, RVEA, MnKnEA, and MMIPDE algorithms are compared using HV, GD, IGD, and STE 
measures. Friedman’s rank test is performed to get a statistical measure of the eighteen different algorithms. The comparative results,
based on the performance measures, reveal that MMIPDE is the overall best performer while SHAMODE-WO and SHAMODE are the
second and third best performers, respectively. 
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