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Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), is a serious infectious disease that has led to a
global pandemic with high morbidity and mortality. High-affinity neutralizing antibody is
important for controlling infection, which is closely regulated by follicular helper T (Tfh) cells.
Tfh cells play a central role in promoting germinal center reactions and driving cognate B cell
differentiation for antibody secretion. Available studies indicate a close relationship between
virus-specific Tfh cell-mediated immunity and SARS-CoV-2 infection progression. Although
several lines of evidence have suggested that Tfh cells contribute to the control of SARS-
CoV-2 infection by eliciting neutralizing antibody productions, further studies are needed to
elucidate Tfh-mediated effector mechanisms in anti-SARS-CoV-2 immunity. Here, we
summarize the functional features and roles of virus-specific Tfh cells in the
immunopathogenesis of SARS-CoV-2 infection and in COVID-19 vaccines, and highlight
the potential of targeting Tfh cells as therapeutic strategy against SARS-CoV-2 infection.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging and acute novel
coronavirus mainly transmitted via the respiratory tract, has rapidly caused pandemic-level cases of
coronavirus disease 2019 (COVID-19), which has a high morbidity and mortality worldwide (1–5).
Globally, as of 22 June 2021, there have been 178,503,429 confirmed cases of COVID-19, including
3,872,457 deaths from 195 countries and 28 regions according to the World Health Organization
(WHO) report (6). SARS-CoV-2 is a serious threat to human health and life worldwide.

Humans who are immune-naive to SARS-CoV-2 are considered to be a major factor for the
COVID-19 pandemic worldwide, and high-affinity neutralizing antibodies are especially essential
org September 2021 | Volume 12 | Article 7311001
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for the control and clearance of SARS-CoV-2 infection (7–10).
Several studies have reported sustained antibody responses in
patients with SARS-CoV-2 infection, in which specific antibody
titers are increased along with the progression of infection (11–
13) (Figure 1). Notably, the titers of specific antibodies against
SARS-CoV-2 are usually low in the first week. When the high
cumulative seroconversion rate occurs between 2 and 3 weeks
after symptom onset, the titers of neutralizing antibodies are
significantly decreased in the early convalescent phase, with the
titers of neutralizing antibodies not detectable in some patients,
which indicate that several weeks may be needed to generate
antibodies against SARS-CoV-2 (12–17). These findings suggest
that further studies are needed to explore the production and
function of neutralizing antibody inSARS-CoV-2 infection.

Antibody responses are closely correlated with CD4+T cell
subsets that play important roles in the control of viral infections,
including T helper (Th) 1 (Th1), Th2, and Th17 cells and follicular
helper T (Tfh) cells (18, 19). Among CD4+Th cell subsets, naive
CD4+T cells differentiated into Tfh cells can promote humoral
immunity bymediating the interaction between T cells and B cells,
which are essential for the control of viral infections and vaccine
responses (19–21). Tfh cells, as a novel CD4+T cell subset, are
characterized by the high expression of CXC chemokine receptor
5 (CXCR5), inducible T cell costimulator (ICOS), programmed
cell death protein 1 (PD-1), B-cell lymphoma 6 (Bcl-6), and
interleukin-21 (IL-21) in both mice and humans and can
usually initiate B cells to differentiate into plasma cells that
produce high-affinity antibodies to neutralize the virus, such as
lymphocytic choriomeningitis virus (LCMV), influenza virus and
hepatitis B virus (22–25). Loss of Tfh cell function can result in
primary immunodeficiencies characterized by impaired humoral
immunity, including COVID-19 infection, autosomal-dominant
hyper IgE caused by STAT3 deficiency and common variable
immunodeficiency (21, 25, 26). However, the roles and function
Frontiers in Immunology | www.frontiersin.org 2
features of Tfh cells in SARS-CoV-2 infection remain largely
unclear (19, 20). Here, we will discuss the characteristics and
functions of Tfh cells in the immunopathogenesis of SARS-CoV-2
infection and in COVID-19 vaccine responses, as well as their
implications in eliciting effective immunity against SARS-CoV-
2 infection.
THE PHENOTYPES AND FUNCTIONS OF
TFH CELLS

Tfh cells can help B cells generate high-affinity antibodies, long-
lived plasma cells, and memory B cells through functional
markers (20, 21). The markers of Tfh cells are important to
identify Tfh cells and their distinct subsets in the lymphoid tissue
and circulation, which commonly include chemokine receptor
CXCR5, transcription factor Bcl-6, PD-1, CD40 ligand (CD40L),
and ICOS in humans and mice (25, 27–29). Moreover, the
phenotypes of Tfh cells are associated with different stages of
immune responses (30, 31). In secondary lymphoid organs, naïve
CD4+T cells are differentiated into Tfh cells with the
upregulation of CXCR5 and downregulation of CC-chemokine
receptor 7 (CCR7), which are mediated by antigen-specific
conventional dendritic cells (DCs) or monocyte-derived DCs
(28, 32, 33). The increased CXCR5 and decreased
CCR7contribute to the migration of Tfh cells toward CXC-
chemokine ligand 13 (CXCL13)-enriched B lymphoid follicles
in the germinal center (GC) (28, 34). The specific transcription
factor Bcl-6 is selectively expressed in Tfh cells but is highly
expressed in CXCR5hiCCR7low/-Tfh cells in human and mouse
GCs (34–37). The IL-21 cytokine is highly and specifically
secreted by Tfh cells, which promotes the proliferation of Tfh
cells and helps B cell differentiation and antibody secretion,
which is characteristic of Tfh cells (38–42). ICOS deficiency
FIGURE 1 | Schematic diagram of antibody kinetics in COVID-19 patients. IgG/IgM/nAb indicates IgG antibodies/IgM antibodies/neutralizing antibodies, respectively.
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significantly reduces GC reactions and Tfh cells in mice and
humans, which indicates that ICOS expressed in Tfh cells is
essential for the differentiation and maintenance of Tfh cells, GC
formation, B cell differentiation and antibody responses (43–45).
ICOS, as a key costimulatory molecule, can also induce the
secretion of IL-21 in Tfh cells (45–47). HighPD-1 expression on
Tfh cells can significantly promote the differentiation and
activity of Tfh cells (48–50). Collectively, Tfh cells are
commonly identified as having three phenotypes: canonical GC
Tfh cells with PD-1++ and ICOS++Bcl-6+CCR7-CXCR5++CD4+T
cells, precursor-Tfh (Pre-Tfh) cells characterized as PD-
1+ICOS+Bcl-6lowCCR7lowCXCR5+CD4+T cells, and memory
Tfh cells similar to Pre-Tfh cells in lymphoid tissue (36, 50–
52). In GC, Tfh cells are responsible for regulating B cell
differentiation into memory B cells and plasma cells,
controlling the selection of high-affinity antibody production
and the development of long-term humoral immunity (53–56).

Circulating Tfh (cTfh) cells in the peripheral blood are usually
composed of two distinctive phenotypes: effector memory Tfh
cells (PD-1+ICOS+CCR7lowBCL-6-CXCR5+CD4+T cells) and
central memory Tfh cells (PD-1-ICOS-CCR7highBCL-6-

CXCR5+CD4+T cells) (32, 57, 58). Additionally, based on the
expression of CXCR3 and CCR6, cTfh cells are further divided
into three subsets: Tfh1 (CXCR3+CCR6-), Tfh2 (CXCR3-CCR6-),
Tfh17 (CXCR3-CCR6+), and Tfh1/17 (CXCR3+CCR6+) cells,
which share the signature transcription factors and cytokines of
Th1 (T-bet and IFN-g), Th2 (GATA3, IL-4, IL-5 and IL-13), Th17
(RORgt, IL-17 and IL-22) cells, respectively (32, 58, 59). cTfh2 and
cTfh17 cells can induce B cell differentiation and antibody
secretion and regulate immunoglobulin (Ig) isotype switching.
cTfh1 cells are commonly considered not to be a helper for B cells,
but ICOS+PD-1highCCR7lowcTfh1 cells effectively regulate B cell
differentiation and induce antibody responses (59–65). These
studies display functionally distinct cTfh cell subsets based on
ICOS, PD-1, and CCR7 expression, as well as CXCR3 and CCR6.
Moreover, these novel subsets are different from Th1, Th2 and
Th17 cells but share some of their characteristics. Additionally,
Frontiers in Immunology | www.frontiersin.org 3
Tfh-like cells have also been identified in non-lymphoid tissues,
including the synovium of arthritis, skin and salivary glands of
patients, which commonly express low or undetectable CXCR5
and Bcl-6 and high PD-1, ICOS, OX40 and IL-21 compared to Tfh
cells in secondary lymphoid organs, which also express tissue-
specific chemokine receptors, including CCR2, CCR5, CX3C-
chemokinereceptor 1 (CX3CR1) and CXCR4 (52, 66–71).
Recently, Tfh13 cells, a novel Tfh cell subset that secretes IL-4
and IL-13, were shown to be responsible for IgE production in
human and mouse allergies and to highly express the transcription
factors Bcl-6 and GATA3 (72–74). Current studies indicate that
distinct phenotypes of Tfh cells are critical for B cell differentiation
and high-affinity antibody production (Table 1). Interestingly,
follicular regulatory T (Tfr) cells are considered a subset of
Foxp3+Treg cells in the GC that are initiated from Foxp3+/-

precursors but not from Tfh cells (75–78). Tfr cells share
canonical Tfh cell molecules, including CXCR5, Bcl-6, PD-1 and
ICOS, as well as Treg cell molecules, including CD25, Foxp3,
Blimp-1 and CTLA-4 (79–82). Importantly, Tfr cells, similar to
Treg cells, play a critical role in immunosuppression, rather than
Tfh cells, which can limit GC responses and suppress the
activation of Tfh cells and B cells within GCs through inhibitory
molecules, including CTLA-4, PD-1, IL-10 and TGF-b secretion.
The balance of Tfh/Tfr cells is essential to maintain immune
homeostasis and mediate humoral immunity (63, 66, 82–85).
THE DIFFERENTIATION OF TFH CELLS

Tfh cell differentiation is regulated by multiple complex factors
and stages. Naïve CD4+T cells are primed by binding their T cell
receptors with peptide-loaded major histocompatibility complex
(MHC) class II (pMHC-II) on professional antigen-presenting
cells (APCs), such as DCs and monocytes. Strong TCR signaling
and continuous antigenic stimulation play critical roles in
favoring Tfh cell differentiation by upregulating BATF to
promote Bcl-6 expression (86–90). The early differentiation of
TABLE 1 | Phenotypes of Tfh cell subsets in blood and lymphoid tissues.

Location Cell subsets Phenotypic markers References

Blood
Central memory Tfh cells PD-1-ICOS-CCR7highBcl-6-Blimp-1-CXCR5+ (32, 57, 58)
Effector memory Tfh cells CD40L+/PD-1+/ICOS+CCR7lowBcl-6-Blimp-1-CXCR5+

cTfh1 cells IFN-g+Bcl-6-Blimp-1-CXCR5+or
PD-1+ICOS+CCR7lowCXCR3+CCR6-Bcl-6-Blimp-1-CXCR5+

(32, 57–59)

cTfh2 cells IL-4+Bcl-6-Blimp-1-CXCR5+ or
CXCR3-CCR6-Bcl-6-Blimp-1-CXCR5+

cTfh17 cells IL-17A+Bcl-6-Blimp-1-CXCR5+or
CXCR3-CCR6+Bcl-6-Blimp-1-CXCR5+

cTfh1/17 cells IFN-g+ IL-17A+Bcl-6-Blimp-1-CXCR5+or
CXCR3+CCR6+Bcl-6-Blimp-1-CXCR5+

cTfh13 cells IL-13hiIL-4hiIL-5hiIL-21lowBcl-6+GATA3+CXCR5+ (72–74)
Lymphoid tissues

Pre-Tfh cells PD-1+ICOS+CCR7lowBcl-6lowBlimp-1-CXCR5+ (32, 57, 58)
GC Tfh cells PD-1++ICOS++CCR7-Bcl-6+Blimp-1-CXCR5++

Memory Tfh cells PD-1+ICOS+CCR7lowBcl-6lowBlimp-1-CXCR5+
September 2021 | Volume 12 | A
PD-1, programmed cell death protein-1; CCR7, CC-chemokine receptor 7; CXCR3, CXC-chemokine receptor 3; CCR6, CXC-chemokine receptor 6; CXCR5, CXC-chemokine receptor 5;
ICOS, inducible T cell co-stimulator.
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Tfh cells is sufficiently initiated by DCs predominantly localized
to T cell zones of lymphoid organs, which are considered Pre-Tfh
cells that upregulate Bcl-6 and CXCR5 and repress CCR7
expression, and Bcl6+CXCR5+Pre-Tfh cells are attracted by the
chemokine CXCL13 (CXCR5 ligand) produced within the B cell
follicle zones toward the T-B border (36, 64, 91–94). Pre-Tfh
cells migrate to the T-B cell border and interact with cognate B
cells to further upregulate Bcl-6, CXCR5, ICOS, PD-1 and IL-21
and downregulate CCR7 expression, which further drives GC-
Tfh differentiation and maturation and GC formation. These
processes also require available costimulatory molecules and
cytokines, including ICOS-ICOSL, OX40-OX40L, PD-1-PD-Ll/
2, CD40-CD40L, IL-21, IL-6 and IL-12 cytokines (25, 32, 36,
95–102).

The transcription factor Bcl-6 in CD4+T cells is mostly
essential for Tfh differentiation and function, and loss of Bcl-6
represses Tfh differentiation, GC formation, B cell differentiation
and antibody responses (34, 35, 43). Bcl6-expressing Tfh cells are
also regulated by multiple transcription factors, including positive
inductors such as TCF-1 and LEF-1, BATF, NOTCH1/2, and IRF4
and negative regulators such as Blimp-1, FOXO1 and STAT5 (22,
25, 32, 103–110). Some costimulatory molecules expressed on Tfh
cells are considered markers of Tfh cells, including ICOS, OX40,
PD-1 and CD40L, which can also induce Tfh cell differentiation
and maintenance (32, 111, 112). In GC, B cells highly express
costimulatory ligands, including ICOSL, CD80, CD86, PD-L1, and
PD-L2, which contribute to the maintenance of Tfh cells, and then
Tfh cells also mutually promote B cells to differentiate into plasma
cells to further produce specific antibodies that mediate humoral
immune responses (113, 114). Bcl-6 induces secretion of the
cytokine IL-21, which can promote Tfh cell differentiation by
upregulating STAT-1 and STAT-3 signals to further induce Bcl-6
expression, and similarly, the cytokine IL-6 plays a critical role in
Tfh cell differentiation by upregulating the STAT1/3-Bcl-6 signal
axis (56, 85, 115, 116). In addition, Tfh1 cells are characterized by
IL-21 and IFN-g production, and Tfh1 cell differentiation
characterized by increased T-bet and Bcl-6 expression is
initiated by phosphorylation of STAT1 and STAT4 in CD4+T
cells that are induced through IL-12, which is partially inhibited by
a high concentration of IL-2 that reduces Bcl-6 expression (85,
115–120). Tfh2 cells are characterized by IL-4 and IL-21
production; Tfh2 cell differentiation is driven by IL-4 but
suppressed by IL-6 via STAT3 signaling, and IL-4-secreted Tfh2
cells contribute to humoral immunity (85, 121–123). Tfh17 cells
are characterized by IL-21 and IL-17 production; Tfh17 cell
differentiation is primed by IL-23, IL-21, ICOS, TGF-b and IL-6,
which upregulate Bcl-6 and RORgt expression. Consistent with its
well established role in driving B cell response during infection, IL-
17 secreted by Tfh17 cells can promote interactions of cognate T-B
cells in the GC, inducing the formation of spontaneous GC and Ig
isotype class-switching (124–127). However, low doses of IL-2,
TGF-b and CTLA-4 promote the development of Tfr cells that
play critical roles in inhibiting Tfh cell differentiation and GC
responses by activating STAT5, Blimp-1, and Bach2 transcription
factors in Tfr cells characterized by CXCR5+Foxp3+CD4+T cells
(128–133). Tfr cells can inhibit Tfh cell and plasma cell
Frontiers in Immunology | www.frontiersin.org 4
differentiation by inhibitory molecules, including CTLA-4, IL-10
and TGF-b; conversely, Tfh cells also inhibit the expansion of Tfr
cells by the IL-21 cytokine (27, 131–139). This suggests that the
balance of Tfh and Tfr cells plays a critical role in regulating B cell
differentiation and specific antibody production (140).
TFH CELLS IN SARS-COV-2 INFECTION
AND VACCINE

Currently, the SARS-CoV-2 infection pandemic has led to a
serious threat to human health worldwide. Neutralizing
antibodies of humoral immunity play a critical role in vaccine
responses and battles against infectious viruses, including SARS-
CoV-2, which is closely associated with Tfh cells differentiation
and function (18, 19, 21, 141–144) (Figure 2). The role and
function of Tfh cells in the control and clearance of SARS-CoV-2
infection and in the development of new vaccines have
been investigated.

Previous reports showed that the frequencies of cTfh cells
characterized byCXCR5+ICOS+PD-1+progressively increased up
to 20 days from the onset of infection in a case with non-severe
convalescent COVID-19, in addition to elevated specific plasma
SARS-CoV-2-binding IgM and IgG antibodies (145). Single-cell
analysis revealed that expanded frequencies of cTfh cells were found
in patients with active COVID-19 disease, as well as a high
percentage of specific anti-SARS-CoV-2 antibodies, including IgA
and IgG (146). The frequencies of spike (S)-specific cTfh cells
(CD3+CD4+CD45RA–CXCR5+) are consistently elicited after S
peptide stimulation in convalescent COVID-19 cases and exhibit
a clear phenotypic bias to aCCR6+CXCR3-cTfh17 cell phenotype;
however, neutralizing activity is inversely correlated with S-specific
cTfh17 cell frequencies but positively correlated with S-specific
cTfh, cTfh1 (CCR6-CXCR3+) and cTfh2 (CCR6-CXCR3-) cell
frequencies (147). Previous reports suggested that expanded
CXCR3+cTfh1 cells positively correlated with the neutralizing
antibody response against influenza vaccination and live-
attenuated yellow fever vaccination (148, 149). A recent study
showed that increased frequencies of CCR7lowPD-1+cTfh-
effectormemory (em), cTfh1 and cTfh2 cells in CXCR5+CD45RA-

CD25-CD4+T cells are significantly increased, as well as high IL-1b
and TNF-a, and that the frequencies of cTfh1 cells are associated
with SARS-CoV-2-specific IgG/IgM antibodies, although
CCR7highPD-1-cTfh-central memory (cm) and cTfh17 cells in
CXCR5+CD45RA-CD25-CD4+T cells are decreased, as well as
cTfr cells in Treg cells in convalescent patients compared to
healthy subjects. Moreover, the frequencies of high cTfh-em, low
cTfh-cm and cTfr cells are positively correlated with disease severity
(150). These observations indicated that cTfh cell phenotypes can
induce potent neutralizing responses against SARS-CoV-2 in
COVID-19convalescent patients, which will contribute to
antibody-based therapeutics and vaccination design for COVID-19.

Additionally, increased frequencies of virus-specific cTfh cells
(CD4+CXCR5+OX40+CD40L+) were observed in acute and
convalescent COVID-19 cases, and the frequencies of both
September 2021 | Volume 12 | Article 731100
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SARS-CoV-2-specific cTfh cells and S-specific CCR6+CXCR3-

cTfh17 cells were closely associated with low disease severity
(151). Longitudinal studies on COVID-19 infection and
convalescent subjects indicate that the levels of SARS-CoV-2
antibodies are low and insufficient in humoral immunity
response, although the underlying mechanism is poorly
understood (11–14). The numbers of CD4+CXCR5+Tfh,
ICOS+Tfh, Bcl-6+Tfh and Bcl-6+B cells are decreased in lymph
nodes and spleens, which are possibly associated with exclusively
abundantTh1 cells, increased Treg cells (but not Tfr cells) and
aberrant TNF-a production in COVID-19 lymph nodes in
COVID-19 patients, as well as loss of GCs in lymph nodes and
spleens from acute and dead COVID-19 patients (26, 152, 153).
These data indicated that defective Tfh cell generation and
dysregulated humoral immunity provide a possible mechanistic
explanation for the limited durability of antibody responses in
COVID-19 disease. Furthermore, low frequencies of CD45RA-

PD-1+CXCR5+cTfh cells were also observed, but elevated
frequencies of activated cTfh (CD38+ICOS+) cells were
positively correlated with anti-SARS-CoV-2 IgM and IgG titers
in hospitalized COVID-19 patients (154). These findings indicated
that activated cTfh cells may be more reflective of recent antigen
encounter and emigration from the GCs. Additionally, a single-
cell transcriptomic analysis revealed that increased proportions of
cytotoxic cTfh cells in hospitalized COVID-19 patients early in the
illness are negatively correlated with the IgG levels of anti-spike
protein antibodies to SARS-CoV-2, although the total SARS-
reactive cTfh cells show a positive correlation with anti-spike
Frontiers in Immunology | www.frontiersin.org 5
antibody levels in hospitalized COVID-19 patients but not in non-
hospitalized COVID-19 patients, which provided insights into
cytotoxic cTfh cells in the distinct disease severities of COVID-19
patients (155). Moreover, reduced cTfh and PD-1+cTfh and
increased exhausted TIM‐3+cTfh cell frequencies are
significantly observed, but the correlations between cTfh cells
and anti-SARS-CoV-2IgM and IgG titers were not analyzed in
hospitalized COVID-19 patients (156). These results indicated
that cytotoxic cTfh and exhausted cTfh cells may inhibit specific
anti-SARS-CoV-2 antibody production, which plays a critical role
in severe SARS-CoV-2 infection (157). In a recent cohort study of
COVID-19 patients within six months of recovery, the
CXCR5+CD4+cTfh cell frequencies were significantly higher in
COVID-19 patients in the long-term clinically recovered (20∼26
weeks) cohort (LCR) than in those in the short-time clinically
recovered (4∼9 weeks) cohort (SCR). However, the frequencies of
cTfh cells in both the LCR and SCR cohorts were lower than those
in the healthy donor cohort (HD). Moreover, three cTfh subsets
were similar between the LCR and HD cohorts; cTfh1 cell
frequencies in the SCR cohort were shown to be significantly
low, but cTfh2 and cTfh17 subsets were found to be high
compared with the LCR and HD cohorts (158). Virus-specific
Tfh cell frequencies, memory B cell responses, and serum CXCL13
levels were not different between asymptomatic or mild
symptomatic COVID-19 patients. In contrast, COVID-19
patients with moderate or severe disease exhibited vigorous
virus-specific GC B cell responses and Tfh cell responses.
Moreover, potent virus-specific Th1 and CD8+T cell responses
FIGURE 2 | The regulation of Tfh cell differentiation and function in SARS-CoV-2 infection and vaccines. Naïve CD4+ T cells are driven by APCs (DCs) upon
exposure to SARS-CoV-2 or virus antigens, which are activated toward antigen-specific Pre-Tfh cells with upregulation of CXCR5 and Bcl-6 and downregulation of
CCR7 under the interaction of MHC-II molecules on DCs and cognate TCR on CD4+T cells, as well as the expression of costimulatory molecules and cytokine
production. Pre-Tfh cells interact with activated B cells at the T-B border in the follicle zone, which further differentiate into various Tfh cell subsets that migrate to the
GC, where Tfh cells promote B cell differentiation and specific antibody production. However, the loss of GC structures reduces Bcl-6+Tfh cells in severe COVID-19
patients. Notably, SARS-CoV-2-specific Tfh cells are expanded in mild and asymptomatic patients with COVID-19.Moreover, vaccines can efficiently induce Tfh cell
differentiation, GC formation, and protective antibody responses.
September 2021 | Volume 12 | Article 731100
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were observed in asymptomatic or mildly symptomatic patients
but not in severely symptomatic patients. These data suggest that
asymptomatic and mild patients have weak and transient SARS-
CoV-2 antibody responses (159).

During acute COVID-19 infection, expanded activated
CD38+HLA-DR+PD-1+ICOS+CXCR5+CD4+cTfh cells ,
CD38+HLA-DR+CXCR3+cTfh1 cells, and activated CD38+HLA-
DR+Th1 cells emerged, together with cytotoxic CD8+T cells. The
number of activated cTfh1 cells positively correlated with the
levels of RBD- and spike-specific antibodies, including IgG, IgA
and IgM isotypes (160). These data indicated that activated cTfh
cell responses were associated with robust antibody responses
elicited during SARS-CoV-2 infection, which may be valuable as
potential biomarkers in vaccine clinical trials. Similarly,
CD38+HLA-DR+cTfh cells, activated CD4+T cells and cytotoxic
CD8+T cells were expanded in COVID-19 patients, and increased
CD38+HLA-DR+cTfh cells indicated a recent antigen encounter
and emigration from the GC of the patients (161). The frequencies
of PD-1+ICOS+cTfh, cytotoxic CD4+T and exhausted T cells were
strongly expanded in COVID-19 patients, particularly in severe
patients compared to healthy individuals, which suggested that
extensive T cell dysfunction was associated with COVID-19
severity (162). In severe COVID-19 patients, the frequencies of
CCR6+cTfh cells and CCR4+cTfh cells were expanded, but
CCR3+cTfh cells and Th1 cells were low in severe COVID-19
patients compared to healthy individuals (163). The frequencies of
PD-1+ICOS+cTfh cells, activated cTfh cells and cytotoxic CD8+T
cells were strongly upregulated in COVID-19 patients, particularly
in severe patients compared to healthy donors. Moreover, an
increase in CD4+CD127-CD25+Treg cells was found in mild
patients, and upregulation of CCR4 in activated CD8+T cells
indicated enhanced lung homing in severe COVID-19 patients
(164). Additionally, in rhesus macaques, SARS-CoV-2 infection
induces predominantly GC CXCR3+Tfh cells (but not a PD-1+
+Foxp3+Tfr cell subset) specific for the SARS-CoV-2 spike and
Frontiers in Immunology | www.frontiersin.org 6
nucleocapsid proteins and produce high titers of antiviral serum
IgG and IgM antibodies againstSARS-CoV-2 (165) (Table 2).
These data indicated that variable Tfh cell subsets dysregulated the
humoral immune responses in COVID-19 patients caused by
SARS-CoV-2 infection.

The COVID-19 pandemic continues to spread worldwide,
and a safe and protective vaccine is urgently needed to effectuate
herd protection and control of SARS-CoV-2. Currently, rapid
advances have been made in the design and development of
SARS-CoV-2 vaccines, such as inactivated vaccines, DNA
vaccines, mRNA vaccines and specific SARS-CoV-2 proteins
(166). mRNA-1273 vaccine could significantly induce Th1 and
interleukin-21-producing CXCR5+PD−1+ICOS+Tfh cell
responses, and elicit robust SARS-CoV-2 neutralizing activity,
which provided rapid protection in the upper and lower airways
from SARS-CoV-2 infection in Rhesus Macaques (167). When
compared to SARS-CoV-2 with recombinant SARS-CoV-2
receptor-binding domain (rRBD) formulated with AddaVax
(rRBD-AddaVax) protein vaccine, the SARS-CoV-2 mRNA
vaccines encoding RBD and full-length spike protein efficiently
induce SARS-CoV-2-specific GC B cell and Tfh cell responses,
which promoted specific neutralizing antibody production in
vaccinated mice. Interestingly, the rRBD-AddaVax vaccine could
elicit high frequencies of IL-4+ Tfh cells (168). In human
vaccination, the BNT162b2 mRNA vaccine for SARS-CoV-2
had significantly elicited AIM+CXCR5+CD45RA-CD3+cTfh cell
responses, AIM (activation induced marker) cells include
CD69+OX40+ or CD69+CD40L+ orCD69+4-1BB+ or OX40+4-
1BB+ or CD40L+4-1BB+ or CD40L+OX40+cells, and the
frequency of AIM+cTfh cells is positively correlated with anti-
Spike-specific IgA and IgG antibody titers (169). These findings
have indicated that SARS-CoV-2 mRNA vaccines can effectively
promote antigen-specific Tfh cell differentiation, B cell responses
and the generation of protective antibodies, which are considered
as promising candidates for eliciting high-quality adaptive
TABLE 2 | Characteristics and function of Tfh cells in COVID-19 patients.

Severity of
disease

Characteristics Function Isotype of
antibodies

References

Convalescent CD3+CD4+CD45RA-CXCR5+Tfh cells expansion; bias to a
CCR6+CXCR3-cTfh17 cells.

Positively associate with plasma neutralizing activity. — (146)

cTfh-em and cTfh1 cells expansion. Positively associate with the SARS-CoV-2-specific
antibody titers.

IgM (149)

Mild CXCR5+ICOS+PD-1+cTfh cells expansion, Correlate with better clinical outcomes. IgM, IgG (144)
CD45RA-PD-1+CXCR5+cTfh cells reduction, activated cTfh
(CD38+ICOS+) cells expansion.

Positively correlate with anti-SARS-CoV-2IgM and
IgG titers.

IgM, IgG (153)

Moderate TIM-3+Tfh-like cells expansion, CD226+Tfh-like cells reduction. Benefit the maintenance of balanced cellular and
humoral immune responses.

— (155)

Severe Tem and Tfh-em cells expansion, Tcm, Tfh-cm, and Tfr cells
reduction.

cTfh-em cells negatively correlate with recorded
PaO2/FiO2.

IgG, IgA (149)

Cytotoxic cTfh cells and cytotoxic T helper cells expansion,
Treg cells reduction.

Negatively correlate with antibody levels to SARS-
CoV-2spike protein.

— (154)

PD-1+ICOS+CXCR5+CD4+cTfh cells expansion. Correlate with robust humoral immunity. IgG, IgM, and
IgA

(159)

CCR6+cTfh cells and CCR4+cTfh cells expansion, CCR3+cTfh
cells and Th1 cells reduction.

Favor the development of the antibody response. — (162)
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“—” indicates not mentioned; Tfh, follicular helper T cell; cTfh, circulating Tfh cell; cTfh-em, effector-memory-like circulating Tfh cell; Tfh-cm, central-memory-like circulating Tfh cell; Tfr,
follicular T regulatory cell; PaO2, arterial oxygen tension; FiO2, inspiratory oxygen fraction;Treg, regulatory T cells.
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immune responses to control and clear SARS-CoV-2 infection.
Additionally, the specific protein vaccines including SARS-CoV-
2 subunit vaccine (NVX-CoV2373) with the full-length spike (S)
protein, StriFK-FH002C and Spike (S)/receptor binding domain
(RBD) protein subunit vaccine significantly induce specific cTfh
cell and GC B cell responses, resulting in high neutralizing
antibody titers of SARS-CoV-2 (170–172) (Table 3). Various
clinical trials in humans indicate that inactivated SARS-CoV-2
vaccines can induce satisfactory high neutralizing antibody titers
that notably reduce the number of patients with severe COVID-
19 (173–176). These data suggested that SARS-CoV-2 vaccines
can safely and effectively promote humoral immune responses,
enhance neutralizing antibody titers, and reduce the incidence
and mortality of critically ill patients.

CONCLUSIONS

Tfh cells and associated molecules play a critical role in the
development of viral infection, and Tfh cell subsets are required
for high-quality neutralizing antibodies from B cells to control
and clear viruses including SARS-CoV-2, which can effectively
promote humoral immune responses. Emerging evidence
indicates that functional characterization of Tfh cells and their
subsets will provide novel insights into improved vaccine design
and therapeutic strategies to prevent and control various viral
infections including SARS-CoV-2 infection.
Frontiers in Immunology | www.frontiersin.org 7
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TABLE 3 | Tfh cell responses in various vaccine candidates of SARS-CoV-2.

Vaccine candidates Phenotypes Function Antibody
isotypes

References

mRNA vaccines
mRNA-1273 IL-21+CXCR5+PD−1+ICOS+Tfh cells expansion. Induce robust and specific antibody responses

including neutralizing antibody.
IgA, IgG (166)

full SΔ furin mRNA B220-CD4+CD44hiCD62L-CXCR5+Bcl-6+ Tfh cells,
B220-CD4+CD44hiCXCR5+PD-1hi IL-21+Tfh cells,
B220-CD4+CD44hiCXCR5+Bcl-6+ ICOS+Tfh cells
B220-CD4+CD44hiCXCR5+PD-1hi

IFN-g+Tfh cells notable expansion.

Elicit potent SARS-CoV-2-specific GC B
responses, induce robust and specific antibody
responses including neutralizing antibody.

IgG1,
IgG2a,
IgG2b,

(167)
(167)

RBD mRNA
(receptor binding
domain, RBD)

B220-CD4+CD44hiCD62L-CXCR5+Bcl-6+ Tfh cells,
B220-CD4+CD44hiCXCR5+PD-1hi IL-21+Tfh cells,
B220-CD4+CD44hiCXCR5+Bcl-6+ ICOS+Tfh cells,
B220-CD4+CD44hiCXCR5+PD-1hi

IFN-g+Tfh cells notable expansion

Elicit potent SARS-CoV-2-specific GC B
responses, induce robust and specific antibody
responses including neutralizing antibody.

IgG1,
IgG2a,
IgG2b,

BNT162b2 mRNA
vaccine

AIM+CXCR5+CD45RA-CD3+cTfh cells expansion, AIM cells
include CD69+OX40+ or CD69+CD40L+ orCD69+4-1BB+ or
OX40+4-1BB+ or CD40L+4-1BB+ or CD40L+OX40+

Positively correlate with anti-spike-specific IgA and
IgG titers.

IgA, IgG (168)

Protein vaccines
rRBD-AddaVax B220-CD4+CD44hiCD62L-CXCR5+Bcl-6+ Tfh cells,

B220-CD4+CD44hiCXCR5+PD-1hi IL-21+Tfh cells
B220-CD4+CD44hiCXCR5+PD-1hi

IL-4+Tfh cells slight expansion

Delay to elicit potent SARS-CoV-2-specific GC B
responses, induce robust and specific antibody
responses including neutralizing antibody.

IgG1, (167)

NVX-CoV2373 CXCR5+PD-1+CD4+Tfh cells expansion Induce specific antibody responses including
neutralizing antibody.

IgG (169)

Spike (S) and receptor
binding domain (RBD)
protein subunit vaccine

CXCR5++BCL-6+CD4+CD3+B220-Tfh cells expansion Induce specific antibody responses including
neutralizing antibody.

IgG (170)

StriFK-FH002C PD-1+CXCR5+CD4+Tfh cells expansion Induce specific antibody responses including
neutralizing antibody.

IgG, IgG1,
IgG2a,
IgG2b

(171)
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