
AutoNanopore: An Automated Adaptive and Robust Method to
Locate Translocation Events in Solid-State Nanopore Current Traces
Zepeng Sun,* Xinlong Liu, Wei Liu, Jiahui Li, Jing Yang, Feng Qiao, Jianjun Ma, Jingjie Sha, Jian Li,*
and Li-Qun Xu*

Cite This: ACS Omega 2022, 7, 37103−37111 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Solid-state nanopore sequencing has shown impressive
performances in several research scenarios but is still challenging,
mainly due to the ultrafast speed of DNA translocation and significant
noises embedded in raw signals. Hence, event detection, aiming to
locate precisely these translocation events, is the fundamental step of
data analysis. However, existing event detection methods use either a
user-defined global threshold or an adaptive threshold determined by
the data, assuming the baseline current to be stable over time. These
disadvantages limit their applications in real-world application
scenarios, especially considering that the results of different methods
are often inconsistent. In this study, we develop an automated
adaptive method called AutoNanopore, for fast and accurate event
detection in current traces. The method consists of three consecutive
steps: current trace segmentation, current amplitude outlier identification by straightforward statistical analyses, and event
characterization. Then we propose ideas/metrics on how to quantitatively evaluate the performance of an event detection method,
followed by comparing the performance of AutoNanopore against two state-of-the-art methods, OpenNanopore and EventPro.
Finally, we examine if one method can detect the overlapping events detected by the other two, demonstrating that AutoNanopore
has the highest coverage ratio. Moreover, AutoNanopore also performs well in detecting challenging events: e.g., those with
significantly varying baselines.

1. INTRODUCTION
Nanopore sequencing technology, which delivers ultralong
reads and portable devices, is playing an increasingly important
role in life sciences and molecular biology. As one of the two
main categories, protein nanopore sensors have been effectively
used in many sequencing scenarios, such as human whole
genome sequencing,1 SARS-CoV-2 genome analysis,2 pathogen
identification,3 disease-causing variant identification,4 etc.
Meanwhile, during the past decade, remarkable progress has
been achieved for solid-state nanopore sensors. In particular,
solid-state nanopores have been used in DNA/RNA con-
formation detection,5 protein fingerprinting,6 and biomarker
immunoassays.7 Compared to protein nanopores, solid-state
nanopores fabricated with SiNx, SiO2, or MoS2 are less
vulnerable to the environment and are easier to integrate.
Despite these apparent advantages, solid-state nanopore
sequencing is hugely challenging, mainly due to the ultrafast
speed of nucleotide translocation and significant noises in raw
signals.8−11

Apart from the fabrication of solid-state nanopores,
processing solid-state nanopore raw signals is also crucial.12,13

So far, the processing has been mainly concentrated on the
translocation event detection and the follow-up analyses of the

events. Most existing event detection methods are essentially
outlier identification in current values: the current variations are
computed/ranked and cut off at a specific threshold. Based on
the principle of how a cutoff threshold is determined, the event
detection methods can simply be classified into two categories:
(1) classical methods which select user-defined, and usually
global, thresholds such as MiniAnalysis,14 Easy Electrophysiol-
ogy,15 and Clampfit;16 (2) more advanced methods which use
adaptive and local thresholds determined by the data, such as
OpenNanopore,17 MOSAIC,18 Transalyzer,19 EasyNanopore,20

EventPro,21 etc. Following the event detection results, machine-
learning models have been proposed to analyze the detected
events: e.g., Carral et al. developed a deep-learning method to
distinguish single nucleotides at high accuracies22 and Xia et al.
recently proposed a machine-learning-based method to classify
signals generated by four synthetic glycosaminoglycans through
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solid-state nanopores.23 There is also another study where a
deep-learning method was developed for postdenoising of ionic
current in a nanofluidic channel having five pairs of nano-
protrusions.24

Although these studies have proposed impressive machine-
learning tools to effectively analyze translocation events,
accurate event detection is still the first and most essential
step toward analyzing the raw electrical signals. Classical event
detection tools perform the task by simply comparing the
amplitudes to a global threshold. Unfortunately, choosing a
suitable threshold is tricky in that it requires sophisticated
manual observations of the signals, which depends heavily on the
expertise of researchers; hence, the task is quite labor-intensive.
Of those advanced tools, OpenNanopore17 is an excellent one
because it uses a modified cumulative sums algorithm
(CUSUM), where a threshold is determined by the data
without additional human intervention; the tool EasyNano-
pore20 has also been proposed where the filtering threshold is
defined as the mean value plus a multiple of the standard
deviation of all the current values before a specific data point.
While these tools are impressive, they need to compute a wide
range of data points in a recursive form and are thus
computationally demanding, though parallel processing can
accelerate the computation. More importantly, they require the
baseline of the current traces to be stable.17 To resolve the
baseline variation issue, the tool EventPro21 was proposed,
where a baseline construction was performed first, and then an
event was identified when either the amplitude in a fixed window
size exceeded a multiple of the standard deviation of the baseline
or the amplitude exceeded a user-defined threshold. This tool
turns out to be capable of optimizing the event detection by
avoiding the influences of baseline variations, but it requires a

considerable amount of computation to perform the baseline
fitting. Thus, it is urgent to develop a fast, automated, and
accurate method to perform the event detection task in a robust
manner. To this end, such a method should incorporate a more
straightforward outlier identification strategy and concentrate
on the data points near the “peaks” caused by potential
translocation events rather than considering a wide range of data
points.

This study aims to address the aforementioned issues and
develop AutoNanopore�a fast and accurate event detection
method in solid-state nanopore sequencing raw signals. It can
detect the events in a vast amount of data points efficiently. The
article is organized as follows. Section 2 describes the motivation
and setup of the experiments and the detailed implementation
steps of AutoNanopore, our proposed translocation events
detection method. Then, Section 3 presents the results of
AutoNanopore on a data set consisting of 23 abf files. Next,
Section 4 discusses the strengths and limitations of AutoNano-
pore and its future research direction, and finally, the paper
concludes with Section 5.

2. METHOD
This section first explains the current trace acquisition process
for solid-state nanopore translocation experiments, followed by
a detailed presentation of the AutoNanopore translocation event
detection method.

2.1. Data Acquisition. To acquire raw solid-state nanopore
current traces, we added single-strand DNA (ssDNA)molecules
with a concentration of 500 pM/L into the trans-chamber. Then
a positive voltage of 300 mV was applied to the trans-chamber,
and the cis-chamber was electrically grounded. Two Ag/AgCl

Figure 1. An exemplary close-up view of the proposed event detection method performed on data file 1.abf (refer to Figure 2 for the complete results).
(a) Illustration of the translocation experiment. (b) The current traces over time, plotted in a vertical direction. (c) Four examples of the segmented
slices, each being 30 ms in time. In each slice, the red part shows the range around the peak and is then analyzed. (d) The red part in each slice is
enlarged and analyzed: the green part of the curve indicates a phase absent of translocation events, and the baseline current value (denoted as a
horizontal dashed curve) is computed as the average of this part, and the pink curve shows the potential event range. (e) The detection results, based on
the amplitude of each peak corresponding to its baseline.
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electrodes were placed in the electrolyte bath at both ends of the
nanopore with a diameter of 14 nm, and the transmembrane
voltage was set to generate an ionic current. The current trace
was then measured by a resistive feedback amplifier (Axon
MultiClamp 700B) at a bandwidth of 250 kHz and a 10 kHz low-
pass filter. All single-stranded DNA in the experiments has 22
nucleotides (3′-TCAACATCAGTCTGATAAGCTA-5′). All
of the current traces were generated during one experiment, and
the files were stored every 5 min. Finally, 23 axon binary format
(abf) files were generated during the experiments; each file lasts
for 5 min and thus contains 75 million data points,
approximately 143MB in size. All experiments were carried
out in a dark Faraday cage. More details about the experiment
preparation and nanopore fabrication can be found in the
Supporting Information.

2.2. Event Detection. When an ssDNA with 22 nucleotides
translocates through the nanopore, it gives rise to an abrupt
change in the current amplitude, and such an occurrence
earmarks a translocation event. The events are normally
distributed in a stochastic and sparse manner in the raw traces;
we aim to identify and locate them automatically. In the
following, we mainly discuss the positive-going cases in which a
translocation substantially increases the current value; the
negative-going cases are processed in the same fashion.

Our proposed event detection method illustrated in Figure 1
includes the following five steps.

2.2.1. Step 1 (Segmentation). A single abf file is equally split
into a predefined number of slices. In this study, the default
window size is 30 ms, and so each file is split into 10000 slices
(contains 7500 data points). Let the peak value (maximum
value) found in slice i be pi, where i∈ [1,10000], and the index of
the peak point in slice i be ki. Note that 30ms per slice represents
a compromise between the performance of AutoNanopore and
the computational complexity for our 5 min traces. We have also
tested different segmentation strategies and have concluded
that, for a slice length between 6 ms and 60 ms, the performance
of AutoNanopore is not significantly affected. However, for
short current traces, we recommend reducing the slice’s window
size to favor the follow-up statistical analyses.

2.2.2. Step 2 (Baseline Search and Amplitude Computa-
tion). For each slice i, first, we need to select a suitable range for
0.5 ms (containing 125 data points) before the peak point ki; in
our experience, a range closer to the peak will better reflect the
actual variation trend due to the variation of the overall baseline.
To ensure the choice of a suitable range, we perform a backward
search from the peak until the Z-score of the peak current value
is higher than 3, considering the current values in the range [ki−
mi,ki], where mi is the amount of the push-back data points used
for baseline search. Next, we take the average value of the range
[ki−mi−125,ki −mi] as the baseline corresponding to peak pi,
denoted by bi. Figure 1 gives an illustration of the process, where
the green part depicts the selected range; the amplitude of the
peak is then defined as

a p bi i i=

2.2.3. Step 3 (Amplitude Outlier Identification). A
straightforward statistical analysis is performed for all 10000
amplitudes: the amplitudes are sorted, the first quantile Q1 and
the third quantile Q3 are found, and the interquantile range is
defined as IQR = Q3 − Q1. Next, the amplitudes that satisfy the
following condition are identified:

a Q3 IQRi > + ×

The peaks of the identified amplitudes become outliers
among all amplitudes and would most probably occur due to
translocation events, denoted by ej; the corresponding peak
value, baseline, and amplitude for each ej are then denoted as pje,
bje, and aje, respectively. Note that the parameter θ determines the
selection threshold, and the default value is set to 1.5. The IQR
of all the amplitudes may vary significantly under different
circumstances, requiring an adjustment in the value of θ to
ensure accurate detection. We strongly suggest that the value
should not be smaller than 1.5, since amplitudes below Q3 + 1.5
× IQR are not thought to be outliers, according to statistical
principles.

2.2.4. Step 4 (Event Characterization). Since each event ej
corresponds to a local maximum current value, there must be a
rising period before the peak pje and a falling period after the
peak. Similar to the method proposed byOpenNanopore, we set
the starting point of an event as the first point before the peak
whose current value is below bje + 0.1 × aje, while the ending point
is the first point after the peak whose value crosses bje + 0.1 × aje.
For each event ej, we locate the starting and ending time by
backward and a forward searches, denoted by tstart,j and tend,j,
respectively. The orange curve indicates the time range of the
event in Figure 1; the duration of ej is obtained as dj = tend,j −
tstart,j. We choose bje + 0.1 × aje as the threshold for starting and
ending times, considering that with the ultrafast speed of the
nucleotide translocation the nucleotides should not yet have
entered the nanopore when the current value increases strictly to
the baseline; similarly, all of the nucleotides should already have
passed through the nanopore before the current value drops
strictly to the baseline. In other words, the translocation only
starts slightly later but finishes slightly earlier than the changes in
values of the current.

2.2.5. Step 5 (Optimization). The event detection task is
finished when the above four steps are done. However, some
events may have a much larger duration compared to others due
to the occasional clogging of the nanopores. We perform the
same analysis as presented in Step 3, filter out the events having
large durations that are thought to be outliers, and keep the
remaining events to do further optimization. Moreover, some
events may still have small amplitudes, increasing the probability
of them being false detections. We score each event by
examining how its amplitude is far away from the maximum
amplitude: we sort all the amplitudes in ascending order, for
each amplitude ak, we compute

a a

a
k

k i
k

i

1
1

1=

until its value is higher than a threshold (the default is 0.1). Here
ai < aj for all i < j. Finally, we select all the events with amplitudes
higher than ak to be confident events, and the others are thought
to be low-confidence events. In summary, by following the five
steps in our proposed AutoNanopore method, we can rapidly
locate the translocation events together with their character-
izations, each including the peak value, baseline, amplitude, and
the starting and ending time points. Note that, in the discussion
above, we present event detection in positive-going cases.
However, our method is also applicable to event detection in
negative-going cases, where the translocation substantially
reduces the current value. To perform event detection tasks in
negative-going cases, we only need to make several minor
adjustments: in step 1, we pick the minimum value in each slice
as the peak pi; in step 2, the amplitude is defined as bi − pi; in step
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4, the searching for starting and ending time points is performed
in the opposite direction as well.

3. RESULTS ON ALL 23 SINGLE-STRANDED DNA
CURRENT TRACES

This section analyzes various results obtained when applying
AutoNanopore to the acquired data sets. AutoNanopore is
implemented with Python (preferably using version 3.7, a 64-bit
version), and the pyabf package (version 2.3.5) is used to

process the abf files. It runs efficiently on Windows, Linux, or
MacOS platforms without extra specific configurations. The
source code of AutoNanopore and a demo file (1.abf as shown in
Figure 2) have been released for use and verification (https://
github.com/bellstwohearted/AutoNanopore).

3.1. Example of the Output of AutoNanopore. Figure 2
shows the results for file 1.abf. We can observe that all
translocation events result in an increase in current, with a wide
range of peak amplitudes. AutoNanopore identifies 80 trans-

Figure 2. Illustration of the events that AutoNanopore detects, on file 1.abf. In the top panel, the gray curves show the current variation over time and
the pink stars indicate the events that AutoNanopore detects; in the bottom panels, the enlarged current traces of three events (with relatively low
amplitudes) are given for a better illustration.

Figure 3.Characteristics of the 2111 confident events detected by AutoNanopore on all 23 abf files: (a) scatter plot of the amplitude versus duration of
the events; (b) histogram of the amplitude; (c) histogram of the duration.
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location events from 75 million data points in approximately 15
s, using a single CPU core. Furthermore, it also outputs the
characterizations of these events, including the time of the peak,
the baseline value, the amplitude of the peak, the starting and
ending times, and the duration. As shown in Figure 2, 80 events
are detected by AutoNanopore: some events have either large or
small amplitudes, while most events have intermediate
amplitudes. To better illustrate the events, especially those
with relatively low amplitudes, three examples are given together
with the entire current trace (bottom panels of Figure 2). It turns
out that, though these events seem to be submerged in the
baseline, when the range is enlarged, we can conclude that these
events are correctly identified.

3.2. Overall Results of AutoNanopore on 23 abf Files.
Figure 3 presents the characteristics of the events detected by
AutoNanopore on the data set. In total, AutoNanopore detects
2111 events from all 23 abf files. It can be found that the

amplitudes and durations of the vast majority of the events are
located within a relatively small range, and a few have high
amplitudes and/or longer durations (Figure 3a). Since there are
a few outliers in the duration determined by AutoNanopore, to
show the results in a more intuitive way, we perform a
logarithmic transformation for the duration before plotting,
rather than filter out the outliers further. Figure 3 also shows the
distributions of the amplitudes and durations of all the events
detected by AutoNanopore (Figure 3b,c). It turns out that, for
such short ssDNA samples, the events’ amplitudes are very
concentrated, with only one peak.

3.3. Comparison with Other Methods. To examine the
effectiveness and robustness of AutoNanopore, we compare the
results determined by AutoNanopore to those by other two
excellent methods, OpenNanopore17 (ON) and EventPro21

(EP); the parameter settings for using these two methods are
given in the Supporting Information. We chose these two

Figure 4. Comparison among the three methods. (a) The total amounts of events detected by the three methods. (b) The ratio of coverage between
different comparison scenarios: e.g., AN/EP&ON means the ratio of the EP-ON-overlap events that are also detected by AN, of (AN EP ON)

of(EP ON)
#

#
.

Figure 5. Representative examples of the events, as detected by different methods. (a) One event that is agreed upon by all three methods. (b) Two
events that are agreed upon by both EP and ON, but only one (in pink) is detected by AN. (c) An event accurately detected by AN and EP. In the top
left corner, the small figure gives the output of ON (in orange). (d−f) Examples of events detected by only one method. In all panels, pink curves show
the AN-determined event ranges, blue curves shows the EP-determined ranges, and orange curves show the ON-determined ranges. In (d), the green
and dashed curves have the same meanings as in Figure 1.
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methods for the reason that they are the same types of event
detectionmethods that use an adaptive threshold as ourmethod,
and more importantly, they are excellent methods that have had
great impacts in the field.

The comparisons are performed from two aspects: (1)
whether AN is able to detect the events that are identified by
both EP and ON and (2) whether the events’ characteristics
determined by AN are consistent with those by EP and ON. For
EP, we use version 2.0, and the baseline fitting mode is “SMD
andMsbackadj”. This mode, according to its authors, is the most
powerful. The parameter settings for EP andON are given in the
Supporting Information.

First, we analyze whether AutoNanopore is able to detect the
events that are identified by other methods by investigating
whether the peaks corresponding to the AN-detected events are
included in the outputs of EP and ON. Since ON outputs some
events that have much longer duration compared to AN and EP,
before the comparison, we perform a process on the outputs of
ON by filtering out the events with extreme outlier durations.
This is conducted independently on each abf file, and the events
with a duration longer than Q3 + 3 × IQR are filtered out. As
shown in Figure 4, in total, AN detects 2111 events, EP detects
2281 events, and ON detects 1963 events. The results show that
88.5% of the EP-ON-overlap events (the events that are
detected by both EP and ON) are also detected by AN, while
81.2% of AN-ON-overlap events are detected by EP and 76.8%
of AN-EP-overlap events are detected by ON. Moreover, 362
events are only identified by AN and EP, 156 events are only
identified by EP and ON, and 278 events are only identified by
AN and ON. Separately, there are 272, 564, and 330 events that
are only detected by AN, EP and ON, respectively. A detailed
Venn diagram is given in the Supporting Information.

Next, we investigate the events that are not consistently
detected by the three methods, and some representative
examples from the results of 1.abf are shown in Figure 5. Before
examination of the inconsistent events, Figure 5a shows an event
that is agreed upon by all three methods. Furthermore, there are
some events that are only detected by one or two methods but
are missing by other methods. On the one hand, only 11.5% of
EP-ON-overlap events are not detected by AN; the main reason
is that, within some slices (30 ms segment of AN), there exist
multiple events. However, due to themethod of AN, at most one
event (with the maximum peak current value) can be detected
within each slice, resulting in the missing of some events (Figure

5b’ AN only detects the event marked in the pink curve but
misses the orange event). This can be avoided by shortening the
window size of AN slices, and it is acceptable that only a few such
events are missing. On the other hand, most of the AN-only
events (those that are only detected by AN) have small
amplitudes that do not meet the selection criteria of EP and ON,
mainly due to the variation of the baseline. Figure 5d gives an
example, showing that the baseline corresponding to this event
varies significantly; thus, the AN strategy of searching a range
close to the peak for baseline computation is to some extent
advantageous.

Interestingly, Figure 5c shows an example where only AN and
EP are able to detect this event. Note that ON also detects it but
gives it a much longer duration (small figure on the top left
corner). In such a case, ON is considered not to accurately
characterize this event; actually, this event has been eliminated
during the duration outlier filter for ON. Moreover, Figure 5e,f
shows examples that are only detected by EP and ON,
respectively. EP detects the event shown in Figure 5e, but the
amplitude is too small to meet the criteria of AN andON, for the
reason that EP uses a different method to construct the baseline.
ON detects the event shown in Figure 5f that is just within the
range when the baseline begins to increase; looking at the
current variation after the event (orange range), it is hard to
judge whether it is indeed an event.

Third, we analyze whether the AN-determined characteristics
are consistent with the other two methods. Figure 6 shows the
distributions of the amplitude and duration of the 1199 events
that are detected by all three methods and the events only
detected by one method. The distribution plots corresponding
to Figure 6 are given in the Supporting Information. Note that,
for EP and ON, only the maximum amplitudes of each event are
plotted here. It can be seen that the amplitude and duration
distributions of the events agreed upon by all three methods are
consistent between AN and EP (Figure 6a) and are reasonable
for translocation events. This can also be seen from the
distribution plot shown in the Supporting Information.
Moreover, the ON-determined amplitudes/durations are more
concentrated, with some events concentrating at the top
boundary of the figure.

The characteristics of the events only detected by one method
are shown in Figure 6b. AN-only and EP-only events have
reasonable amplitudes/durations. Again, ON-only events are
concentrated at the left bottom corner, indicating smaller

Figure 6. (a) Characteristics of the 1199 events detected by all three methods. (b) Characteristics of the AN-only, EP-only, and ON-only events.
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amplitudes (and durations). Note that, though all of these
results indicate that AutoNanopore performs very well in
detecting the translocation events, they do not imply that AN
outperforms EP and ON; all three methods have their own
advantages compared to the others, due to distinct mechanisms.
In particular, EP discards events based on noises; the results may
be affected by noises. Summarizing, all these comparison results
show that, on the one hand, the results of all three methods are
consistent for high-amplitude events; on the other hand, for
those low-amplitude events, results by the three methods are less
consistent.

Moreover, we also test AutoNanopore and compare the
results to those of EP and ON on another 5 min current trace:
48.5kb λ-DNAwith a concentration of 60 pM/L, under 300mV.
The results are given in the Supporting Information. It turns out
that the events driven by λ-DNA are more complex;
AutoNanopore’s performance is competitive and robust.

4. DISCUSSION
In this study, we present AutoNanopore as a novel and
promising translocation event detection method in solid-state
nanopore current traces, evaluate its performance in diverse
experiments, and discuss the influence of the experimental
conditions in the translocation events.

The novelty of AutoNanopore is that it detects the events by
computing the quantile values and IQRs of the amplitudes to
identify the outliers rather than considering the mean value and
standard deviation of the current values. Thus, it combines the
advantages of classic methods, such as MiniAnalysis, Easy
Electrophysiology, and Clampfit, and the more advanced
methods employing adaptive thresholds, such as Open-
Nanopore20 and EasyNanopore.21 Splitting the raw data into
many slices first, as proposed by the classic methods, is a good
strategy; since the baseline of the current traces may vary over
time, as shown in Figure 2, observing the data points that are
close to the peak is thus reasonable. AutoNanopore is more
robust than the classic methods because it dynamically searches
for a range close to the peak to compute the baseline values,
which is not the case for MiniAnalysis, Easy Electrophysiology,
or Clampfit (these methods usually take the fixed range before
the peak). Meanwhile, each event may have distinct character-
istics and so it is difficult to detect the events by a simple fixed
threshold; the use of an adaptive threshold determined from
neighborhood data characteristics, as proposed by Open-
Nanopore and EventPro, is an inevitable choice.

AutoNanopore is distinctly different from other adaptive
event detectionmethods in several aspects. First, AutoNanopore
splits the current traces into slices and analyzes the slices by
concentrating only on the data points close to the peak, and a
global analysis is conducted after the analyses of all slices end.
Given that the baseline current may vary over time in real-world
applications, the amplitudes caused by translocation events are
still in a relatively stable range. Such processes enlarge the
properties of local data, avoiding the negative influences caused
by the variation in global data. Second, AutoNanopore uses a
more straightforward outlier detection method based on the
identified peaks’ amplitudes, rather than considering the mean
value, standard deviation, or cumulative sums of current traces.
All of these new insights help improve the performance of
AutoNanopore in particular in detecting those challenging
events with a significantly varying baseline. Compared to
EventPro, which attempts to resolve the influences of the varying
baseline by several fitting methods, our method provides a more

efficient way to minimize the influences of baseline variation:
AutoNanopore does not require reconstructing the baseline
using specific fitting methods for the reason that, no matter how
the baseline varies, the amplitudes of the real events should be
relatively stable. As a consequence, our method is more efficient
than EventPro.

One significance of the present work is that we propose ideas
and metrics for evaluation of the performances of an event
detection method. Most existing methods were reported
independently, without comparison or evaluation against
others; this is partially due to the lack of a public, well-
recognized benchmark. We suggest that such a comparison/
evaluation should be necessary. Our comparison provides a
useful approach for evaluating a new event detection method in
the future.

AutoNanopore also has some limitations. First, AutoNano-
pore searches a suitable range before the peak, and this may
sometimes lead to an incorrect baseline value if the current
variation within that range does not reflect the actual baseline, in
particular when the nanopore is clogged for a much longer time
than a typical translocation event, even though the clogging is
indeed the results of nucleotide translocation. In such cases, a
human expert may be capable of judging the abnormal events,
while AutoNanopore would not succeed. Second, AutoNano-
pore mainly focuses on the peak caused by the maximum current
value in a segmented slice; this may sometimes result in missing
of events, e.g., when multiple events indeed exist in that slice.
Under such circumstances, we thus suggest adjusting the time
range of baseline computation in line with the estimated event
duration, which mainly depends on how many nucleotides the
DNA has. Third, the current version of AutoNanopore does not
incorporate the fitting of multilevel events, which are usually
driven by nonlinear DNA. Basically, when an event is identified,
that is, the peak of the event is located, then AutoNanopore
needs to use specific methods to do changing points detection,
only within the event range. Our research aims to identify
specific pathogens, including three consecutive steps: the first
step is event detection, followed by the identification of current
traces caused by ssDNA and dsDNA (DNA-probe complex),
and the third step is the identification of dsDNA corresponding
to different probes using machine-learning approaches. An
enhanced version of AutoNanopore will be released in the near
future, together with an example of its application in a real-world
scenario.

AutoNanopore has important implications in promoting the
development of solid-state nanopore sequencing. Unlike
sequencing by biological nanopores, where base calling can be
directly performed and various machine-learning tools for data
analysis have been developed,25 the base calling in solid-state
nanopore sequencing is challenging. AutoNanopore can
accurately and consistently locate the events and segment the
current variations in translocation events for further analysis,
avoiding wrong base calling results due to processing a large
portion of redundant data,26 for the reason that these data do not
output information on biomolecules we need. This is also the
approach of OpenNanopore and EventPro: both tools output
concatenated events containing only the data points of the
identified events. It can also reduce computation time when
there are plenty of current traces to be base called in real-world
applications. Furthermore, the low SNR in signals is the main
bottleneck of current solid-state nanopore sequencing,14 even
though some studies have reported methods of identifying four
single-stranded DNA homopolymers27,28 and even the identi-
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fication of single nucleotides22,29 in solid-state nanopore
sequencing. However, direct sequencing by solid-state nano-
pores is tricky; sequencing by hybridization30 is thought to be a
promising approach because ssDNA and dsDNA can lead to
significantly different current variations due to their diame-
ters.7,10,31 AutoNanopore can then be applied to distinguishing
the signals by ssDNA and a DNA-probe complex, revealing
whether the hybridization can succeed.

5. CONCLUSIONS
We have presented an automated adaptive and robust method,
AutoNanopore, for a rapid and straightforward translocation
event detection in solid-state nanopore current traces.
AutoNanopore has been extensively tested to perform event
detection tasks on an experimental data set of 23 ssDNA current
traces. The results show that it can effectively detect events from
huge amounts of raw sequencing data. Additionally, we have
compared our AutoNanopore favorably with two existing state-
of-the-art methods, OpenNanopore and EventPro, and it
exhibits high coverage against these methods and performs
excellently, in particular when the events correspond to
significantly varying baselines. Overall, AutoNanopore has
shown its advantages in analyzing solid-state nanopore
sequencing data in realistic signals and has great potential to
contribute significantly to the development of solid-state
nanopore sequencing.
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