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Abstract: On the slow path to improving the life expectancy and quality of life of patients post spinal
cord injury (SCI), recovery remains controversial. The potential role of the regenerative capacity of
the nervous system has led to numerous attempts to stimulate the SCI to re-establish the interrupted
sensorimotor loop and to understand its potential in the recovery process. Numerous resources are
now available, from pharmacological to biomolecular approaches and from neuromodulation to
sensorimotor rehabilitation interventions based on the use of various neural interfaces, exoskeletons,
and virtual reality applications. The integration of existing resources seems to be a promising field of
research, especially from the perspective of improving living conditions in the short to medium term.
Goals such as reducing chronic forms of neuropathic pain, regaining control over certain physiological
activities, and enhancing residual abilities are often more urgent than complete functional recovery.
In this perspective article, we provide an overview of the latest interventions for the treatment of SCI
through broad phases of injury rehabilitation. The underlying intention of this work is to introduce a
spinal cord neuroplasticity-based multimodal approach to promote functional recovery and improve
quality of life after SCI. Nonetheless, when used separately, biomolecular therapeutic approaches
have been shown to have modest outcomes.

Keywords: spinal cord injury; neuroplasticity; spinal cord stimulation; neuroregeneration; stem cell
therapy; nanomaterials; hydrogel; regenerative medicine

1. Introduction

Spinal cord injury (SCI) is a potentially highly disabling injury with exorbitant medical
costs and is one of the most challenging diseases in the world to treat. It is difficult to
evaluate how many people worldwide suffer from some type of SCI [1]. However, it is
estimated that at least 250,000 new patients are diagnosed with SCI each year, and millions
of people are currently living with the condition [2]. SCI can be classified as traumatic,
caused by car accidents, falls, or violence, or nontraumatic, stemming from various causes,
such as tumor-related compression, congenital disease, or spondylosis [3,4]. Depending on
the severity of the injury, the main effect of SCI is the loss of motor and sensory functions in
the parts of the body below the lesion [5]. In addition, there is a wide range of autonomic
dysfunctions that unfold across different time periods, with effects on the respiratory,
gastrointestinal, cardiovascular, immune, endocrine, and skeletal systems [6]. The presence
of pain is a major problem after SCI, related to both the injury and stabilization measures
and to changes in normal neurological activity [7]. Furthermore, SCI is a high risk factor
for psychological disorders and depressive symptoms [8]. The enormous impact of an SCI
on individuals and the entire community is evident.

Regardless of SCI severity, the lesion is permanent, and there is currently no cure.
Acute therapeutic interventions are mostly limited to the stabilization of lesions and the
prevention of further damage [9]. There is a strong commitment to finding a long-term
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solution that can restore damaged structures to their original integrity or full functionality.
In any case, the primary goal of clinical intervention and intense research is to improve the
quality of life (QOL) of these patients.

In this report, we attempt to address QOL improvement by offering an overview of the
techniques and interventions that best contribute to the precise characterization of the neuro-
logical and functional status of an individual with SCI. Central to this narrative is the concept
of neuroplasticity as a marker and founding process for adaptive neural reorganization that
is compatible with the new physical conditions. However, this injury-induced spontaneous
reorganization process can occur over a protracted time period and only partially contributes
to functional recovery. By harnessing the reparative properties of biomolecular approaches,
all possible types of interventions based on neural protection, regeneration, and modulation
can be optimized to reduce over-reliance on medications that fail to impede or reverse the
recovery process. The notion that the highly plastic spinal cord complements the plastic brain,
both of which are connected to the activity of the physical body, brings to light an increasingly
personalized therapeutic approach that can contribute to lasting change.

After providing some essential information on the pathophysiology of SCI, the first
examples will illustrate new biomolecular approaches and reference the most recent ex-
periences in nanotechnology, hydrogel, and stem cell transplantation therapy, which can
ameliorate damage or regenerate neurological pathways between the brain and other parts
of the body. Subsequent contributions come from research on neuromodulation and neu-
ral interfaces, which can re-establish efferent and afferent communications in interrupted
sensorimotor loops. Finally, we highlight research evaluating the impact of behavioral,
prosthetic, and robotic devices or physiotherapeutic procedures on neuroplasticity and ad-
dress the importance of integrating several techniques. Combining various methodologies
does not always produce the obvious effects of mutual enhancement and compensation of
neuroplasticity and functional recovery processes. Therefore, in this work, we explore the
pathophysiology, timing of functional recovery, and interactions between recent biomolecu-
lar advancements to spinal level and different types of interventions, both separately and in
combination, that could offer promising therapeutic strategies for enhancing QOL after SCI.

2. Pathophysiology and Functional Recovery
2.1. Spinal Cord Injury Pathophysiology

SCI is a devastating trauma because it can disrupt the connection between the brain and
peripheral organs, leading to a complex and highly heterogeneous pathophysiology [5,10,11].
The initial local damage is due to spinal cord compression, laceration, or contusion, often
followed by hemorrhages and a cascade of events that lead to neuronal cell death [12].
Subsequently, numerous events, such as the formation of scar tissue and other molecular
reactions, including local and global inflammatory reactions and demyelination, exacerbate
the pathological condition and cause post-traumatic neural degeneration in the subsequent
subacute phase, which ends with the chronic phase [13].

Notably, the severity of SCI depends on whether the lesion is complete or incomplete
and, if incomplete, which part of the spinal cord is affected. The cervical tract of the spinal
canal is smaller than the thoracic and lumbar regions. As such, even minor traumas can
produce damage in the higher tract, resulting in acute complete sensorimotor tetraplegia
(50% of cases). Lower-level traumatic SCIs are mostly caused by high energy traumas,
resulting in higher rates of acute complete sensorimotor loss (70% of paraplegia cases) [14].
Most SCIs are incomplete, and even when complete, they may have spared spinal cord
tissue that can be rescued and repaired to restore function. The main current treatment
strategies include surgical interventions to anatomically stabilize and decompress the spinal
cord, pharmacological and biological approaches to regenerate neurons through induction
of tissue growth factors, and transplanting new cells, such as stem cells [15,16]. Treating
SCI and improving functional recovery present significant obstacles due to the difficulty in
delivering drugs across the blood–spinal cord barrier. In many cases, these medications
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meet low levels of compliance with rehabilitative measures and mostly affect vigilance,
attention, and memory, contributing to the overall fatigue of patients [17].

In the acute phase, within the first three months, neurological recovery reaches the
highest extent [18] while the highest functional improvements are delayed and observed
within the first six months [19,20]. In the chronic phase post-injury, neurological recovery
reaches a plateau, and sensorimotor deficits tend to remain permanent.

2.2. Functional Reorganization

Axotomy resulting from SCI has implications for the physiology of the cortical and cor-
ticospinal networks and may complicate or even impede the recovery process. Post-injury
plasticity is not only associated with local neuronal and synaptic loss and inflammation from
trauma, but also represents a change in activity-dependent plasticity resulting from the loss
of regular activity in ascending and descending pathways. Resting-state functional magnetic
resonance imaging studies have revealed that the strength of intra- and inter-hemispheric
functional connectivity within sensorimotor networks increases or decreases in compensa-
tion for body sensory-motor deficits [21,22] and changes at different stages of injury [23].
This could potentially be a biomarker of functional recovery in SCI individuals [24]. Such
reorganization is a dynamic process characterized by a combination of adaptive and mal-
adaptive changes that influence recovery and clinical outcomes [25]. Therefore, optimizing
functional recovery while minimizing maladaptive states after SCI is essential [26].

The recovery of motor control is a crucial element in properly reconnecting and ad-
justing to a physiological state to regain independence and reduce health complications
resulting from prolonged inactivity [10–14]. The functional “silence” in the corresponding
representative areas of the sensorimotor cortex seriously affects patients’ QOL and func-
tional independence. Although significantly weaker, these brain representations of the
deafferented body parts may be somatotopically preserved (finger somatotopy) [27]. Such
preserved body representations have the potential to be used in functionally meaningful
ways to acquire skilled neuroprosthetic control. Starting at the acute stage, a progressive
macrostructural (atrophy) and microstructural degeneration of ascending or descending
projections has also been observed [28], which may result in neurodegenerative processes
in the subcortical and cortical structure. This not only directly impacts the sensorimotor
system, but also other regions, such as the reduction of gray matter volume in the insular
cortex [29] and hypoactivity of the anterior cingulate [30], which are influenced by visceral
signals crucial for maintaining a homeostatic state via allostatic modulation. Nociceptive
pain develops in 40–50% of patients and is associated with cortical and subcortical reorga-
nization [31,32], and the amount of structural brain reorganization is correlated with the
reported intensity of the pain [33]. Pain tends to become chronic.

However, a variety of pathways located in different parts of the white matter can
allow some signals to reach the caudal spinal cord and represent a resource for long-term
regeneration and functional recovery. Several attempts to treat the clinical symptoms
of SCI have explored the possibility of redirecting neuronal activity in the corticospinal
network. Finding ways to reconnect cortical motor neurons to their original targets remains
a daunting, yet crucial, task. Activity-dependent plasticity may enhance the ability of
denervated spinal circuits to respond to sparse descending signals and reorganize the
topography and strength of their synaptic connections, which may also allow for more
flexible signal redirection [34].

3. From Pharmacological to Stem Cell Interventions
3.1. Pharmacological and Nanotechnological Approach

At the pharmacological level, several approaches have been studied for their efficacy
in neuroprotection and neuroregeneration to avoid nerve damage and promote regrowth or
myelination of the nerves (Figure 1). In the SCI treatment regimen, neuroprotective agents
prevent further nerve damage and reduce secondary damage; neurodegeneration agents
promote neuronal regrowth or myelination [35]. The most commonly used neuroprotective
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drugs are methylprednisolone, naloxone, tirilazad, nimodipine, riluzole, minocycline,
and fibro-blast growth factor, acting mainly on inflammatory processes and alteration
in the vascular system due to the trauma [36]. Typical neurodegenerative medications
are the granulocyte colony-stimulating factor, GM-1 ganglioside (Sygen), and cethrin,
anti-Nogo, acting mainly to promote regeneration of injured neurons. Treatment using
these drugs can provide minimal to moderate recovery of nerve function lost to SCI and
reduce the risk of further loss of function [35]. Despite the large number of trials aimed to
assess the efficacy of these medications on various SCI outcomes, there are some issues on
the cost-effectiveness of the current pharmacologic treatment options that are related to
collateral effects on secondary health outcomes and reduced efficacy on primary outcomes.
The imbalanced microenvironment dynamically changes after SCI, acting mainly on a
single mechanism and one target is not sufficient to treat the disease. It is possible that
efficacy problems and adverse effects can, in part, not only be attributed to the substances
themselves but also to the mode of use. For example, for better therapeutic efficacy, the
timing of methylprednisolone administration in relation to the time elapsed since the
traumatic event [36] and the modes of administration and transport to the site of the
substance [37] seem to be of particular importance.
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Figure 1. General overview of interventions for the treatment through the different phases of spinal
cord injuries. (A) Traumatic event injures tissues, including axon bundles that run in the spinal cord,
thus causing primary injury. (B) Acute phase: hemorrhage, oedema, and physiological inflammatory
responses contribute to secondary injury, producing further damage to nerve tissue. Most surgical and
pharmacological interventions are concentrated in this phase. The shock condition combined with
the severe inflammatory condition negatively distorts the assessment of sensory and motor damage.
(C) Sub-acute phase: reduction of pressure and inflammation due to surgical and pharmacological
interventions allows better neurological assessment by more accurately assessing the level and
severity of injury in terms of motor and sensory deficits. Possible early rehabilitation activities in
limited cases. Possible psychological, training, and behavioral interventions. (D) Chronic phase:
formation and stabilization of scar tissue; mild myelination, functional recovery, and improvement
of symptoms possible. Training in the use of appropriate medical devices depends on the type of
deficit acquired. Long-term important prevention or management of secondary medical conditions
(cardiovascular, gastrointestinal, skeletal, neuropathic pain, etc.), and possible interventions to
support psychological well-being and work/social reintegration.
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Advances in nanotechnology and nanomedicine have shown promising results in
terms of improving pharmacological treatment.

In SCI, the nanotechnology approach represents a significant advancement [38], tar-
geting neuroprotection and regeneration of tissues and networks impaired after SCI. The
main benefit of nanotechnology is attributed to its ability to facilitate drug transport and
overcome biological barriers to achieve its goals [9,38]. Preclinical studies provide promis-
ing results, especially when combination therapies target multiple mechanisms underlying
SCI [9]. Several studies focused on specific combined substances, such as polymeric mi-
celles, which appear to be effective in restoring lower-limb motor function and increasing
neuronal survival, or carbon nanotubes, which appear useful for regenerative therapy and
neuron repair. Substantially, drug-loaded nanoparticles rapidly infiltrate the injury site
of the spinal cord in the acute phase, improving the regeneration microenvironment by
reducing glial scars, neuronal death [39], and the overall neuroinflammation process [40,41].
Nanomaterials could act as therapeutic agents, releasing oxidative stress-related factors to
treat the pain state after SCI and modifying the microenvironment to restore motor and
sensory function. However, not all studies have reported the efficacy of nanotechnologies
in SCI, indicating that other efforts and research are needed [42]. Therefore, it will be very
interesting to monitor future developments in this field.

3.2. New Biomolecular Approaches

Recent research has bridged biomolecular science, engineering, and medical applica-
tions by focusing on the promising effect of hydrogel [43,44]. Hydrogel is a biomaterial
characterized by a complex molecular network that allows it to absorb significant volumes
of water (higher than 95%). This characteristic gives hydrogel molecules good mechanical
proprieties, viscoelasticity, flexibility, high biocompatibility, and biodegradability, making
them potentially useful in biomedical fields. As suggested by Ahmad et al. [43], various
hydrogel molecules, including collagen, gelatin, and hyaluronic acid, have multiple uses
and broad potentiality in fields such as wound dressing, controlled drug delivery, bone
regeneration, tissue engineering, and biosensors. Moreover, the authors suggested that the
use of hydrogel after SCI could have promising effects due to the biomaterial’s regeneration
functions. Although it did not include a detailed analysis, this work demonstrated hydro-
gel’s potential to improve QOL after SCI, thanks to its possible advantages. As suggested by
previous research, hydrogels may offer mechanical support for cells and tissues, promote
cell migration and plasticity, and facilitate the long-term control of drug release [44]. All
these aspects are associated with the long-term consequences of SCI and concern secondary
health issues of SCI treatment, highlighting the importance of focusing on the application
of these molecules in SCI. In fact, although the preliminary role of hydrogels has been
considered regarding its effect on reducing scars, most recent studies have underlined
its potentiality in preventing inflammatory responses and nerve compression typically
associated with SCI after trauma [45,46]. The regeneration role of these molecules on
nerves and neural circuits [47], especially in light of their association with stem cells and
nanotechnologies [48,49], could lead to more effective SCI treatment with fewer side effects.

3.3. Stem Cells Approach

The utilization of various types of stem cells (SC) is one of the most promising candi-
dates for regenerating injured tissues due to their capability to differentiate into several
types of cell [50]. For this reason, they appear promising in spinal cord injury. Although
these approaches are still being developed, studies on embryonic stem cells in animal mod-
els for SCI that have adopted in vitro manipulation and transplantation approaches have
reported promising results in multiple neurological outcomes of trauma. SC of different ori-
gins, together with scaffolds, can release immunomodulating and neuroprotective factors
which may support neuron survival, axonal growth, and control of glial scarring without
significant side effects [16]. Evidence of nerve regeneration was reported in a preliminary
study [51], indicating that stem cell treatment has the potential to help in SCI recovery.
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In particular, the most promising effects are ascribed to adopting neural stem cells,
which are highly effective in axon and neuronal repair due to their specific characteristics.
Different types of cell therapy, such as induced pluripotent stem cells [52], mesenchymal
stem cells [53], and neural stem cells [54], have been used in therapeutic SCI trials. All
these stem cells are able to continue living in the host spinal cord and appear to contribute
to nerve repair by differentiating into neuronal and glial cells [55–57].

There are also therapeutic applications of non-neural stem cells derived from bone mar-
row or adipose tissue, which are abundant in the body. Patients treated improved on ASIA
sensory scores, including bladder function, with no serious adverse effects, demonstrating
that it is a safe method for improving the QOL of patients with SCI.

Some evidence has reported neuronal repair following the transplantation of olfactory
unsheathing cells [58,59] as viable candidates for improving neuropathic pain and motor
function through multiple mechanisms that help axonal recovery, migration toward glial
scars, and secretion of neurotrophic factors. However, their efficacy has been questioned
due to the contradictory results reported [60,61].

Combining nanomaterials with SC is another innovative approach for therapeutic
applications after SCI. Nanomaterial appears to be a promising platform for culturing
the cells and SC-nanomaterial combination may hold further benefits for the patients, as
suggested by a recent review of Zarepour et al. [62]. The authors analyzed the efficacy of
nanomaterials in detail, both organic and inorganic, at multiple levels: From their carriers
of therapeutic agents, anti-inflammatory and neurotrophic, but also in the form of scaffolds
as in the field of hydrogels for tissue regeneration.

Despite extensive research exploring various cell-based therapies, including stem cells
at different developmental stages in animal models, large clinical trials investigating the
therapeutic efficacy of stem cell therapy in humans are lacking. These limits are ascribed
to doubts about the safety–efficacy ratio of these types of therapies [15] and some related
ethical concerns [50]. Additionally, there are concerns about the expense of developing
adult stem cells, which seem to be the most effective in influencing regeneration after
SCI. Another interesting area of research combining novel approaches is the application
of nanomaterials, which could act as carriers for therapeutic agents or as platforms for
culturing the cells [62].

Despite extensive research exploring different approaches to implement adoption of SC
in SCI, some limitations are underlined. First, studies involving animal models are usually
performed applying standardized protocols of lesions, treatments, and specific timing of
transplantation in each group of investigators. These conditions are often unreplaceable
in human patients with SCI. Therefore, completed human trials showed only limited
results. On the one hand, SC seem to cause no harm and appear to be safe, showing no
adverse reactions or side effects. Although studies on embryonic SC suggested possible
immunosuppression side effect. On the other hand, results in terms of clinical outcomes
were poor compared to expectations.

Clinical trials failed to keep their promising hypotheses and are still far from obtaining
functional recovery and restoring neural circuits. Further studies are needed to improve
our knowledge of their mechanisms of action. Combinatory strategies involving stem
cells, biomaterials, and modifications of cell environment could be the key to translating
fascinating premises into clinical practice.

4. From Neuromodulation to Sensorimotor Rehabilitation Interventions
4.1. Neuromodulation Approach

The neuromodulation consequent to electrical stimulation may inhibit or excite neu-
ral networks; it can also potentiate, sprout, and regenerate axonal neuronal interaction.
Neuroplasticity-mediated functional recruitment represents the basis of modern neuro-
modulation techniques [63]. In patients with SCI, the complex system of ascending and
descending circuits, and its residual signals, is the target of neuromodulation.
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One of the approaches of neuromodulation adopted in SCI that exhibits the powerful
neuroplasticity of the spinal cord is stimulation via deep (e.g., epidural) or transcutaneous
approaches in different sections of the spinal cord. Clinical studies on spinal cord electrical
stimulation have already shown different positive effects for these techniques [64–66].

Epidural spinal stimulation, which involves the surgical placement of electrodes onto
the spinal cord’s dorsal surface [63], has been tested in patients with SCI to verify the effect
on neuropathic pain. Evidence reported a reduction of pain symptoms in association with
an improvement of motricity in the lower limb in patients with a level of impairment at the
ASIA of A and B [35,64]. Studies reported some degree of benefit for spinal stimulation
that also improves gastrointestinal mobility [67] and cardiac autonomic regulation [68],
which are outcomes that can be detected further in SCI populations. Combined motor
cortex and spinal cord stimulation is an example of leveraging different forms of spinal
cord plasticity; structural, for the spinal axon terminals, and physiologic, for intrinsic
spinal circuits. Two forms of electrical stimulation “top-down and bottom-up” to promote
plasticity after SCI: neuromodulation of the motor cortex to increase the capacity of axon
growth of neurons, and spinal stimulation to increase spinal neural activity. By augmenting
sprouting, this approach helps mitigate the loss of descending cortical projections. Unlike
the epidural method, transcutaneous stimulation is a non-invasive approach to spinal cord
stimulation, which involves the placement of electrodes onto the surface of the patient’s skin.
Furthermore, aside from this approach being less invasive, preliminary studies reported
potential benefits in reducing muscle spasticity, improving residual motor functioning,
and regulating autonomic functions, including heart rate, thermoregulation, and bladder
sphincter function [69,70]. On top of experimental studies on animals, more clinical trials
and human studies are needed to fully ascertain the advantages and long-term side effects
of spinal cord stimulation for SCI [63].

Besides spinal cord stimulation techniques, brain stimulation is another approach
to neuromodulation in SCI [63], which in some contexts, could represent a promising
instrument for at least the maintenance and positive enhancement of post-trauma plasticity,
if not for neurodegeneration. For example, non-invasive brain stimulation (NIBS), which
has the advantages of being non-invasive and an easy operation to perform, and having
broad clinical applications, represents a promising instrument for the regulation of the
excitability of the cerebral cortex through electric or magnetic fields. Repetitive transcranial
magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are two
typical methods of NIBS, which can be adopted in SCI. Previous studies have shown the
effect of NIBS in individuals with SCI, particularly on neuronal plasticity between the
spinal cord and the brain [35]. Moreover, some studies highlight the availability of NIBS
to treat neuropathic pain [71]. However, not all the studies have reported favorably for
the effectiveness of the technique. Larger clinical trials and further research are needed to
assess the applicability of these promising results.

4.2. Prosthetic and Neural Interfaces

Modern biomechanical approaches in SCI focus on the implementation of brain–
computer interfaces (BCI). The principle of BCI is to create a new communication pathway
between the brain and an effector without neuromuscular activation. In patients with SCI,
brain–computer interface technology serves as an alternative or complementary user inter-
face to close the sensorimotor loop. Examples of established human–machine interfaces
depend on the user’s remaining abilities. In this way, efferent and afferent pathways are
activated simultaneously, thereby stimulating the SCI area effectively. Through noninva-
sive EEG and invasive intracortical recordings, people can use brain activity to control
BCI devices. Thus, patients can potentially activate electrical surface stimulators on the
hand [72,73], walk [74], move a prosthetic or robotic limb [75,76], control bowel func-
tion [77], and restore the sense of touch [78], closing the sensorimotor loop [79]. These
devices have improved prosthetic tool use, such as external robotic devices—Manipulators,
wheelchairs, and exoskeletons—By combining mechanical properties with biostimulation
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through direct connection to paralyzed muscles [35,79]. Particularly, programs involving
BCI are useful not only because they allow replacing functions (e.g., walking), but also due
to their ability to generate beneficial neuroplastic effect [75,79,80]. Regaining the ability to
move and to feel, in particular arms and hands, and using assistive devices is of paramount
importance for people with spinal cord injuries, and for this reason BCI is an emerging
strategy in rehabilitation programs [81]. The most pertinent example of personalization
of an intervention is the use of ECG-based BCI to control an exoskeleton [82]. However,
because this approach is highly invasive and extremely costly, it is not suitable for the needs
of the larger population [83].

5. Constructing an Integrative Behavioral Approach for a Better Quality of Life

The concept of QOL for patients with SCI is elusive. Commonly, QOL refers to the
subjective meaning of well-being and can take on a multitude of facets in the clinical
setting (e.g., autonomy, self-efficacy, social life, and general well-being) [84]. Additionally,
its implications are rooted in issues that are far more complex than any answer to a
questionnaire can ever address. Among the commonly used measures of QOL [84] are the
subjective satisfaction with life scale [85] and objective metrics for the physical, emotional,
and social domains.

These objective measures, especially in cases of SCI, are closely related to typical com-
plications, such as movement limitations, breathing difficulties, spasticity, musculoskeletal
and neuropathic pain, and reduced or missing ability to control bladder, bowel, and sexual
functions, all of which contribute to a profound reduction in the patient’s QOL [10]. Inter-
estingly, among the 10 recommended scales of QOL for use in treating SCI of the SCIRE
Project (http://www.scireproject.com/outcome-measures, accessed on 15 August 2022),
SF-36 and LISAT are the most widely used [86].

While SF-36 is one of the most widely used measures of QOL in other patient popula-
tions, LISAT provides meaningful information on QOL for clinical and research purposes
in the field of SCI. Advanced age, greater severity, and higher-level and lengthier duration
of injury are associated with lower QOL [87–89]. From the perspective of clinicians, it is
important to understand the priorities for functional recovery of individuals with SCIs
in order that treatment and rehabilitation can be tailored to their needs [86]. Knowing
the priorities of functional recovery expected for an improvement in QOL can provide a
better understanding of the views and needs of SCI patients. Surveys on the priorities of
functional recovery have been conducted in the USA and Europe [86]. Improving bladder
and bowel function was ranked highly in the priorities of functional recovery. For patients
with higher lesions, regaining arm and hand function was mentioned as the most important,
while recovery of walking and sexual function was the highest priority for paraplegics. In
a recent study on functional recovery priorities, most of the respondents were interested in
trying advanced technology that would bring a significant improvement in their QOL [90].
Additionally, a better understanding of emotional and cognitive control could be critical
for the selection of adaptive and flexible behavior [91]. What is becoming increasingly
evident is how each event affects the whole organism and, consequently, the reorganization
processes of its central nervous system. This is the basis for numerous research endeavors
that focus on neuroplasticity as a direct or indirect clinical target in biological and functional
recovery processes [92].

However, one piece still remains missing. As stated in the first section of this report,
there is probably no event that does not come with some form of reorganization of the
central nervous system. It is in the production of behavior, that is, in the interactions with
the environment and the physical and social elements that constitute it, that the process of
reciprocal body-brain regulation takes place in its most complete form.

In this perspective, physical activity certainly deserves to be mentioned first. Whether
physical activity is practiced for strictly rehabilitative purposes, in informal settings, or for
recreational purposes, it is perhaps the most striking example of how a behavior, especially
one that is specific and repeated over time, is capable of becoming trophic and reorganizing

http://www.scireproject.com/outcome-measures
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activity in the nervous system. Rehabilitation is a foundational and indispensable element
of almost every possible form of functional recovery in SCI [86,93]. As we will discuss
next, many of the interventions presented need, or otherwise produce better results, when
combined with appropriate forms of physical activity.

Simplifying the delivery of complex sensory stimuli through the latest technologies
already makes it possible to envision highly individualized rehabilitation pathways. Virtual
reality (VR) is probably one of the best examples, and it is possible to envisage its use
throughout the rehabilitation path of SCI patients, both for standard and individualized
procedures [94]. Preliminary results on the treatment of neuropathic pain are of particular
interest [95]. Virtual walking sessions and limb movement imagery produced positive
effects by reducing pain perception [96]. The virtual experience, when properly controlled,
allows integration with other forms of sensory feedback, such as haptic and thermal,
ensuring an immersive embodiment experience [97,98].

Mindfulness-based techniques basically consist of forms of meditation. In the clinical
setting, they are proving to be a useful tool for controlling specific illnesses or symptoms,
whether physical and psychological. An interesting aspect of such techniques is that
they can have a significant impact on the functioning and structural organization of the
central nervous system [99]. Mindfulness-based techniques are considered able to promote
neural reorganization activity even following brief interventions [100]. In SCI patients, the
presence of clinically relevant depressive conditions is high; additionally, anxiety-related
disorders also benefited from mindfulness techniques [101].

VR is also shown to be useful in combination with stimulation techniques, such as
transcranial direct current stimulation (tDCS). In a study with a pragmatic approach, the
cost-benefit ratio of tDCS and VR interventions taken individually or in combination
compared with standard care is evaluated [102]. After three months, at the end of the
interventions, tDCS+VR patients report lower neuropathic pain and better QOL with only
a slightly higher cost than the other conditions. One year later, however, patients in the
tDCS+VR group in addition to having a better overall condition cost less overall than the
other groups indicating less access to health system resources.

Another approach that aims to improve the QOL is to provide technologically ad-
vanced tools that can deliver an enhanced autonomy and social life [103,104]. An em-
blematic and particularly topical case is that of powered lower-limb exoskeletons (EXOs).
Although in home and social settings, EXOs still have significant limitations, they are
increasingly being adopted for rehabilitation purposes in the clinical setting. In participants
with chronic SCI, prolonged use of EXOs has improved the QOL attributable primarily to
decreased neuropathic pain and improved bladder management [105]. However, other
experiences have found discordant results that do not recognize long-term pain reduc-
tion [40]. Instead, the same study identified improvements in balance and muscle spasticity
that are likely probably dependent on neuroplasticity promoted by the activities performed
and related to the level and severity of injury.

6. Therapeutic Strategies and Innovative Biotechnological Opportunities

Given the mechanisms underlying neuroplastic processes, a systematic integration of
interventions promoting neuronal plastic activity and rehabilitation would be optimal [106].
In such a scenario, animal models are particularly useful in providing insights into the
potential improvements produced by certain procedures. For example, treatments based
on the chondroitinase ABC enzyme or anti-Nogo-A were found to be most effective when
used in combination [107]. However, when used in synergy with physiotherapy, significant
differences were identified at the cellular level (i.e., sprouting and axon regeneration) and
in terms of functional improvement in the SCI models used. Zhao et al. also showed
that, when independently combined with motor rehabilitation, the two compounds pro-
duced similar functional improvement but used different mechanisms to promote axon
regeneration [107].
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Garcia-Alias et al. [108] previously identified the positive impact of the combination of
the chondroitinase ABC enzyme and motor rehabilitation; what is of particular interest is
the consideration that the positive effect appeared to be a task-specific one. According to the
authors, the administration of the treatment opened a “window” of potential reorganization
that could be exploited through specific activities. However, “one behavior training makes
another behavior worse” [108].

During rehabilitation, only the motor functions that were addressed benefited; those
that were excluded were at risk of depotentiation, showing competition between various
patterns of newly formed neural circuitry for a specific functional control.

Starting from a similar conceptual basis, Nagappan et al. [109] used concepts of “brake”
and “facilitator” to indicate all processes that aimed to regulate neuroplastic activity to
ensure stability or increase neuronal adaptive capacity under healthy conditions. The
authors pointed out how such processes may differ depending on whether they are related
to the central nervous system or the peripheral nervous system. Particularly relevant is their
proposal of an approach aimed at modulating neuroplastic stability to obtain the fullest
synergy in specific pharmacological, neural stimulation, and physiotherapeutic therapies.

The attractive biomolecular approaches to SCI therapy have not yet had an impact
on clinical outcomes. For SCI treatment, a number of aspects must be taken into account,
including the treatment time window, the severity of the injury, individual differences, and
other factors. After injury, the initial period aims to ensure that the patient receives the best
possible care, starting with neurological stabilization, to avoid secondary complications
(see Figure 1 for a general overview of interventions). The next stage should consider key
biomolecular findings on neural tissue regeneration from randomized controlled trials that
have a highly favorable biosafety profile and offer a potential program to ensure predictable
improvement in motor and sensory performance. Based on this knowledge, studies that
explore the complex pathological mechanisms of SCI and combine biological tissue en-
gineering or cell transplantation strategies, with simultaneous multitarget, multimodal,
multistage interventions may provide a good framework for treating SCI. In recent decades,
the number of findings has increased exponentially without a corresponding evolution in
the treatments offered to patients. It is time to integrate multiple interventions to maximize
outcomes for individual patient needs and translate research findings into the practice of
SCI neurorehabilitation.

7. Conclusions

What is presented in this paper does not purport to be exhaustive in identifying the
tools that are available for the treatment of SCI, as well as the many targets on which they
act. Although considerable progress has been made throughout the long clinical journey, in
terms of pharmacological interventions, neuromodulation through stimulation techniques,
or technologically advanced aids or physiotherapy, the impact on patients’ QOL remains
limited. The integration between techniques seems to be an interesting avenue for further
evaluation in both research and clinical set-ups for the achievement of a high QOL and for
understanding the biological mechanisms underlying neuroplasticity.
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