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Abstract: During the COVID-19 pandemic, many studies have been carried out to evaluate different
immune system components to search for prognostic biomarkers of the disease. A broad multi-
parametric antibody panel of cellular and humoral components of the innate and the adaptative
immune response in patients with active SARS-CoV-2 infection has been evaluated in this study. A
total of 155 patients were studied at admission into our center and were categorized according to
the requirement of oxygen therapy as mild or severe (the latter being those with the requirement).
The patients with severe disease were older and had high ferritin, D-dimer, C-reactive protein,
troponin, interleukin-6 (IL-6) levels, and neutrophilia with lymphopenia at admission. Moreover, the
patients with mild symptoms had significantly increased circulating non-classical monocytes, innate
lymphoid cells, and regulatory NK cells. In contrast, severe patients had a low frequency of Th1 and
regulatory T cells with increased activated and exhausted CD8 phenotype (CD8+CD38+HLADR+

and CD8+CD27−CD28−, respectively). The predictive model included age, ferritin, D-dimer, lymph
counts, C4, CD8+CD27−CD28−, and non-classical monocytes in the logistic regression analysis. The
model predicted severity with an area under the curve of 78%. Both innate and adaptive immune pa-
rameters could be considered potential predictive biomarkers of the prognosis of COVID-19 disease.

Keywords: SARS-CoV-2; flow cytometry; innate immunity; adaptive immunity; immunological
profile; predictive model

1. Introduction

COVID-19 is an infectious disease induced by the novel coronavirus SARS-CoV-2 first
detected in December 2019, causing acute respiratory distress syndrome (ARDS). Due to
its high rate of transmission, it has reached pandemic status. The clinical picture of the
infection ranges from asymptomatic or mildly symptomatic to lethal, mainly affecting the
elderly population and those with associated comorbidities [1,2].

Early after COVID-19 breakout, different parameters were identified as prognostic
markers of death, such as serum D-dimer, IL-6, troponin, ferritin, lactate dehydrogenase
(LDH), and lymph count [3]. Subsequently, several groups worldwide confirmed these
parameters and proposed new factors at admission to identify those patients with poor
outcomes [4–8].
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The variability of the antiviral immune response in healthy subjects might underlie
the diverse array of clinical manifestations. Moreover, therapeutic approaches, primarily
based on previous SARS, MERS, and inflammatory disorders associated with the cytokine
storm, demonstrate different efficacies.

Considering that SARS-CoV-2 is a foreign invader in our organism, the immune
response seems vital in clearing the infection. Furthermore, a dysregulated immune
response appears to play a crucial role in the second phase of the disease, which manifests
itself in intensive care units and might result in death [9].

Circulating immune cells and soluble immune components can be detected in periph-
eral blood and may be direct consequences of infection or biomarkers of tissue pathology
in COVID-19 [10,11].

The early identification of patients with poor prognoses would help clinicians to
manage the clinical therapeutic options. Here, we propose a model including easily
measurable immunological parameters to predict the patients at risk of worse outcomes.

2. Materials and Methods
2.1. Patients and Blood Sampling

The Regional Ethics Committee (CEIm, internal code 2020.167, 14 May 2020) approved
the protocol for the patients included in the study. Patients at admission or, if not possible,
a legal representative gave oral informed consent, which was expressed in the medical
records. The inclusion criteria included subjects over the age of 18 years who demonstrated
COVID-19 with positive RT-PCR for SARS-CoV-2. Disease severity was assessed based
on their clinical records. The cohort was divided based on oxygen therapy requirements
during their follow-up into those with no requirement (mild) and those who required
oxygen therapy or intensive care or were deceased (moderate–severe). Blood was collected
in sodium heparin tubes for flow cytometry and functional studies or tubes without
additives for serum parameters at admission into the hospital.

2.2. Flow Cytometry for Main Peripheral Blood Lymphocytes

Frequencies and absolute numbers of CD3+, CD4+, CD8+, CD19+, CD16+/56+, and
CD3+/CD16+/56+ were estimated using AQUIOS CL. (Beckman Coulter, Brea, CA, USA)
volumetric flow cytometer. The instrument employs a volumetric approach for enumer-
ating specific cell populations without the need for reference beads. Fifty microliters of
whole blood from EDTA tubes was stained with CD45-fluorescein isothiocyanate (FITC),
CD4-RD1, CD16-CD56-RD1, CD8-ECD, CD19-ECD, and CD3-phycoerythrin-cyanine 5
(PC5) (Beckman Coulter). After lysis, the sample was acquired in the automated “load and
go” flow cytometer.

2.3. Flow Cytometry for B and T Cell Subsets and Monocyte Subpopulations

Peripheral blood mononuclear cells (PBMCs) were obtained by Ficoll Histopaque
1077 (Sigma Aldrich, St. Louis, MI, USA) gradient centrifugation. Briefly, PBMCs were
freshly stained and processed following standard procedures. The following monoclonal
antibodies were used to identify the different T lymphocyte subsets: anti-CD8-FITC clone
B9.11 (Beckman Coulter), CD127-FITC clone R34.34, CD28-FITC clone CD28.2, CXCR3-
FITC clone G025H7 (BioLegend, San Diego, CA, USA), CD25-phycoerythrin (PE) clone
B1.49.9 (Beckman Coulter, Brea, CA, USA), HLA-DR-PE clone Immu-357, CD62L-ECD
clone DREG56, CD45RO-ECD clone UCHL1, CD4-phycoerythrin-cyanine 5.5 (PC5.5) clone
13B8.2, CD27-phycoerythrin-cyanine 7 (PC7) clone 1A4CD27, CD38-allophycocyanin (APC)
clone LS198-4-3, CD45RA-Alexa fluor 700 (AF700) clone 2H4LDH11 LDB9, CD3-pacific
blue (PB) clone UCHT1, and CD45-Krome orange (KrO) clone J33.

The different B-lymphocyte subsets were identified using the following monoclonal
antibodies: anti-IgD-FITC clone IA6-2 (Beckman Coulter), CD27-PC5.5 clone 1A4CD27,
CD19-PC7 clone J3-119, and CD45-KrO clone J33.
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The following monoclonal antibodies were used to identify the different monocyte
subpopulations: anti-CD14-PE clone RMO52 (Beckman Coulter), CD16-APC clone 3G8,
and CD45-KrO clone J33.

2.4. TLR Protein Expression in PBMCs

The cell-surface expression of TLR4 and the intracellular expression of TLR3, TLR7,
and TLR8 were assessed in different PBMC subpopulations including T lymphocytes,
B lymphocytes, and monocytes by flow cytometry, as previously shown [12]. PBMCs
collected into EDTA tubes were isolated by Ficoll Histopaque 1077 and stained with CD3-
PB clone UCHT1 (Beckman Coulter), CD19-PC5.5 clone J3-119, and CD14 ECD clone
RMO52 to identify T lymphocytes, B lymphocytes, and monocytes, respectively, and with
PE-conjugated anti-human TLR4 (eBioscience, San Diego, CA, USA) or PE mouse IgG2a
isotype control for 20 min in the dark. To determine the intracellular expression of TLR3
(MiltenyiBiotec, Bergisch Gladbach, Germany), TLR7 (Abcam, CA, USA), and TLR8, cells
were permeabilized with FACS permeabilizing solution (BD Bioscience, San Jose, CA, USA)
and stained with PE-conjugated anti-human TLR or mouse isotype control for 20 min in
the dark. Expression of TLRs was assessed by flow cytometry (Navios, Beckman Coulter).

2.5. SARS-Cov2 T-Specific Response Assessment by Flow Cytometry

The procedure was validated by the Spanish Society of Immunology and based
on activation-induced marker (AIM) expression after exposure to specific SARS-CoV-
2 antigens [13]. Briefly, the PBMCs from heparinized blood were isolated by Ficoll
gradient and cultured at 106 cells/mL in TexMACS medium (MiltenyiBiotec) for 24 h
at 37 ◦C in a flat-bottom 96-well plate in 0.1% DMSO; PepTivator SARS-CoV-2 Prot S,
Prot M, and Prot N (1 µg/mL); and Dynabeads Human T activator CD3/CD28 (Gibco
Thermo Fisher Scientific Baltics UAB, Vilnius, Lithuania) as a polyclonal stimulus. After
incubation, the PBMCs were washed and stained with the following monoclonal anti-
bodies: anti-CD3 (FITC) clone UCHT 1 (Inmunotech SAS Beckman Coulter, Marseille,
France), anti-CD134 (PE) clone 134-1 (Cytognos, Salamanca, Spain), anti-CD8 (ECD) clone
SFCI21Thy2D356,22,23 (Beckman Coulter), anti-CD25 (PE-CyTM7) clone 2A3, and anti-
CD4 (APC-Vio 770) clone VIT4 (MiltenyiBiotec, Bergisch Gladbach, Germany). The stained
PBMC samples were washed with PBS 150 µL and centrifuged for 5 min at 1800 rpm.
Finally, 2 µL of 7-Aminoactinomycin D (7-AAD) staining solution (Tonbo Biosciences, San
Diego, CA, USA) and 90 µL of PBS were added before the samples were acquired on the
CytoFLEX Flow Cytometer (Beckman Coulter). Results were expressed as the ratio of the
frequency in the AIM obtained after specific activation to negative non-stimulated control.
A ratio >3 in one of the specific SARS-CoV-2 peptides was considered as a positive reaction.

2.6. Determination of Circulating IL-6

Human IL-6 was measured by ELISA (Enzo Life Sciences, Inc., Farmingdale, NY,
USA) following the manufacturer’s instructions. The sensitivity of IL-6 serum levels was
0.057 pg/mL. Intra- and interassay variability were 4.38% and 9.6%, respectively.

2.7. Statistical Analysis

Statistical analysis was performed using Graph Pad Prism software. The distribution of
continuous variables was assessed using Kolmogorov–Smirnov/Shapiro–Wilk tests where
indicated. Results were expressed as mean ± standard deviation or median + interquartile
range (IQR) for continuous variables and percentages for categorical data. Comparisons
were based on the unpaired T-Student test or U-Mann–Whitney U test for parametric
and nonparametric continuous data, respectively. Welch correction was applied when
appropriate. A two-sided p-value < 0.05 was considered statistically significant. In order to
identify variables associated with moderate–severe clinical outcomes, logistic regression
analysis was performed. After univariate analysis with the potentially independent vari-
ables, the odds ratio was calculated with Wald’s statistic. In a further multivariate analysis,
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those with p < 0.25 value in the univariant analysis, following the proposed Hosmer and
Lemeshow criteria [14], and supported by other reference authors [15] were included in the
analysis. For the model selection, the backward method procedure was used to perform
automatically variable selection. To assess the predictive capability of the model, the area
under the curve (AUC) was used.

3. Results
3.1. Patient Demographics and Baseline Characteristics at COVID-19 Onset

One hundred and fifty-five COVID-19-positive patients recruited during the first days
after hospital admission (mean of 1.0, interquartile range (IQR) (1–2) days of admission)
were included in the study from April–October 2020. The median of days between the
onset of symptoms and admission was 6 days (IQR 3–9).

The cohort was divided according to their clinical progression after admission into two
groups: patients without oxygen therapy (73 included in the mild disease group) and those
with oxygen therapy requirements (82 included in the severe disease group). The patients
with severe disease were significantly older and had lower oxygen saturation at admission
than the mild-disease group. The levels of C-reactive protein (CRP), troponin, ferritin,
lactate-dehydrogenase (LDH), C4, and IL-6 were significantly higher in severe patients.
The D-dimer levels were also increased in the severe group, although not significantly. No
changes in serum concentration of immunoglobulins (IgG, IgA, and IgM) at admission
were observed between mild and severe groups, and the concentration remained within the
normal range values. Table 1 summarizes the main demographic, analytical, and clinical
parameters compared between groups.

Table 1. Demographic, analytical, and clinical parameters.

Mild (n = 73) Moderate–Severe
(n = 82) p-Value Reference Values

Demographic
Age (years) 59 (47–77) 72 (63–79) <0.001 NA

Gender (% female) 43 (58.90%) 26 (31.71%) 0.001 NA

Comorbidities
Hypertension 30 (41.10%) 43 (52.44%) NS (0.158) NA

Type II diabetes 11 (15.07%) 17 (20.73%) NS (0.360) NA
Heart disease 12 (16.44) 20 (24.39%) NS (0.222) NA

Respiratory disease 6 (8.22%) 8 (9.76%) NS (0.739) NA
Obesity 12 (16.44) 11 (13.41%) NS (0.597) NA

Biochemical parameters
C-reactive protein (mg/dL) 2.9 (0.9–6.6) 6.5 (3.0–10.7) 0.001 0.1–0.5

Ferritin (ng/mL) 203.5 (105.5–603) 535 (224–1135) <0.001 10–291
D-dimer (ng/mL) 540 (313–992) 702 (389–1309) NS (0.199) 0–500
Troponin (ng/mL) 5 (3–14) 11 (6–21) 0.006 0–40

LDH (IU/L) 227 (173–277) 274 (223–362) <0.001 120–246
O2 saturation at admission (%) 97 (96–98) 95 (93–97) <0.001 NA

Complete blood count
Lymphocytes (%) 23.40 (16.00–32.75) 16.65 (10.80–24.90) 0.001 20.0–50.0
Neutrophils (%) 64.85 (54.35–74.40) 74.00 (65.30–81.40) <0.001 42.0–75.0
Monocytes (%) 8.70 (6.85–11.85) 7.05 (4.70–10.00) 0.003 2.0–13.0

Lymphocytes count (×103) 1.20 (0.80–1.80) 0.90 (0.70–1.20) 0.001 1.2–5.0
Neutrophils (×103) 3.45 (2.30–4.90) 4.15 (2.70–5.90) NS (0.077) 1.4–7.5
Monocytes (×103) 0.53 ± 0.27 0.45 ± 0.26 0.051 0.2–1.0
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Table 1. Cont.

Mild (n = 73) Moderate–Severe
(n = 82) p-Value Reference Values

Serum immune factors
IgG (mg/dL) 1094.91 ± 351.20 1096.39 ± 344.30 NS (0.979) 734–1486
IgM (mg/dL) 98.18 (73.85–134.31) 82.68 (51.42–133.88) NS (0.078) 41–201
IgA (mg/dL) 262.36 ± 155.21 279.47 ± 135.86 NS (0.454) 49–401
C3 (mg/dL) 131.50 ± 33.02 133.32 ± 30.60 NS (0.724) 77–203
C4 (mg/dL) 31.04 (25.26–37.02) 35.44 (27.86–40.22) 0.019 7.7–50.5
IL-6 (ng/dL) 26.68 (8.12–54.20) 33.88 (7.46–125.0) 0.048 0–30

Abbreviations: LDH: lactate dehydrogenase; NA: not applicable; NS: not significant. For parametric and nonparametric variables,
mean ± SD and median (interquartile range) are shown. For comparison, T-Student and U-Mann–Whitney test, respectively, were used.
The comparison of frequencies was addressed by the Chi-square test.

3.2. Innate-Immune Compartment Assessment at Admission

The innate immune system is involved in the first stage of any viral infection, including
COVID-19 disease [16]. The main cellular components of the innate immunity to be
measured in peripheral blood are neutrophils, monocytes, NK, and innate lymphoid cells
(ILC). In patients with active COVID-19 disease, different innate immune signatures have
been identified from mild to severe disease [16,17]. Those patients with a more severe
phenotype had increased neutrophil and reduced monocyte frequency at admission [18,19].
In our cohort, these data are confirmed (Table 1, Figure 1A). Moreover, a significant increase
in the percentage of non-classical monocytes in the mild group was observed (p = 0.01;
Figure 2A). In addition, within the innate lymphoid cells (ILC), a significant increase in both
the frequency of regulatory NK (CD3−CD56highCD16−/low) cells (p = 0.016, Figure 2B) and
the absolute number of ILC type-3 (p < 0.001) in the mild group was observed (Figure 2C).
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Toll-like receptors (TLRs) are important innate immune receptors in recognizing viral
particles and play an essential role in the induction of the first line of immune responses.
Among the TLRs described in humans, TLR3 and TLR7 have been involved in the immune
response against SARS-CoV-2 [20,21]. Therefore, the expression of TLR3, TLR7, and TLR4,
as control, was measured. However, no differences in TLR expression between the two
groups of patients were found (Table 2).
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ILC2 (Lin−CD127+CD117+CD294+) 0.32 (0.13–0.73) 0.25 (0.11–0.44) NS (0.497)
ILC3 (Lin−CD127+CD117+CD294−) 0.28 (0.14-0.60) 0.11 (0.06-0.21) 0.00028

Abbreviations: TLR: Toll-like receptor; NK: natural killer; NKT: natural killer T cells; #: absolute count (cells/µL); ILC: innate lymphoid
cells; NS: not significant. For parametric and non-parametric variables, mean ± SD and median (interquartile range) are shown. For
comparison, T-Student and U-Mann–Whitney tests, respectively, were used. All TLR expression was calculated as the ratio of MFI of
specific TLR monoclonal Ab/isotype control. See Materials and Methods for details.

3.3. Adaptive Immune Compartment Assessment at Admission

As previously described [22,23], marked lymphopenia in severe patients was con-
firmed (Table 1). To avoid skew interpretation in absolute counts, only relative frequencies
were evaluated. In the main lymphocyte subsets, a significantly higher percentage of
T lymphocytes at admission with a reduction of B and NK cells in mild patients was
observed compared with the severe group. No differences were observed in the fre-
quency of CD4 and CD8 T cell subsets (Table S1). Within the CD4 T cell compartment,
an increase in the frequencies of both total Th1 (CD4+CXCR3+CCR6−) and memory Th1
(CD4+CD45RO+CXCR3+CCR6−) T cells in the mild group was observed (p = 0.057 and
p = 0.030, respectively, Table 3, Figure 3A). Notably, the frequency of peripheral blood T
cells with a regulatory phenotype (Tregs) in mild patients was slightly higher than in severe
patients (p = 0.063) (Table 3).
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Table 3. Comparison of frequencies of T and B lymphocyte functional subsets between groups.

Mild (n = 73) Moderate–Severe (n = 82) p-Value

T helper subsets (CD4+)
CD4+CD27+CD28+ 86.7 (73.9–93.9) 87.1 (75.2–93.6) NS (0.782)
CD4+CD27−CD28+ 4.8 (3.1–8.1) 4.3 (2.5–7.2) NS (0.695)
CD4+CD27+CD28− 0.6 (0.3–1.0) 0.8 (0.3–1.2) NS (0.724)
CD4+CD27−CD28− 6.5 (1.0–16.8) 6.7 (2.0–13.6) NS (0.927)

CD4+CXCR3+CCR6− (Th1) 23.9 (18.3–34.8) 20.1 (15.3–30.0) 0.057
CD4+CXCR3+ (Th1/Th17) 12.6 (8.7–16.0) 9.6 (7.1–14.0) 0.039

CD4+CXCR3−CCR6+ (Th17) 12.3 ± 5.0 12.4 ± 5.2 NS (0.907)
CD4+CD45RO+ (Memory Th) 62.8 (50.4–71.9) 58.1 (40.2–72.0) NS (0.064)

CD4+CD45RO−CD62L+ (Naïve) 19.7 (12.7–29.3) 18.5 (9.9–31.3) NS (0.290)
CD4+CD45RO+CD62L+ (TCM) 46.4 ± 13.9 48.3 ± 15.8 NS (0.234)
CD4+CD45RO+CD62L− (TEM) 24.5 (17.8–38.5) 21.3(11.5–42.8) NS (0.252)

CD4+CD45RO−CD62L− (TEMRA) 1.4 (0.5–3.8) 1.3 (0.6–3.9) NS (0.957)
CD4+CD45RO+CXCR3+CCR6−(Memory Th1) 32.2 (26.9–44.4) 28.7 (24.0–38.0) NS (0.030)
CD4+CD45RO+CXCR3+ (Memory Th1/Th17) 19.4 (16.1–25.2) 23.2 (17.5–26.0) NS (0.137)

CD4+CD45RO+CXCR3−CCR6+ (Memory Th17) 21.1 ± 8.7 18.5 ± 7.9 NS (0.098)
CD4+CXCR3−CCR6−CD294+ (Th2) 1.0 (0.7–1.7) 0.8 (0.4–1.3) NS (0.830)
CD4+CD45RO+CXCR5+PD1+ (Tfh) 0.2 (0.1–0.4) 0.3 (0.1–0.5) NS (0.153)

CD4+CD127−CD25+ (Tregs) 6.4 (5.5–7.5) 5.7 (4.3–7.2) NS (0.063)

T cytotoxic subsets (CD8+)
CD8+CD27+CD28+ 57.1 (31.4–71.1) 37.6 (21.5–53.2) 0.004
CD8+CD27−CD28+ 2.1 (1.2–3.7) 2.2 (1.1–3.7) NS (0.580)
CD8+CD27+CD28− 10.2 (7.4–16.2) 12.0 (6.5–19.0) NS (0.219)
CD8+CD27−CD28− 27.7 (15.8–53.1) 44.5 (24.4–63.2) 0.019

CD8+CXCR3+ (Tc1/Tc17) 4.9 (3.2–9.5) 3.0 (1.8–4.6) 0.0003
CD8+CD45RO+ (Memory Tc) 42.9 (34.9–57.7) 42.2 (35.2–57.6) NS (0.749)

CD8+CD45RO−CD62L+ (Naïve) 25.9 (14.8–40.8) 19.2 (10.3–28.8) 0.026
CD8+CD45RO+CD62L+ (TCM) 15.0 (10.0–19.2) 14.1 (8.8–21.7) NS (0.942)
CD8+CD45RO+CD62L− (TEM) 30.9 (23.9–38.7) 31.6 (22.6–44.6) NS (0.780)

CD8+CD45RO−CD62L− (TEMRA) 21.0 (11.8–34.4) 26.1 (14.3–38.1) NS (0.125)
CD8+CD45RO+CXCR3+ (Memory Tc1/Tc17) 2.5 (1.4–6.6) 2.8 (1.2–5.1) 0.0002

CD8+DR+CD38+ 11.2 (5.3–20.5) 13.8 (8.8–25.6) 0.028

B lymphocytes
B naïve (CD27−IgD+) 65.3 (47.8–75.5) 63.8 (48.3–75.0) NS (0.656)

B unswitched (CD27+IgD+) 15.4 (9.0–23.4) 11.5 (8.3–21.5) NS (0.196)
B switched (CD27+IgD−) 15.9 (8.5–24.1) 17.0 (9.8–25.5) NS (0.478)

Plasmablasts (CD19+ CD20lowCD27hi CD38hi) 1.9 (0.8–5.8) 5.3 (1.6–9.7) 0.002

Abbreviations: Th: helper T cell; TCM: central memory T cells; TEM: effector memory T cells; TEMRA: terminally differentiated T cells;
Tregs: regulatory T cells; Tc: cytotoxic T cells; Tfh: T follicular helper cells; NS: not significant. For parametric and non-parametric variables,
mean ± SD and median (interquartile range) are shown. For comparison, T-Student and U-Mann–Whitney tests, respectively, were used.

Conversely, the CD8+ T cells are cytotoxic antiviral lymphocytes, and an increased pro-
portion of activated and exhausted CD8+ T cells has been described in COVID-19 [24]. Ac-
cordingly, we found a significantly increased frequency of CD8+CD38+HLA-DR+ (Figure 3B)
and CD8+CD27−CD28− in the severe group compared with the mild group (Table 3,
Figure 3C). On the other hand, the frequency of naïve CD8 populations CD8+CD62L+CD45RA+

and CD8+CD27+CD28+ increased in the mild group. Finally, the frequency of effector pop-
ulation CD8+CXCR3+CCR6+ and memory CD8+CD45RO+CXCR3−CCR6+ were increased
in the mild group at admission (Table 3).

In addition, as previously described [19], a significantly high proportion of plas-
mablasts (CD19+CD20−CD27highCD38high) in the severe group was confirmed (Table 3,
Figure 3D).
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in A, B, C, and D. * p < 0.05 and ** p < 0.01.

3.4. SARS-CoV-2 Specific T Cells Response in Active COVID-19 Disease

Phenotypic characterization of immune cells may not reflect their function and speci-
ficity. The specific T cell response against overlapping peptide pools of the nucleocapsid
phosphoprotein (“N”), the membrane glycoprotein (“M”), and the surface glycoprotein
(“S”) of SARS-CoV-2 through activation of PBMC in both mild and severe groups was
assessed. The response was evaluated by expressing activation-induced markers (CD134
and CD25) after 24 h of stimulation, as previously shown [13]. Anti-CD3/CD28 monoclonal
antibody stimulation was used as a positive control, while medium without additives was
used as a negative control. The global stimulation index with any SARS-CoV-2 antigen was
comparable between groups at admission (Table S2).

3.5. Assessment of the Immune Parameters as a Prognosis Factor

Within all the evaluated immune parameters included in this study, those with signifi-
cant differences at admission were selected in order to investigate their independent role
in the prognosis of the patients. The univariate and multivariate analyses are summarized
in Table 4. The logistic regression model was performed as described in Materials and
Methods, and the parameters finally included in the model were: age, ferritin, D-dimer,
absolute counts of lymphocytes, C4, CD8+CD27−CD28−, and non-classical monocytes.
The area under the curve was 78.2%, with a sensitivity and specificity of 71.4 and 72.2,
respectively (Figure 4).
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Table 4. Univariate and Multivariate analysis of the parameters included in the logistic regression model.

Parameter Univariate Multivariate

p Odds CI p Odds CI

Age <0.001 1.033 1.013–1.053 0.015 1.038 1.007–1.069
Ferritin <0.001 1.001 1.001–1.002 0.021 1.001 1.001–1.002
D-dimer 0.226 1.000 1.000–1.000 0.01 1.000 1.000–1.001

Absolute lymphocyte count 0.002 0.999 0.999–1.000 0.023 0.999 0.998–1.000
C4 0.016 1.041 1.007–1.075 0.110 1.036 0.992–1.082

% of CD8+CD27−CD28− 0.023 1.017 1.002–1.031 0.701 1.004 0.985–1.023
% of non-classical monocytes 0.288 0.18 0.000–29.826 0.908 1.712 0.000–0.000149

Abbreviations: CI: confidence interval.
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4. Discussion

The COVID-19 disease has been divided into two well-differentiated stages, firstly
an inflammatory step and subsequently a hyper-inflammatory step. The inflammatory
response is conducted by innate immune components early after SARS-CoV-2 infection.
An average of 10 days has been estimated for this response, followed by the induction of
an efficient adaptive specific response in mild disease. However, if this immune response
is overcome, a further hyper-inflammatory response is mounted. This hyper-inflammatory
response has been associated with severe and poor clinical outcomes [25–27].

Different immune profiles at admission have been associated with clinical outcomes,
underlining the presence of lymphopenia [10], neutrophilia [11], and an increase in mono-
cyte subsets [28]. Furthermore, alterations in adaptive immune system components, in-
cluding activated and exhausted phenotypes in cytotoxic T cells, have been confirmed [29].
Moreover, increased levels of plasmablasts in severe patients have been observed [19].

A comprehensive immune profile was created in the present work, and the obtained
results were comparable with those described in previous studies [28,29] (Tables 2 and 3).
Among differential features in the innate immune system in severe versus mild COVID-
19 patients, a dysfunctional neutrophil skew was observed in severe cases [30]. This
emergency myelopoiesis could be associated with an increased frequency of neutrophils
and lymphopenia, as observed in our cohort. Moreover, non-classical monocytes were
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expanded within the monocyte compartment in the mild group compared with severe
cases [31]. This monocyte subset has been involved in inflammation restoration and tissue
recovery [32], whereas its increased frequency in mild patients could be related to virus
clearance [33].

The role of total ILCs and specifically ILC1 in antiviral immune response has been
previously shown [34,35]. A reduction of ILC1 in severe COVID-19 patients has been
recently described by García et al. [35]. Our results confirmed the reduction of this cell
subset in severe COVID-19 patients, although no significant differences were observed.

In contrast, the role of ILC3 in respiratory viral infections has not been described
yet. ILC3 exist mainly in the intestinal mucosal tissue, playing an important function in
mucosal homeostasis and inflammatory responses. Nevertheless, we observed a significant
reduction of this subpopulation in severe COVID-19 patients at admission. The function
of ILC3 in the intestinal mucosa is well described [36]. Their role in respiratory mucosa
remains to be elucidated. Nonetheless, our finding was in peripheral blood, and the
relationship between circulating and tissue ILC3 is not established yet.

TLR signaling in viral infections has been thoroughly studied. Specifically, TLR-3,
TLR-7, and TLR-8 exert a key role in infections by RNA viruses, such as SARS-CoV-2.
Functional studies have identified rare loss-of-function variants of the X-chromosomal
TLR7 in severe COVID-19 patients [37]. In our cohort, the patients with severe disease were
older and had several comorbidities that could go unnoticed, such as a loss-of-function
effect, since no significant differences in the expression of TLR-3 and TLR-7 considering
the severity of COVID-19 patients were observed.

The potential role of regulatory subsets in COVID-19 prognosis was studied by Meck-
iff et al. [38]. They observed a skew towards a reactive gene expression pattern of SARS-
CoV-2-specific CD4+ T cells with impairment of Tregs in severe patients. In our cohort at
admission, the severe patients had reduced Treg frequency and CD3−CD56++CD16lo NK
cells compared with the mild group [39].

The Th1 response is involved in cellular immunity throughout IFN-γ production. In
our cohort, an increase in Th1 and memory Th1 cells was observed in the mild group. This
observation points to an early activation compared with the severe group. Previous studies
on Th subsets in COVID-19 have shown poor outcomes related to undifferentiated Th
subsets in patients [40] or with a skew towards Th2 cells [41].

The cytotoxic T cell is the main subset in adaptive antiviral response. After im-
munophenotype analysis, the CD8 compartment has been classified in detail not only
by maturation stage but also activation status. The early activation phenotype in CD8
is defined by CD38 and HLA-DR expression [42]. Recently, an increase in the frequency
of CD8+CD38+HLADR+ cells in patients with COVID-19 disease and fatal outcomes has
been confirmed [43,44]. In the present work, the severe group presented an increased
frequency of CD8+CD38+HLADR+ cells at admission. In terms of the functional status of
CD8 cells, severe patients had an exhausted or immunosenescence phenotype [45]. We
used CD27 and CD28 to identify a CD8 exhausted phenotype [29], and accordingly, a
significant increase in the CD8+CD27−CD28− exhausted phenotype in the severe group
was found.

This exhausted phenotype of CD8+ T cells was included in the predictive model to
establish the risk of severe disease. Together with age, IL-6, ferritin, D-dimer, IgM, C4,
absolute lymphocyte count, ILC type-3 count, and percentage of plasmablasts, Th1, memory
Th1, Treg, CD8+CD38+HLA-DR+, non-classical monocytes, and CD3−CD56++CD16lo NK
cells, the predictive model showed an AUC of 78%. Several predictive models have been
published based on demographic, biochemical, and immunological parameters [39,46–49].
The main prognostic factors were neutrophil and lymphocyte counts, whereas NK subsets
and CD4 levels were only partially confirmed. Notably, other associated parameters
with poor prognosis in COVID-19 patients such as SARS-CoV-2 viral load have been
demonstrated [50]. A limitation of the study was the absence of the viral load or the cycle
threshold (Ct) data in our model.
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Easily measurable immune parameters, such as CD8+CD27−CD28− and non-classical
monocytes, improve the predictive value of our model. However, the cross-sectional design
is a limitation of the study, and further validation cohorts should be assessed to confirm
the model’s predictive capability.

Although our model was not developed to predict fatal outcomes, both innate and
adaptive immune parameters could help determine the oxygen therapy requirement of
78% of the patients and could be helpful in improving the therapeutic management of the
patients at admission.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9080917/s1: Table S1: Comparison of main lymphocyte subsets expressed as
frequencies and absolute numbers in peripheral blood. Table S2: CD134 and CD25 expression after
stimulation with N-, M-, and S-specific SARS-CoV-2 antigens.
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