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Abstract
Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an 
experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investi-
gated the neuroprotective effects of ischemic preconditioning (2-minute transient cerebral ischemia) on 
calbindin D28k immunoreactivity in the gerbil hippocampal CA1 area following a subsequent fatal tran-
sient ischemic insult (5-minute transient cerebral ischemia). A large number of pyramidal neurons in the 
hippocampal CA1 area died 4 days after 5-minute transient cerebral ischemia. Ischemic preconditioning 
reduced the death of pyramidal neurons in the hippocampal CA1 area. Calbindin D28k immunoreactivity 
was greatly attenuated at 2 days after 5-minute transient cerebral ischemia and it was hardly detected at 5 
days post-ischemia. Ischemic preconditioning maintained calbindin D28k immunoreactivity after transient 
cerebral ischemia. These findings suggest that ischemic preconditioning can attenuate transient cerebral 
ischemia-caused damage to the pyramidal neurons in the hippocampal CA1 area through maintaining cal-
bindin D28k immunoreactivity. 

Key Words: nerve regeneration; transient cerebral ischemia; ischemic tolerance; neuroprotection; hippocampus;  
pyramidal neurons; calcium binding protein; neural regeneration 

Introduction
Calcium ions play a complex and fatal role in nerve cell 
function (Cai et al., 2015). Evidence exists that uncontrolled 
increase in intracellular calcium ion concentrations results 
in excessive cell activation, injury, and eventually cell death, 
and increased calcium ion concentrations lead to calcium 
binding by regulatory proteins, which are called calcium 
binding proteins including calbindin, parvalbumin and cal-
retinin (Baimbridge et al., 1992; Verdaguer et al., 2015).

Calbindin-D28k (CB), a member of the EF-hand family 
of calcium binding proteins, is easily found in neuronal cells 
in the central nervous system and performs function that 
is able to buffer toxic intracellular calcium ions induced by 
various insults including ischemic stroke (Baimbridge et al., 
1992; Klapstein et al., 1998; Yenari et al., 2001). CB overex-
pression shows resistance to ischemic insults in vitro and 
in vivo (Yenari et al., 2001; Fan et al., 2007; Freimann et al., 

2010);  and exogenous CB reduces oxidative stress, preserves 
mitochondrial function (Guo et al., 1998), and delays the on-
set of cell death following excitotoxic stimulation (D’Orlando 
et al., 2001).

Transient global cerebral ischemia, which is able to happen 
due to the blockage or lack of cerebral blood flow induced 
by cardiac arrest or cardiovascular surgery, leads to death of 
vulnerable neurons such as pyramidal neurons in the hippo-
campal CA1 area (Ohk et al., 2012; Lee et al., 2013a; Kim et 
al., 2014). Ischemic preconditioning (IPC), which is a tech-
nique for producing resistance to the loss of blood supply, 
can be elicited by non-fatal brief occlusion of blood flow, has 
been demonstrated as a therapeutic strategy against subse-
quent fatal ischemic insults (Lehotsky et al., 2009; Liu et al., 
2009; Thompson et al., 2013; Kovalska et al., 2014). IPC can 
activate certain cellular pathways that are able to help alle-
viate fatal damage induced by subsequent ischemic insults, 
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In the ischemia group, a few CV-positive cells were found in the stratum 
pyramidale (SP, asterisks) of the CA1 area from 4 days post-ischemia. How-
ever, CV-positive CA1 pyramidal cells in the IPC + ischemia group were 
well preserved after ischemia/reperfusion. CA: Cornu ammonis; DG: den-
tate gyrus; SO: stratum oriens; SR: stratum radiatum; IPC: ischemia precon-
ditioning. Scale bars: 200 μm for A–L (low magnification photos); 60 μm 
for a–l (high magnification photos). (M) Relative analysis as percent in the 
mean number of CV-positive cells in the SP of the CA1 area (n = 7 in each 
group; *P < 0.05, vs. sham group; #P < 0.05, vs. corresponding ischemia 
group). The bars indicate the mean ± SEM.

Figure 1 Cresyl violet (CV) staining of the gerbil hippocampus in the sham (A, a), IPC + sham (B, b), ischemia (C, c, E, e, G, g, I, i, K, and k), 
and IPC+ ischemia (D, d, F, f, H, h, J, j, L, and l) groups. 
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and this phenomenon is called “ischemic tolerance” (Saad et 
al., 2015).

Several mechanisms, which explain the neuroprotective 
effects of IPC, have been published (Lee et al., 2014, 2015a, b, 
2016; Kim et al., 2015; Park et al., 2016). However, to the best 
of our knowledge, there are no reports on calcium binding 
proteins in IPC-mediated ischemic brains. We, therefore, in-
vestigated the effects of IPC on CB immunoreactivity in the 
hippocampal CA1 pyramidal neurons following subsequent 
ischemia/reperfusion injury in gerbils.

Materials and Methods
Experimental animals
As previously described (Kim et al., 2015), male gerbils 
weighing 65–75 g and aged 6 months, were divided into four 
groups: (1) sham group (both common carotid arteries were 
exposed but not occluded); (2) ischemia group (5-minute 
transient ischemia); (3) IPC + sham group (IPC (2-minute 
transient ischemia) and no ischemia); and (4) IPC + isch-
emia group (IPC followed by ischemia). Gerbils (n = 7 at 
each point time in each group) were recovered 1, 2, 3, 4 and 
5 days after ischemia. Procedures for animal handling and 
care complied with the guidelines that follow the current in-
ternational laws and policies (Guide for the Care and Use of 
Laboratory Animals, The National Academies Press, 8th Ed., 
2011), and all the experimental protocols of this study were 
reviewed and approved by the Institutional Animal Care and 
Use Committee (IACUC), Kangwon National University 
(approval No. KW-160802-1).

Induction of IPC and transient ischemia
As previously described (Park et al., 2016), in brief, the 
gerbils were anesthetized with a mixture of 2.5% isoflurane 
(Baxtor, Deerfield, IL, USA) in 33% oxygen and 67% nitrous 
oxide. Bilateral common carotid arteries were occluded for 
2 minutes for IPC followed by 5-minute ischemia with 1 day 
interval. Body (rectal) temperature was controlled under 
normothermia (37 ± 0.5°C) during the surgery with a rectal 
temperature probe (TR-100; Fine Science Tools, Foster City, 
CA, USA).

Tissue processing
Tissue preparation for histology was carried out according to 
our published method (Kim et al., 2014). In brief, the gerbils 
were perfused transcardially with 4% paraformaldehyde. The 
brains were serially sectioned into 30-μm coronal sections 
using a cryostat (Leica, Wetzlar, Germany). 

Cresyl violet (CV) staining
In order to observe the distribution of pyramidal cells in 
the stratum pyramidale of hippocampal CA1 region, CV 
staining was done as previously described (Park et al., 2016). 
Briefly, 1% cresyl violet acetate (Sigma, St. Louis, MO, USA) 
and 0.28% glacial acetic acid were used for CV staining. 

Fluoro-Jade B (F-J B) histofluorescence staining
To examine neuronal death after ischemia, F-J B histofluo-

rescence staining was carried out according to our published 
procedure (Park et al., 2016). In short, the brain tissues were 
immersed in a 0.06 % potassium permanganate solution and 
stained with 0.0004% F-J B (Histochem, Jefferson, AR, USA) 
solution. The stained brain tissues were observed using an epi-
fluorescent microscope (Carl Zeiss, Oberkochen, Germany) 
with blue (450–490 nm) excitation light and a barrier filter.

Immunohistochemistry for CB
CB immunoreactivity was determined according to our 
published method (Bae et al., 2015). Briefly, the brain tissues 
were incubated with diluted rabbit anti-CB antibody (1:500; 
Abcam, Cambridge, MA, USA) overnight at 4°C, then ex-
posed to biotinylated goat anti-rabbit antibody (1:250; Vec-
tor Laboratories, Burlingame, CA, USA) for 2 hours at room 
temperature and streptavidin peroxidase complex (1:200; 
Vector Laboratories) and finally visualized with 3,3′-diami-
nobenzidine tetrachloride (Sigma).

Data analysis
NeuN- and F-J B-positive cells were counted according to 
our published procedure (Bae et al., 2015). Fifteen brain 
tissue sections were chosen in each animal with 120 µm 
interval. NeuN- and F-J B-positive cells in 200 × 200 µm2 at 
the center of the CA1 stratum pyramidale were counted us-
ing an AxioM1 light microscope (Carl Zeiss) equipped with 
a digital camera (Axiocam, Carl Zeiss) interlinked with a 
PC monitor. Cell counts were analyzed as a percent, with 
the sham group and ischemia group (5 days) designated as 
100%. To quantitatively analyze CB immunoreactivity, in 
brief, according to our method (Lee et al., 2016), images 
were calibrated into an array of 512 × 512 pixels corre-
sponding to a tissue area of 140 × 140 μm2 (40× original 
magnification). The mean CB immunoreactivity was deter-
mined in hippocampal CA1 pyramidal neurons by a 0–255 
gray scale system in ImageJ (National Institutes of Health, 
MD, USA). The background density was subtracted, and 
the relative immunoreactivity (RI) of image file was cali-
brated as % using Adobe Photoshop version 8.0, and the RI 
was analyzed using NIH Image 1.59 software (National In-
stitutes of Health). RI was calibrated as %, with sham group 
designated as 100%.

Statistical analysis
All data are expressed as the mean ± SEM of the means 
across the groups and were statistically analyzed using 
SPSS 18.0 (SPSS, Chicago, IL, USA). Analysis of variance 
(ANOVA) with a post hoc Bonferroni’s multiple compar-
ison test was performed to present differences among ex-
perimental groups. Statistical significance was considered 
at P < 0.05.

Results
CV-positive cells
CV-positive cells were obviously observed in the stratum 
pyramidale, which are called pyramidal neurons, in the ger-
bil hippocampus proper (CA1–3 area) of the sham group 
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(Figure 1A and 1a). In the ischemic gerbils, the morphology 
of CV-positive pyramidal neurons in the hippocampus prop-
er was not changed until 3 days after ischemia/reperfusion 
(Figure 1C, 1c, 1E, 1e, 1G, 1g and 1M); however, CV-posi-
tive cells were rarely detected in the stratum pyramidale of 
the CA1 area, not CA2 and CA3 area from 4 days after isch-
emia/reperfusion (Figure 1I, 1i, 1K, 1k and 1M). 

The morphology of CV-positive cells in the hippocampus 
proper of gerbils of the IPC + sham group was not different 
from that in the sham group (Figure 1B, 1b and 1M). Fur-
thermore, the morphology of CV-positive cells in the IPC 
+ ischemia group was not different from that in the IPC + 
sham group (Figure 1D, 1d, 1F, 1f, 1H, 1h and 1M); in par-
ticular, CV-positive CA1 pyramidal neurons were well pre-
served 4 and 5 days after ischemia/reperfusion (Figure 1J,1j, 
1L, 1l and 1M).

F-J B-positive cells
F-J B-positive cells, which are dead cells, were not observed 
in the CA1 area of the ischemia group until 3 days post-isch-
emia (Figure 2A, 2B, 2E, 2F and 2M). However, many F-J 
B-positive cells were observed in the pyramidal layer of the 
CA1 area at 4 and 5 days post-ischemia (Figure 2I, 2J and 
2M). F-J B-positive cells were not observed in the CA1 area 
of the IPC + sham group (Figure 2C and 2M). In the IPC + 
ischemia group, F-J B-positive cells were not observed until 
3 days post-ischemia (Figure 2D, 2G, 2H and 2M), and 4 
and 5 days after ischemia/reperfusion, only a few F-J B-pos-
itive cells were observed in the pyramidal layer (Figure 2K, 
2L and 2M).

CB immunoreactivity
In the sham group, CB immunoreactivity was detected in the 
pyramidal neurons of the CA1–3 area (Figure 3A and 3a). 
In the ischemia group, CB immunoreactivity was not signifi-
cantly altered in pyramidal neurons at 1 day post-ischemia 
(Figure 3B, 3b and 3m); however, CB immunoreactivity was 
significantly decreased only in the CA1 pyramidal neurons 2 
days after ischemia/reperfusion (Figure 3E, 3e and 3m), and 
CB immunoreactivity in the CA1 pyramidal cells was hard-
ly detected from 3 days after ischemia/reperfusion (Figure 
3F, 3I, 3J, 3f, 3i, 3j and 3m). In the IPC + sham group, CB 
immunoreactivity in pyramidal neurons of the CA1–3 area 
was not different from that in the sham group (Figure 3C, 3c 
and 3m). In the IPC + ischemia group, CB immunoreactivi-
ty in all pyramidal cells was steadily maintained until 5 days 
post-ischemia (Figure 3D, 3G, 3H, 3K, 3L, 3d, 3g, 3h, 3k, 3l 
and 3m).

Discussion
Transient global cerebral ischemia selectively kills neurons 
in the hippocampus, namely, CA1 pyramidal neurons slowly 
die a few days after transient global cerebral ischemia (Kirino, 
1982; Kirino and Sano, 1984; Kirino, 2000). In the present 
study, we found a striking loss of pyramidal neurons in the 
pyramidal layer of the CA1 area, which are named CA1 py-
ramidal cells, from 4 days after 5-minute transient ischemia 

via CV staining and F-J B histofluorescence staining. This 
finding is consistent with previous reports using gerbils that 
were subjected to 5-minute transient cerebral ischemia (Kim 
et al., 2014; Yan et al., 2014). 

Previous studies demonstrated that IPC, which was in-
duced by non-fatal brief transient ischemia, generated isch-
emic tolerance and protected neuronal damage/death follow-
ing subsequent fatal transient ischemia (Kirino et al., 1996; 
Lehotsky et al., 2009). We investigated the neuroprotective 
effect of IPC against 5-minute transient cerebral ischemia in 
the CA1 area using CV staining and F-J B histofluorescence 
staining, and our finding was similar to that in previous 
studies (Lee et al., 2014; Kim et al., 2015). Brief (2-minute) 
transient ischemia in the brain does not cause the death of 
CA1 pyramidal neurons, and however, protects CA1 pyra-
midal neurons after a subsequent longer time (5-minute) of 
transient cerebral ischemia in gerbils. Previous studies have 
demonstrated that IPC mediates neuroprotection through 
attenuating ubiquitin aggregation (Lee et al., 2014), reduc-
ing oxidative damage (Lee et al., 2015a; Park et al., 2016), 
increasing the level of anti-inflammatory cytokines (Kim et 
al., 2015) and inhibiting Na(+)/H(+) exchanger 1 expression 
(Lee et al., 2015b). However, to the best of our knowledge, 
there are no studies correlating CB immunoreactivity with 
IPC-mediated neuroprotection following subsequent tran-
sient ischemic insults.

Calcium ions conduct important physiological functions 
that activate and regulate the fast transport of substances in 
axons, membrane excitability in neurons, and neurotrans-
mitter synthesis and release (Heizmann and Braun, 1992). 
However, massive neuronal degeneration takes place in 
several brain diseases and the expression of calcium binding 
proteins changes during the course of the diseases (Heizmann 
and Braun, 1992). In ischemic brain injury, calcium ions 
are overloaded and lead to the activation of biochemical 
processes, enzymatic breakdowns of proteins, lipids and nu-
cleic acids, mitochondrial malfunction, energy failure, and 
finally the destruction of neurons (Lee et al., 1999; Li et al., 
2011). In addition, Sadowski et al. (2002) reported that, in 
a rat model of cardiac arrest, CB immunoreactivity disap-
peared completely in CA1 pyramidal neurons 3 days after 
cardiac arrest. In our present research, CB immunoreactivity 
in the pyramidal cells of the CA1 area began to be signifi-
cantly decreased from 2 days and hardly detected 5 days 
after transient ischemia. We, in addition, reported that CA1 
pyramidal cells of the young gerbils showed more resistance 
to transient cerebral ischemia than those in the adult gerbils 
and CB expression in the CA1 pyramidal cells was longer 
maintained in the young gerbils than in the adult gerbils (Lee 
et al., 2013b).

In this study, we found that CB expression was consistent-
ly maintained in the IPC + ischemia group, which shows 
IPC-mediated protection of the CA1 pyramidal cells against 
a fatal subsequent transient ischemia. It seems that the 
maintenance of CB expression in the IPC + ischemia group 
might be related with the protection of IPC against a fatal 
subsequent cerebral ischemia. It is well known that calcium 
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binding proteins including CB have a greater capacity of 
intercellular calcium ion buffering that would be more resis-
tant to some brain disorders (Heizmann and Braun, 1992). 
However, studies regarding CB-mediated neuroprotection 
in cerebral ischemic condition have been reported by some 
researchers. Yenari et al. (2011) injected viral vector-mediat-
ed CB into the striatum of the rat and found the attenuation 
of neuronal damage/death in the striatum following focal 
cerebral ischemia (Yenari et al., 2001). Freimann et al. (2010) 
overexpressed CB in the striatum and cerebral cortex in the 
mouse using an adeno-associated viral vector for long time 
and found neuroprotective effects after focal cerebral isch-
emia induced by the occlusion of the middle cerebral artery 
(Freimann et al., 2010). Sung et al. (2012) reported that gink-
go biloba extract prevented the reduction of parvalbumin, a 
kind of calcium binding protein, in cerebrocortical neuronal 
cells of the rat after transient focal cerebral ischemia. Koh 
(2013) reported that nicotinamide restored the reduction of 
parvalbumin in the rat cerebral cortex induced by transient 
focal cerebral ischemia.

In brief, our results showed that IPC protected pyramidal 
neurons of the hippocampal CA1 area against subsequent 
fatal transient ischemia and restored the reduction of CB ex-
pression in the pyramidal neurons in the hippocampal CA1 
area after subsequent fatal transient ischemia. These results 

indicate that CB in the brain plays important roles in the 
neuroprotection of neurons against brain damage including 
ischemic insults.
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Figure 2 Fluoro-Jade B (F-J B) histofluorescence staining of the CA1 
area in the sham (A), IPC + sham (C), ischemia (B, E, F, I, and J), and 
IPC + ischemia (D, G, H, K, and L) groups.
Many F-J B-positive cells were observed in the stratum pyramidale (SP, as-
terisks) 4 and 5 days (d) after ischemia/reperfusion; however, only a few F-J 
B-positive cells were observed in the IPC + ischemia group. SO: Stratum 
oriens; SR: stratum radiatum; IPC: ischemia preconditioning. Scale bar: 50 
μm. (M) Relative analysis as percent in the mean number of F-J B-positive 
cells in the pyramidal layer of the CA1 area (n = 7 in each group; #P < 0.05, 
vs. ischemia group). The bars indicate the mean ± SEM.
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CB immunoreactivity was easily detected in the stratum pyramidale 
(SP) of the sham group; however, CB immunoreactivity was gradually 
decreased in the SP (asterisks) from 2 days (d) post-ischemia. CB-D28k 
immunoreactivity in the SP was well preserved in the IPC + sham and IPC 
+ ischemia groups. Scale bar: 200 μm valid for A–L. 
High magnification of CB immunohistochemistry in the CA1 area of 
the sham (a), IPC + sham (c), ischemia (b, e, f, i, and j) and IPC + isch-
emia (d, g, h, k, and l) groups. 
CB immunoreactivity was hardly detected in the SP (asterisks) from 3 d 
post-ischemia. CB immunoreactivity in the SP of the IPC + ischemia group 
was well preserved after ischemia/reperfusion. SO: Stratum oriens; SR: stra-
tum radiatum; IPC: ischemia preconditioning. Scale bar: 50 μm valid for a–l. 
(m) Relative immunoreactivity (RI) as percent values of CB immunoreac-
tivity in the SP (n = 7 in each group; *P < 0.05, vs. sham group; #P < 0.05, 
vs. corresponding ischemia group; †P < 0.05, vs. respective pre-time point 
group). The bars indicate the mean ± SEM.

Figure 3 Low magnification of calbindin-D28k (CB) immunohistochemistry in the hippocampus of the sham (A), IPC + sham (C), ischemia (B, 
E, F, I, and J), and IPC + ischemia (D, G, H, K, and L) groups. 
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