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ABSTRACT Although classically associated with myelopoiesis, granulocyte-macrophage
colony-stimulating factor (GM-CSF) is increasingly recognized as being important for
tuberculosis (TB) resistance. GM-CSF is expressed by nonhematopoietic and hemato-
poietic lineages following infection with Mycobacterium tuberculosis and is necessary
to restrict M. tuberculosis growth in experimental models. Until the recent study by
Rothchild et al. (mBio 8:e01514-17, 2017, https://doi.org/10.1128/mBio.01514-17), it was
unknown whether GM-CSF-producing T cells contribute to TB resistance. Rothchild et
al. identify which conventional and nonconventional T cell subsets produce GM-CSF
during experimental TB, establish their protective nature using a variety of approaches,
and provide a mechanistic basis for their ability to restrict M. tuberculosis growth. This
commentary discusses the significance of these findings to basic and applied TB
research. As translated to human disease, these findings suggest vaccine-mediated
expansion of GM-CSF-producing T cells could be an effective prophylactic or therapeu-
tic TB strategy.
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Colony-stimulating factors (CSFs) were first hypothesized to exist by Australian
scientists following their classic observation that sera from a mouse strain with

excessive myelopoiesis promote formation of “colonies” when added to in vitro bone
marrow cultures (1). These colonies were sensitive to irradiation (2), comprised dense
accumulations of progenitor cells, and gave rise to one or more phagocytic lineages (3).
Members of the CSF cytokine family are positive regulators of myelopoiesis and include
granulocyte CSF (G-CSF), macrophage CSF (M-CSF), and granulocyte-macrophage CSF
(GM-CSF). It is now known that G-CSF and its receptor (G-CSFR) support neutrophil
development during both “steady-state” and “emergency” granulopoiesis (4), whereas
M-CSF and its receptor (M-CSFR) support the development and distribution of mono-
nuclear phagocytes (5). Compared to G-CSF and M-CSF, the in vivo effects of GM-CSF
and its receptor (GM-CSFR) on steady-state myelopoiesis are more limited. GM-CSF is a
monomeric glycoprotein that is primarily secreted by epithelial cells during homeosta-
sis; its roles during myelopoiesis are to promote development of alveolar macrophages
(AMs) and nonlymphoid dendritic cells (DCs) (6).

In contrast to GM-CSF’s limited roles during steady-state myelopoiesis, it has many
supportive roles during inflammation (6). Inflammation is a progressive immune re-
sponse to substances that are nonself (e.g., infection) or self (e.g., autoimmunity) and
is characterized by myeloid cell recruitment from the vasculature, accumulation in the
affected tissue, and activation to clear the immunogenic substance. Although inflam-
mation is critical for host protection from microbial infections, the physiological func-
tions of all organs are negatively affected by inflammation. Myeloid responses during
inflammation are sensitive to the activity of T cells (conventional and nonconventional)
that are also present in the affected tissue. Whereas GM-CSF is primarily expressed by
epithelial cells during homeostasis, both hematopoietic and nonhematopoietic lin-
eages can express GM-CSF in an inflamed tissue (6). The local and systemic effects of
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GM-CSF follow its association with GM-CSFR, which comprises an �- and �-chain
heterodimer on the cell surface; the GM-CSFR �-chain activates several signaling
pathways (JAK-STAT, mitogen-activated protein kinase [MAPK], NF-�B, and phosphati-
dylinositol 3-kinase [PI3K]) that promote expression of multiple immune effector
genes (7).

Inflammation has both protective and pathological roles in the mycobacterial
disease tuberculosis (TB) (8). TB afflicts large portions of the globe and is caused by
members of the Mycobacterium tuberculosis complex (M. africanum, M. bovis, M. canettii,
M. caprae, M. microti, M. mungi, M. pinnipedii, M. orygis, and M. tuberculosis). M. tuber-
culosis is an intracellular pathogen that is transmitted via aerosolization of infected
sputum. In most M. tuberculosis-infected individuals, M. tuberculosis does not cause
clinical disease and persists in a slowly replicating or latent state. Maintaining
M. tuberculosis in a latent state depends on inflammation, as the absence of select
myeloid or T cell lineages— due to either an inherited or acquired immunodefi-
ciency—predisposes humans to develop active or disseminated forms of TB. How-
ever, inflammation can also be damaging in the context of TB, as evidenced by the
reduced survival and increased immunopathology observed in M. tuberculosis-
infected PD1�/� mice (9), interleukin-27�/� (IL-27�/�) mice (10), and C57BL/6 mice
following repeated M. bovis BCG vaccination (Koch’s phenomenon) (11). In M. tu-
berculosis-infected humans, the damaging effects of inflammation are exemplified
by TB immune reconstitution inflammatory syndrome (TB-IRIS), which is due to a
rapid expansion of immune cells in M. tuberculosis- and HIV-coinfected individuals
following anti-HIV therapy (12).

GM-CSF expression is host protective in the context of TB infection. GM-CSF is
expressed within human TB granulomas (13), is secreted by human macrophages and
lung epithelial cells upon M. tuberculosis exposure (14–16), and reduces M. tuberculosis
burden when added to infected human macrophage cultures (17). In the absence of
GM-CSF, mice cannot restrict M. tuberculosis burden, are less capable of lymphocyte
recruitment, and cannot form “normal” granulomas (18, 19). In addition to its pro-
proliferative effects on AMs, GM-CSF increases the phagocytic capacity of AMs (20) and
promotes the division of lung DCs that accumulate during TB (21). Since GM-CSF is
produced by numerous hematopoietic and nonhematopoietic lineages during inflam-
mation, what, if any, contribution T cell-derived GM-CSF has on TB outcome has been
unknown. This is important to know for the following reason: if T cell-derived GM-CSF
is protective, then vaccine-mediated expansion of GM-CSF-producing T cells could be
an effective prophylactic or therapeutic TB strategy.

As they described (22), Rothchild et al. performed several adroit experiments to
determine if GM-CSF from conventional and nonconventional T cells impacts TB
outcome, as well as the signaling pathway through which this GM-CSF functions. Their
results demonstrate GM-CSF protein levels mirror those of gamma interferon (IFN-�)
during TB progression; T cells are a major source of IFN-� during TB, and T cell-derived
IFN-� promotes TB resistance (23). Similarly, T cell-derived GM-CSF also promotes TB
resistance, as Rothchild et al. demonstrate using both adoptive transfer and radiation
bone marrow chimera approaches. Among GM-CSF-producing T cells in mouse lungs,
nonconventional T cells (i.e., invariant NKT [iNKT] cells and �� T cells) vastly outnumber
conventional T cells (CD4� and CD8� T cells) during the first 2 weeks postinfection;
during later TB stages, conventional T cells are more represented among GM-CSF
producers. GM-CSF-producing T cells are also present in the circulation of human TB
patients (22, 24). To identify the mechanism through which GM-CSF limits M. tubercu-
losis, Rothchild et al. complement their animal studies with a cell culture model of TB
(i.e., M. tuberculosis-infected macrophages). The latter studies demonstrate that GM-CSF
alone can limit M. tuberculosis viability in a peroxisome proliferator-activated receptor
gamma (PPAR�)-dependent manner and that GM-CSF’s effectiveness is higher in the
presence of IFN-�. PPAR� is a nuclear receptor that regulates gene transcription
following macrophage recognition of M. tuberculosis mannose-capped lipoarabinoman-
nan (MAN-LAM) (25). Collectively, the results from the study by Rothchild et al. establish
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the kinetics of T cell GM-CSF production during experimental TB, quantify conventional
and nonconventional T cells’ contribution to GM-CSF levels at each disease stage,
establish the protective nature of GM-CSF-producing T cells, and provide a mechanistic
basis for their protective capacity.

One reason the study by Rothchild et al. (22) is significant is there is now a basis for
determining if expanding the number of GM-CSF-producing T cells (which have been
dubbed “TH5” cells given their dependence on STAT5 activity [26]) is an effective
vaccine strategy. T and B cells are the basis of vaccine-elicited immune memory;
therefore, unlike GM-CSF-producing innate lineages, GM-CSF-producing T cells could
theoretically be induced via vaccination to facilitate TB resistance. Selective expansion
of GM-CSF-producing T cells will depend on identification of factors that induce
differentiation of GM-CSF-producing T cells. These factors likely include novel transcrip-
tion factors (e.g., DEC1 or Bhlhe40) that have been identified in other disease models
(6). Given that the antimicrobial effects of GM-CSF and IFN-� are additive (22), an
important future direction will be to determine if T cells producing both GM-CSF and
IFN-� are more protective than their single-positive counterparts and to identify which
chemokines promote their localization into tubercular tissue. Also, in the same way that
excessive TH17 cell numbers can damage M. tuberculosis-infected lungs (11), it will be
important to determine if an excessive T cell GM-CSF response tips the balance
between protective versus damaging inflammation.

Finally, the study by Rothchild et al. (22) is also important because it has implications
for using GM-CSF as an adjunct TB therapy. There is an urgent need for adjunct
therapies that either shorten TB treatment or improve TB outcome (27). Since the
discovery of GM-CSF has Australian roots (3), it is appropriate that Australian scientists
were also the first to test GM-CSF’s therapeutic capacity in M. tuberculosis-infected
animals (28), with several groups continuing related treatment studies (29–32). Roth-
child et al. (22) demonstrated that GM-CSF production by either radioresistant or
radiosensitive cells promotes TB resistance, which supports ongoing efforts to increase
GM-CSF levels in TB patients— either by administering recombinant GM-CSF (i.e.,
sargramostim) or by enhancing endogenous GM-CSF expression (e.g., via gene thera-
py)—to positively affect TB outcome. Adult TB patients treated with adjunct subcuta-
neous GM-CSF trend toward faster sputum clearance with minimal, transient side
effects (33). Whether pediatric TB patients can be effectively treated with adjunct
GM-CSF has not yet been reported, but adjunctive GM-CSF was recently used to
successfully treat invasive fungal infection in a child (34). In addition to supporting the
use of GM-CSF therapy for TB, the study by Rothchild et al. (22) provides a basis for
exploring whether GM-CSF–IFN-� coadministration is an effective adjunct TB therapy.
Recombinant IFN-� treatment is used to prevent infection in patients with chronic
granulomatous disease (CGD), albeit with negative side effects (flu-like symptoms); its
efficacy as an adjunct TB therapy has also been tested in small clinical trials, with
positive results (27). Given the observation by Rothchild et al. (22) that GM-CSF and
IFN-� additively affect M. tuberculosis growth, it is possible that GM-CSF–IFN-� coad-
ministration would lower the IFN-� minimal effective dose (i.e., maintain IFN-� efficacy
as an adjunct TB therapy) while also attenuating its negative side effects. Although
years may pass before this possibility is formally tested in a clinical trial, and translating
animal model data to human TB therapy has recognized limitations, the results from
the study by Rothchild et al. (22) nonetheless provide a scientific basis for exploring
GM-CSF–IFN-� as a cytokine combination therapy for TB.
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