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Abstract 

Recent advances in single-cell RNA-sequencing (scRNA-seq) technology have facilitated 

studies of cell states and plasticity in tissue maintenance and cancer, including in the prostate. Here 

we present meta-analyses of multiple new and published scRNA-seq datasets to establish reference 

cell type classifications for the normal mouse and human prostate. Our analyses demonstrate 

transcriptomic similarities between epithelial cell states in the normal prostate, in the regressed 

prostate after androgen-deprivation, and in primary prostate tumors. During regression in the 

mouse prostate, all epithelial cells shift their expression profiles towards a proximal periurethral 

(PrU) state, demonstrating an androgen-dependent plasticity that is restored to normal during 

androgen restoration and regeneration. In the human prostate, we find progressive rewiring of 

transcriptional programs across epithelial cell types in benign prostate hyperplasia and treatment-

naïve prostate cancer. Notably, we detect copy number variants predominantly within Luminal 

Acinar cells in prostate tumors, suggesting a bias in their cell type of origin, as well as a larger 

field of transcriptomic alterations in non-tumor cells. Finally, we observe that Luminal Acinar 

tumor cells in treatment-naïve prostate cancer display heterogeneous androgen receptor (AR) 

signaling activity, including a split between high-AR and low-AR profiles with similarity to PrU-

like states. Taken together, our analyses of cellular heterogeneity and plasticity provide important 

translational insights into the origin and treatment response of prostate cancer.  
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Introduction 

Despite decades of investigation, regression and regeneration of the prostate gland as well 

as its oncogenic transformation represent fundamental biological processes that are poorly 

understood. In particular, androgen signaling represents a key regulatory program that maintains 

the identity of prostate tissue, yet the roles for androgen regulation in specific cell types remain 

unclear. In this regard, the advent of scRNA-seq technology has provided new tools to investigate 

the dynamics of prostate cell identity at the molecular level in both homeostasis and disease. 

Although the prostate surrounds the urethra directly underneath the bladder, there are 

substantial anatomic differences between mammalian species. The mouse prostate is comprised of 

four distinct lobes, corresponding to the ventral (VP), lateral (LP), dorsal (DP), and anterior 

prostate (AP) lobes, whereas the human prostate lacks distinct lobular organization but can be 

subdivided into central, transition, and peripheral zones (Abate-Shen and Shen, 2000). These 

prominent anatomic differences have led in part to long-standing questions about the relationship 

of cell types and molecular pathways between the mouse and human prostate.  

Classically, histological and ultrastructural analyses have described three major epithelial 

cell types in the prostate: luminal cells, basal cells, and rare neuroendocrine cells (Crowley and 

Shen, 2022; Toivanen and Shen, 2017), with less well-defined stromal cell types. However, 

recent scRNA-seq analyses have revealed considerable cellular heterogeneity and novel cell types 

in the mouse prostate epithelium (Crowley et al., 2020; Guo et al., 2020; Joseph et al., 2020; 

Karthaus et al., 2020; Mevel et al., 2020), and stroma (Joseph et al., 2021; Kwon et al., 2019). 

Although these studies independently reported multiple cellular populations with similar features, 

there are notable discrepancies in their nomenclature and description (Crowley and Shen, 2022), 

perhaps due to methodological differences in sample collection, preparation, computational 

analyses, and/or annotations. Similar issues also apply for scRNA-seq analyses focused on normal 

human prostate (Crowley et al., 2020; Guo et al., 2020; Henry et al., 2018; Karthaus et al., 2020), 

as well as in the context of pan-tissue resources (Eraslan et al., 2022; Tabula Sapiens et al., 2022). 
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As a consequence, published scRNA-seq analyses of the mouse and human prostate are not readily 

comparable, and the precise relationships between cell populations described in different studies 

are unclear. 

To address these issues, we have performed a meta-analysis of independent scRNA-seq 

datasets from the mouse prostate, aggregating datasets from two different mouse strains published 

by seven different laboratories and using two distinct bioinformatic approaches for their analysis 

to generate a comprehensive reference atlas. We have included new datasets to supplement rare 

cell populations, including a dataset of the proximal prostate (closest to the urethra) to examine 

the periurethral (PrU) cells residing in this region, and report gene signatures for each well-

documented population during homeostasis. We have also analyzed time courses of prostate 

regression and regeneration, which demonstrate that each epithelial cell type displays similar 

transcriptomic shifts towards a PrU-like state following castration and returns to normal when 

androgen is reintroduced, revealing substantial androgen-dependent plasticity.  

Similarly, we have performed a meta-analysis of the normal human prostate (Crowley et 

al., 2020; Guo et al., 2020; Joseph et al., 2020; Tabula Sapiens et al., 2022) to generate a 

consensus atlas of human prostate cell types during homeostasis. Since these studies have used 

different naming schemes and definitions for cell types, we have generated a nomenclature 

comparison and proposed a common descriptive naming scheme. In addition, we have compared 

the transcriptomic profiles of normal human and mouse epithelial cell types, and show that PrU 

cells in the human prostate have transcriptomic profiles consistent with reduced androgen 

sensitivity.  

Finally, we have investigated changes in cell states that occur during progression to 

prostate adenocarcinoma. We have analyzed the dynamic changes in profiles of each cell type in 

homeostasis, hyperplasia (Joseph et al., 2020), and adenocarcinoma (Chen et al., 2021; Ge et al., 

2022; Hirz et al., 2023; Karthaus et al., 2020; Song et al., 2022). Notably, we have found that 

Luminal Acinar (LumAcinar) cells display the greatest transcriptomic changes during progression 
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to adenocarcinoma. Moreover, we found that copy number variants (CNVs) are only present in 

LumAcinar and rare neuroendocrine (NE) tumor cells, suggesting a predominant cell of origin for 

prostate cancer (PCa). However, we find that many LumAcinar cells lacking CNVs as well as 

other epithelial cell types also display extensive transcriptomic alterations, which is suggestive of 

a field effect similar to those observed in other tumor types. Most interestingly, we observe that 

tumor cells found in some treatment-naïve adenocarcinomas display a transcriptomic shift toward 

a PrU-like or LumDuctal state that displays decreased AR signaling activity. Taken together, our 

single-cell analyses demonstrate the cross-species conservation of prostate cell types, and 

underscore the significance of cellular plasticity following androgen deprivation as well as 

oncogenic transformation.  
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Results 

Epithelial populations of the mouse prostate 

To generate a comprehensive aggregated single-cell dataset for the mouse prostate, we 

gathered publicly available scRNA-seq datasets generated from C57BL/6 and FVB mice, and also 

generated new data focusing on the proximal and periurethral regions of the prostate, which have 

been less studied. We analyzed these datasets using two independent computational approaches to 

confirm the reproducibility of our interpretations. In the first approach, we de-noised each dataset 

using Random Matrix Theory (RMT), which improves the ability to separate and detect rare cell 

populations (Aparicio et al., 2020). We then sequentially clustered in each dataset to identify cell 

populations, following the same strategy used previously (Crowley et al., 2020). This analysis of 

24 datasets resulted in an aggregated dataset of 135,831 cells arranged in 30 clusters (Figure 1A; 

Figure 1—figure supplements 1A, 2). As a second approach, we used a standard Seurat pipeline 

to generate an aggregated dataset from 13 datasets of sufficiently high quality, which was 

composed of 30,433 cells in 18 distinct prostate cell clusters (Figure 1–figure supplement 3A).  

These parallel approaches allowed for the identification and comparison of cell populations 

across datasets in a uniform manner, independent of differences in reporting and labeling between 

publications. To define robust cell populations, we required that the population be identified in at 

least three independent datasets and have nearly complete overlap in globally distinguishing gene 

expression. For rare cell populations, we only required that the population be present in at least 

two independent datasets. Of note, the majority of clusters were identical using both the RMT and 

Seurat approaches. The RMT approach handled sparse data differently, yielding a greater number 

of small clusters and providing better discrimination between populations with low cell numbers.  

We found that epithelial populations were remarkably consistent across datasets and 

approaches. Interestingly, no distinct subclusters were formed based on mouse strain background, 

which did not significantly contribute to prostate epithelial heterogeneity. In particular, basal cells 

formed a single contiguous cluster in individual datasets (Figure 1B-F; Figure 1—figure 
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supplement 3B-F), as previously reported (Crowley et al., 2020; Guo et al., 2020; Joseph et al., 

2020; Karthaus et al., 2020; Mevel et al., 2020), and in our aggregated datasets (Figure 1A; Figure 

1—figure supplement 3A). We did not observe evidence of a distinct basal subcluster with 

expression of Zeb1 or other epithelial-mesenchymal transition (EMT) markers (Wang et al., 2020). 

However, in the Seurat pipeline, we observed that a small subset of basal cells adjoins the 

periurethral (PrU) cluster and expresses slightly more proximal and luminal markers (Figure 1—

figure supplement 3A).  

We identified multiple luminal epithelial clusters, which represent distinct cell types that 

are separated by prostate region (Figure 1A-F; Figure 1—figure supplement 3A-F), as previously 

reported for individual datasets (Crowley et al., 2020; Guo et al., 2020; Joseph et al., 2020; 

Karthaus et al., 2020; Mevel et al., 2020). Since the nomenclature for these populations differs 

between laboratories (summarized in (Crowley and Shen, 2022)), we follow a descriptive naming 

system (Crowley et al., 2020) that denotes lobe-specific prostate populations (e.g., LumA for the 

distal anterior lobe) as well as proximal populations (LumP for proximal prostate). Notably, 

although the dorsal and lateral lobes have often been combined as a “dorsolateral lobe”, highly 

distinct dorsal (LumD) and lateral (LumL) populations were always found in each individual 

dataset as well as the aggregated datasets (Figure 1A,B,D-F; Figure 1—figure supplement 3A,B,D-

F). In contrast, the anterior (LumA) and dorsal (LumD) distal luminal populations consistently 

displayed the most transcriptomic overlap (Figure 1A,B,D-F; Figure 1—figure supplement 

3A,B,D-F).  

Unlike distal luminal cells, which differ by lobe, proximal luminal cells (LumP) formed a 

single cluster without lobe-specific identity (Figure 1A-F; Figure 1—figure supplement 3A-F) 

(Crowley et al., 2020; Guo et al., 2020; Joseph et al., 2020; Karthaus et al., 2020; Mevel et al., 

2020). The vast majority of LumP cells are located in the proximal region of the prostate, though 

rare distal cells can be observed (Crowley et al., 2020; Guo et al., 2020; Mevel et al., 2020), and 

functional heterogeneity within the population has been reported (Guo et al., 2020). In this regard, 
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in the Seurat pipeline, we observed that a subset of LumP cells clustered closer to distal luminal 

cells (Figure 1—figure supplement 3A).  

Neuroendocrine (NE) cells represent a rare and historically elusive epithelial population 

that could be detected in both analytical pipelines (Figure 1, Figure 1—figure supplement 3). 

Interestingly, NE cells can co-express distal luminal (LumDist), basal, LumP, or PrU markers, 

suggesting population heterogeneity (Crowley et al., 2020; Guo et al., 2020; Joseph et al., 2020). 

Ionocytes are another rare population that was recently described in the prostate (Karthaus et al., 

2020), and our meta-analysis revealed their presence in additional datasets (Figure 1A,B,D; Figure 

1—figure supplement 1A,B,D) (Crowley et al., 2020; Joseph et al., 2020). Though ionocytes have 

some transcriptional similarities to NE cells, they express Foxi1 and Atp6v1g3 but not specific 

luminal or basal markers (Figure 1—figure supplement 2I,J). Both cell types were observed in 

higher proportions in the proximal dataset, and the PrU population is described in detail below. 

Using our aggregated datasets, we generated reference gene expression signatures that are 

specific for each prostate epithelial cell type (Supplementary file 1). In addition, we examined the 

Gene Set Enrichment Analysis Hallmark signatures and found increased expression of genes 

involved in protein secretion in seminal vesicle and distal luminal cells, and the lowest levels of 

Notch signaling genes in NE cells (Figure 1––figure supplement 4). Finally, we observed rare 

epithelial clusters in individual datasets that may represent cell states. In particular, a subset of 

LumA cells expresses both LumA and Basal markers, and may correspond to “intermediate” cells 

with hybrid luminal and basal features (Figure 1—figure supplement 1B,C).  

Non-epithelial cell populations  

Our scRNA-seq meta-analysis also provided consistent insights into non-epithelial cell 

types in the mouse prostate. The mesenchymal/stromal cells present in these datasets are 

predominantly fibroblasts, and can be divided into several different clusters (Figure 1; Figure 1—

figure supplements 2E,F, 3). The Mesenchyme 1 (Mes1) population is proximally-enriched, lies 
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adjacent to the epithelium, and expresses Srd5a2 as well as many Wnts and other signaling factors, 

whereas Mesenchyme 2 (Mes2) is enriched more distally, is located slightly farther from the 

epithelium, and expresses many chemokines and complement components (Crowley et al., 2020; 

Kwon et al., 2019). We also identified distinct myofibroblast and smooth muscle populations that 

express smooth muscle actin (Acta2), and observed that a subset of myofibroblasts expresses Lgr5 

(Crowley et al., 2020; Karthaus et al., 2020; Kwon et al., 2019; Wei et al., 2022). Although a 

third fibroblast population has been reported (Kwon et al., 2019), it did not appear as a distinct cell 

type in our analyses, but rather as a subset of Mes2 (Figure 1—figure supplement 2E,F). 

Interestingly, several mesenchymal cell types reported to exist in the prostate (e.g., telocytes) were 

not detected in any dataset, suggesting that the prostate stromal compartment is incompletely 

captured in existing scRNA-seq data.  

Hematopoietic lineage populations (such as B and T lymphocytes, dendritic cells, and NK 

cells) were also detected across multiple datasets, with the immune compartment displaying a 

notable myeloid bias. In particular, macrophages divided into distinct subclusters along a 

continuous spectrum, which was most evident in the RMT pipeline. Since profiles for M1 and M2 

macrophages could not be definitively identified, we have named these populations alphabetically 

(Figure 1; Figure 1—figure supplement 2A-D). In addition to the macrophage populations, we 

detected a population with substantial overlap in gene expression to macrophages, which appeared 

to correspond to differentiating monocytes (Figure 1—figure supplement 2A-D).  

Finally, we also observed contaminating seminal vesicle cells across multiple datasets. 

Seminal vesicle epithelial cells could be clustered into a single basal population as well as luminal 

populations with more proximal markers or more distal markers (Figure 1—figure supplement 

2G,H), suggesting potential epithelial heterogeneity within this tissue. 

The periurethral region 
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We define the periurethral (PrU) region as the most proximal extent of each prostate lobe 

nearest the junction with the urethra. PrU cells make up most of the epithelium in this region. 

Because this region is located exclusively within the rhabdosphincter and hence is more difficult 

to dissect, many prostate scRNA-seq samples have not captured the epithelial populations in this 

region. However, our meta-analysis detected PrU epithelial cells in several datasets (Crowley et 

al., 2020; Joseph et al., 2020) as well as many in our proximal prostate scRNA-seq dataset (Figure 

1G; Figure 1—figure supplement 3G). Uniquely, PrU epithelial cells display hybrid luminal and 

basal features, similar to urothelial cells in the adjacent urethra. However, PrU cells can be readily 

distinguished from urethral cells by lineage-tracing with an Nkx3.1-Cre driver (Crowley et al., 

2020). 

To understand the unique morphological features of PrU cells, we imaged the periurethral 

region by electron microscopy and immunofluorescence staining (Figure 2). At the ultrastructural 

level, PrU cells share some features with distal luminal (LumDist) cells, such as organelles 

involved in protein secretion, and many features with LumP cells, including a high density of 

mitochondria (Figure 2A-F). Interestingly, several features of PrU cells also resemble urothelial 

cells of the urethra, including the nuclear orientation of more basally-situated PrU cells, as well as 

the lumen-facing structures of apically-situated cells, which may resemble the rigid, uroplakin-

filled surface of urothelial cells. Thus, PrU cells share ultrastructural features of both the prostate 

and the urethral urothelium, and may represent a physical transition between the two tissues. 

At the level of gene expression, PrU cells uniquely express Lmo1, Anxa8, Dapl1, and Aqp3, 

and have higher Ly6d and Sca-1 expression than LumP cells (Crowley et al., 2020) (Figure 2—

figure supplement 1B). Although Krt5 and Krt14 expression overlaps in the basal layer throughout 

more distal regions of the prostate, Krt14 expression becomes intermittent in the PrU region and 

Krt5 is maintained, whereas basal cells of the urothelium rarely express Krt14 (Figure 2G-L). 

Based on our re-analysis of a scRNA-seq dataset of the proximal prostate and urethra (Joseph et 

al., 2020), we could define two distinct urethral populations, a luminal-intermediate urothelial cell 
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group with transcriptomic similarity with LumP cells, and a basal-intermediate urothelial cell 

group with similarity with PrU cells (Figure 2—figure supplement 1). Notably, at homeostasis, 

PrU and LumP cells can be readily distinguished from urothelial cells by key markers, including 

several uroplakins (Figure 2—figure supplement 1). Thus, PrU cells also represent a transition 

population in terms of molecular features, such as gene expression. 

The transcriptomic response to androgen deprivation and restoration 

The prostate regresses in response to androgen-deprivation and regenerates after androgen 

restoration, which can be repeated through at least 30 cycles in the mouse (Isaacs, 1985; 

Tsujimura et al., 2002). To examine the response of individual cell populations to androgen-

deprivation and restoration, we examined scRNA-seq data of mouse prostate through time courses 

of regression and regeneration (Guo et al., 2020; Karthaus et al., 2020). For this analysis, we 

defined a “cell type score” to represent the average of the most specific and differentially expressed 

genes for each cell type (Methods). In response to castration, every cell type except endothelial 

cells showed a significant decrease in its cell type score (Figure 3A,B). Interestingly, the rates of 

transcriptomic change were different for each population, as distal luminal (LumDist) cells, 

myofibroblasts, and Mes1 cells rapidly lost almost all of their cell-type specific gene expression, 

whereas LumP, basal, smooth muscle, and Mes2 cells only lost approximately half of their cell-

type specific gene expression, with Mes2 cells retaining their gene expression profile the longest 

(Figure 3A,B). 

Interestingly, our analysis indicated that mouse prostate epithelial cells shift toward a PrU-

like expression profile during regression. A detailed examination of gene expression patterns in 

LumA, Basal, and LumP populations showed that each population lost expression of many specific 

genes but retained its distinctive expression of select distal luminal, basal, or proximal luminal 

markers during the regression-regeneration cycle (Figure 3C-E). However, each epithelial 

population gained expression of multiple PrU markers following castration and lost this expression 

after androgen restoration; furthermore, the markers retained by LumP cells during regression were 
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those that are co-expressed by PrU cells. The epithelial populations did not shift towards urethral 

gene expression profiles, as only rare LumP cells expressed any urothelial markers (Figure 3—

figure 3 supplements 1, 2). Notably, while the normal PrU profile includes some genes that are co-

expressed by either LumP or the urethral urothelium, the regressed epithelium expresses many 

PrU-specific genes that are distinct from both. These findings highlight PrU-like transcriptomic 

profiles and provide a broader context for the previously reported shift from LumA towards LumP 

in the anterior prostate following androgen deprivation (Karthaus et al., 2020). 

A transcriptomic shift was also observed in the prostate stroma during regression, as both 

the Mes1 and Mes2 fibroblast populations altered gene expression in response to androgen 

deprivation. Mes1 cells rapidly shifted toward a Mes2 expression profile and lost expression of 

several defining factors including Wnts, whereas Mes2 cells changed gene expression more slowly 

(Figure 3A,B; Figure 3—figure supplements 1, 2). Thus, we conclude that transcriptomic 

reprograming following androgen deprivation is not exclusive to the luminal or distal 

compartments, but instead represents a tissue-wide alteration of cell states.  

Atlas of the human prostate 

Next, we performed a meta-analysis of published scRNA-seq datasets to establish a 

corresponding reference atlas of the normal human prostate (Crowley et al., 2020; Guo et al., 

2020; Henry et al., 2018; Tabula Sapiens et al., 2022) using the criteria described for the RMT 

pipeline (Methods). Despite differences in the relative proportions of cell populations between 

these datasets, the data were remarkably consistent. We found that the human prostate has a single 

Basal epithelial population, two luminal populations corresponding to Luminal Acinar 

(LumAcinar) and Luminal Ductal (LumDuctal), and a Periurethral-like (PrU) population (Figure 

4A-F; Figure 4—figure supplement 1A). The stromal populations were more variable and less 

well-represented across datasets, but corresponded to at least 1 endothelial population and 3 

fibroblast-like populations (Figure 4A; Figure 4—figure supplement 1A,B). Of the 3 fibroblast-

like populations, the first expressed several classic fibroblast markers and did not subdivide readily 
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(we denote these as general fibroblasts), the second corresponded to fibroblasts that express several 

muscle genes (myofibroblasts), and the third to fibroblast-like cells that express many contractile 

muscle genes (fibromyocytes) (Figure 4F) (Travaglini et al., 2020). Based on differential gene 

expression, we generated signatures for each epithelial and mesenchymal population 

(Supplementary file 2). Within the immune compartment, we detected relatively fewer cells with 

variable representation of cell types between patients, so these populations were grouped as either 

myeloid or lymphoid. Interestingly, the zone of the prostate tissue did not have a clear effect on 

the transcriptome (Figure 4—figure supplement 1B,C), as previously reported (Guo et al., 2020). 

Since the nomenclature of human prostate epithelial populations differs between 

publications, we compared our previous nomenclature (Crowley et al., 2020) to an alternative 

system that uses “Club” and “Hillock” lung terminology (Henry et al., 2018), using the Tabula 

Sapiens as a source of normal tissue (Figure 4E; Figure 4—figure supplement 1D,E). Notably, we 

found that most of the “Club” cells corresponded to LumDuctal and PrU cells (Figure 4—figure 

supplement 1B,C), as they expressed common luminal genes and more specific markers like 

RARRES1, but did not consistently express the defining marker SCGB1A1 (Figure 4F). Similarly, 

most “Hillock” cells corresponded to PrU cells (Figure 4—figure supplement 1B,C), as they 

expressed common luminal and basal genes as well as more specific markers such as KRT7, PSCA, 

RARRES1, LYPD3, and AQP3; moreover, expression of the Club- and Hillock-defining markers 

were not specific (Figure 4). The remaining luminal cells corresponded to LumAcinar cells (Figure 

4—figure supplement 1D,E), expressing common luminal cytokeratins as well as more specific 

markers including KLK3, MSMB, FOLH1, and TGM4 (Figure 4F). These transcriptional 

similarities were separately confirmed by examination of single-nuclear RNA-seq data from the 

GTEx project (Eraslan et al., 2022). Based on these analyses, we find that our descriptive 

nomenclature of human prostate epithelial populations correlates with lung terminology but appear 

to align more accurately with distinct cell types in the prostate. 
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To perform an updated cross-species comparison of cell type identities (Crowley et al., 

2020), we calculated the Wasserstein distance between gene expression profiles for each 

population in the aggregated mouse and human datasets in transcriptomic latent space (Methods) 

(Figure 4G). While human and mouse Basal cells have notably different profiles, human Basal and 

PrU populations most closely resemble mouse PrU, human LumDuctal most closely resembles 

mouse LumP, and human LumAcinar most closely resembles mouse LumL followed by LumD 

(Figure 4—figure supplement 1D). To test the robustness of this analysis, we removed individual 

genes from the mouse expression profiles and repeated the comparisons, which revealed that the 

greater similarity of human LumAcinar to LumL was dependent on expression of a handful of 

specific distinguishing genes, such as Msmb in LumL, and that the transcriptomes of the LumDist 

populations had mostly similar marker overlap with human LumAcinar otherwise. Consequently, 

we suggest that human LumAcinar cells, which are distributed throughout different zones of the 

human prostate, correspond more generally to mouse LumDist populations of all lobes. We 

additionally plotted the signatures of each population on the aggregated data of the other species 

to see how the differentiating genes versus the whole transcriptome compare across species; these 

results were summarized as tables (Figure 4H,I). Together, these results suggest a clear correlation 

across species. 

Distinguishing human prostate cancer progression by AR signaling levels 

To examine the alterations of the human prostate due to disease, we combined the normal 

prostate scRNA-seq datasets with those from patients with benign prostate hyperplasia (BPH) 

(Joseph et al., 2020), and treatment-naïve prostate cancer (Chen et al., 2021; Ge et al., 2022; Hirz 

et al., 2023; Karthaus et al., 2020; Song et al., 2022). In these aggregated data of 99,611 cells 

from 66 datasets, we observed heterogeneous gene expression profiles across treatment-naïve 

tumors, which was particularly apparent in LumAcinar cells from prostatectomy samples. 

Therefore, we performed PHATE visualization of the LumAcinar cells from the aggregated data 

to depict local and global data structures (Figure 5A; Figure 5—figure supplement 1A,B). This 
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analysis revealed that LumAcinar cells across early prostate disease stages can be subclustered 

into six primary groups according to disease stage with different gene expression profiles (Figure 

5B). Notably, these groups divide into two distinct arms that correlate with androgen receptor (AR) 

signaling levels and PrU-like gene expression. Pseudotime analysis suggested that the AR-high 

and AR-low arms may both initiate from normal (from healthy prostates) and/or intermediate 

stages (normal-like gene expression from prostatectomy samples); furthermore, they may pass 

through a hyperplastic expression stage before splitting into distinct arms (Figure 5C). 

We performed several analyses to understand this division of gene expression profiles 

during prostate cancer progression. First, we compared the profiles of the four LumAcinar groups 

found in PCa samples to profiles of normal human prostate epithelial populations. We found that 

the cells of the AR-high and ERG-positive groups as well as the intermediate group resembled 

normal LumAcinar cells and retained the expression of many differentiated LumAcinar genes 

(Figure 5B,D). In contrast, LumAcinar cells of the AR-low group shifted from LumAcinar toward 

PrU expression patterns (Figure 5B,D). Additional genes that are lost or gained during the 

transition from normal LumAcinar to AR-high or AR-low tumor cells were also noted (Figure 5—

figure supplement 1D). To confirm this analysis, we mapped a signature of the most differentially 

expressed genes in the AR-low arm, as well as the Hallmark AR response signature and an 

independent AR response signature (Spratt et al., 2019) onto the aggregated LumAcinar 

populations (Figure 5—figure supplement 2). Together, these data indicate that LumAcinar cells 

in primary treatment-naïve prostate cancer can be divided into two primary groups of gene 

expression patterns based on AR signaling levels. AR-high and ERG-positive cells display 

elevated AR signaling relative to normal LumAcinar cells and are associated with classical PCa 

features. In contrast, AR-low cells have dramatically reduced AR signaling levels and shift toward 

PrU and some LumDuctal expression profiles, unlike other transformed groups. 

In addition, our analyses identified two rare and distinct subsets of LumAcinar cells that 

display markers of partial neuroendocrine differentiation (Figure 5—figure supplement 3A). One 
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group expresses genes such as ASCL2 and POU2F3 and is located in the AR-low arm (Figure 5—

figure supplement 3B). The other group expresses genes including ONECUT2 and INSM1, and is 

located predominantly within the ERG-positive subset in the AR-high arm (Figure 5—figure 

supplement 3C). Interestingly, these two groups may represent the early emergence of 

neuroendocrine transdifferentiation from luminal adenocarcinoma cells, corresponding to the 

Class 1 and 2 pathways, respectively, which were recently defined in analyses of a model of 

prostate neuroendocrine differentiation (Chen et al., 2023). 

CNVs are specific for LumAcinar cells 

For robust identification of definitive tumor cells in the human prostate cancer scRNA-seq 

datasets, we used InferCNV to identify copy number variants (CNVs) in the aggregated data 

(Methods). We found that CNVs could only be readily detected and considered to be enriched in 

a subset of LumAcinar cells from patients with PCa, as well as in a small neuroendocrine (NE) 

population (Figure 6A; Figure 5—figure supplement 1B; Figure 6—figure supplements 1, 3, 4, 5, 

6). Importantly, we could confidently assign LumAcinar identity to the CNV-containing tumor 

cells despite the transcriptomic shifts observed, due to the retained similarity of global 

transcriptional properties as well as specific genes among these tumor cells and adjacent benign 

cells (Figure 6—figure supplement 1D).  

This analysis also revealed co-occurring CNV profiles in patients from certain datasets; for 

example, in the Karthaus cohort (Karthaus et al., 2020), we named these tumor acinar populations 

“Tumor 1” (marked by CNVs on chromosomes 3, 9, and 11) and “Tumor 2” (CNVs on 

chromosomes 10, 13, and 16) to distinguish them from abnormal acinar populations that did not 

have CNV enrichment (Figure 6—figure supplement 2A-D). Interestingly, the pattern of two 

groups of common CNVs and expression profiles across the Karthaus cohort were not present in 

other datasets; for example, the Ge cohort (Ge et al., 2022) had some overlap of specific inferred 

CNVs, but not in the overall profiles (Figure 6—figure supplement 5). In comparison, the Chen 

cohort (Chen et al., 2021) displayed a more random distribution of CNVs, with no more than 2 
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CNVs overlapping between any patient tumors (Figure 6A, Figure 6 – supplement 4), perhaps 

consistent with later-stage tumors in these patients. Intriguingly, the patient 1 tumor in the Ge 

cohort contained multiple different clones, one with AR-high and the other with AR-low features, 

indicating that these different clones can coexist (Figure 6—figure supplements 5, 6).  

Finally, one tumor in the Karthaus cohort contained a small neuroendocrine tumor 

population with a CNV profile that partially overlapped with one of the acinar tumor populations 

from the same region of the same tumor (Figure 6A, B; Figure 6—figure supplements 2E, 3). This 

observation suggests a potential common origin for these two transformed cell types.  

Transcriptomic changes in LumAcinar cells in proximity to prostate tumors  

In addition to different CNV profiles, we observed fundamentally distinct features in the 

gene expression profiles of tumors in the Chen, Ge, and Karthaus cohorts. The tumors in the Chen 

cohort retained more classical acinar features, displaying increased expression for many normal 

LumAcinar, hyperplastic LumAcinar, and AR-responsive genes relative to tumors in the Karthaus 

cohort. As a result, the expression profiles of tumors in the Chen cohort overlap with those of 

hyperplastic acinar populations to a greater extent than those in the Karthaus cohort, as shown by 

signature comparisons, heatmap, and dot plot analyses (Figure 6A,B; Figure 5—figure supplement 

2 A,B; Figure 6—figure supplements 3, 4). In contrast with the Chen cohort, the Karthaus tumors 

show significant loss of acinar features across the Tumor 1, Tumor 2, and abnormal acinar 

populations (as well as non-acinar populations); instead, these transformed and abnormal 

LumAcinar cells shifted towards PrU and LumDuctal profiles. Intriguingly, the tumor populations 

in the Karthaus cohort also express lower levels of selected prostate cancer-relevant markers 

relative to the Chen tumors, including POLD4, AMACR, and CAMKK2 (Figure 6B). In 

comparison, the Ge cohort displayed a mixture of transcriptomic features, even within the same 

patient (Figure 5—figure supplement 2A,B; Figure 6—figure supplements 5, 6). These findings 

underscore the extent of transcriptomic variability that is already present within the treatment-

naïve prostate tumors. 
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Notably, these gene expression changes are not limited to definitive tumor regions or 

transformed cell types, as we observed that a large number of acinar cells outside of the definitive 

tumor displayed altered transcriptomes (Figure 6—figure supplement 1A, C-G). Therefore, we 

performed immunofluorescence staining to validate these changes in gene expression adjacent to 

tumor lesions, using MSMB as a representative LumAcinar marker. We observed an apparent shift 

in LumAcinar gene expression close to the tumor, where the basal cell layer was disrupted, as well 

as at a distance from the tumor where the basal cell layer is completely intact (Figure 6C, Figure 

6—figure supplement 2G; Figure 6—source data 1). These findings support the identification of 

“fields” of transcriptionally altered LumAcinar cells that lack CNVs and are not themselves 

transformed. Interestingly, this transcriptomic shift was not restricted to the peripheral zone, and 

transcriptomic shifts were also detected among other epithelial cell types (Figure 6—figure 

supplement 1D-G). 
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Discussion 

Single-cell analysis has revealed profound cellular and anatomical heterogeneity that has 

significant implications for the origin and phenotypes of prostate diseases. Our study has generated 

aggregated reference atlases for the human and mouse prostate, and revealed the remarkable 

consistency of cell types between species in tissue homeostasis as well as the plasticity displayed 

by prostate epithelial cells during regression and cancer.  

Several notable features of the normal mouse prostate have emerged from our analyses. 

First, the remarkable consistency across datasets has allowed us to define 9 mouse prostate 

epithelial cell types and suggest an additional intermediate cell state. Second, lobe identity along 

the dorsal-ventral axis corresponds to the identity of a cognate distal luminal population, whereas 

each lobe is further divided along its proximal-distal axis into three distinct parts, corresponding 

to the periurethral PrU region, the proximal LumP region, and a lobe-specific distal region. Third, 

only luminal cell types are reliably distinct in each region along the proximal-distal axis, and thus 

luminal cells specifically reflect spatial identity. Finally, PrU cells have a hybrid luminal-basal 

identity, share gene expression with both the prostate and the urethra, and have one PrU subset 

displaying greater luminal features and the other more basal, which resembles the organization of 

the urothelium. Consequently, PrU cells have properties of a transition population at the junction 

of the urethra and prostate.  

Our analyses of prostate regression and regeneration highlight the plasticity of both 

epithelial and stromal cell types, as nearly all significantly change gene expression profiles in an 

androgen-dependent manner. In particular, all luminal and basal epithelial populations shift after 

androgen deprivation towards a transcriptomic profile that resembles a PrU-like state. We 

speculate that this PrU-like state may mirror that of epithelial cells within the prostatic urogenital 

sinus and prostate epithelial buds during early organogenesis, when androgen levels are relatively 

low. At these early stages, both luminal and basal progenitors retain bipotent progenitor properties, 

and may display hybrid luminal-basal features (Ousset et al., 2012; Shibata et al., 2020). Notably, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2024. ; https://doi.org/10.1101/2024.01.30.578066doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.578066
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

PrU cells express the highest levels of Sca-1, Ly6d, and other markers that have been associated 

with progenitor-like properties (Crowley et al., 2020). Furthermore, we have observed that 

treatment-naïve primary tumors often contain cells with an AR-low state resembling PrU, 

suggesting that PrU-like states may also recur in castration-resistant prostate cancer, when lineage 

plasticity leads to an increase of tumor cells with hybrid luminal-basal states (Chan et al., 2022).  

Our studies have also addressed the similarity of rodent and human prostate cell 

populations, which has represented a long-standing question. Early histological studies suggested 

that the ventral lobe most closely resembled the human prostate (Price, 1963), whereas later 

analyses claimed that the rat dorsal lobe most closely resembled the human prostate (Aumuller et 

al., 1990; Berquin et al., 2005). Our meta-analysis identifies discrete LumAcinar, LumDuctal, 

Basal, and PrU populations in the human prostate that have transcriptomic similarities to mouse 

LumDist, LumP, Basal, and PrU, respectively. While the mouse LumL cells of the lateral lobe 

have the greatest transcriptomic similarity to human LumAcinar cells, this relationship is driven 

by a small number of genes, and ultimately mouse LumDist cells of all lobes generally resemble 

human secretory LumAcinar cells. However, the similarity of luminal cells from different zones 

of the human prostate to mouse luminal populations remains to be elucidated. Intriguingly, this 

analysis also revealed that the gene expression profiles of basal cells are very different between 

species, which is consistent with their unique histological and ultrastructural features such as 

differing basal:luminal ratios (El-Alfy et al., 2000).   

Our reference atlas for the human prostate has also addressed the nomenclature for human 

epithelial cell types. In particular, we found that the LumDuctal and PrU populations resemble the 

“Club” and “Hillock” populations that were previously named due to their transcriptomic 

similarity to cell populations described in the lung (Henry et al., 2018). Although this is an 

intriguing observation, the prostate LumDuctal/Club and PrU/Hillock populations do not 

uniformly and specifically express the defining markers for the corresponding lung populations 

(SCGB1A1 and KRT13, respectively). Moreover, since these prostate cell types may not have 
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similar functions or localizations as those in the lung, we favor the use of a simpler, descriptive 

nomenclature and find Club- and Hillock-like cells to be subsets within the LumDuctal and PrU 

populations, respectively. 

 Our analysis of human prostate cancer has also led to several interesting findings. Notably, 

we only observed significant CNV alterations in LumAcinar cells and rare NE cells across 

independent cohorts of treatment-naïve prostate cancer (Chen et al., 2021; Ge et al., 2022; Hirz 

et al., 2023; Karthaus et al., 2020; Song et al., 2022), as previously noted for one of these studies 

(Hirz et al., 2023). This finding implies that a major cell type of origin for prostate adenocarcinoma 

is either a normal LumAcinar cell, or a progenitor that generates LumAcinar cells. Furthermore, 

primary NE prostate cancer may arise de novo from NE cells themselves, or from a progenitor that 

can give rise to NE cells, consistent with our identification of a CNV profile shared between acinar 

tumor cells and NE tumor cells in a patient sample. In this regard, our observation of two distinct 

LumAcinar cell states with neuroendocrine features in primary treatment-naïve prostate tumors 

may correspond to early steps in the transdifferentiation of luminal adenocarcinoma cells to 

neuroendocrine fates (Beltran et al., 2016; Chen et al., 2023; Zou et al., 2017). Intriguingly, both 

cell states as well as the NE tumor clone could be detected in the absence of androgen-deprivation 

therapies.  

In addition, we have found that tumor adjacent benign tissue contains cells with 

transcriptomic alterations that are broadly present across cell types and different regional samples. 

Notably, although CNVs were only observed in LumAcinar and NE cells, these transcriptomic 

alterations were found across epithelial cell types and were validated in LumAcinar cells by 

immunofluorescence staining. This widespread transcriptomic reprogramming is highly 

suggestive of field cancerization or “field effect” in which benign tissue contains genetic or 

transcriptomic alterations resembling adjacent tumor tissue. Such field cancerization has been 

documented in many other tumor types (Curtius et al., 2018), and has been suggested in prostate 

cancer (Nonn et al., 2009), but is not well understood. Interestingly, this transcriptomic 
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reprogramming was observed in multiple patient samples with hormonally-intact tumors, which 

suggests that widespread transcriptomic plasticity is not dependent on loss of androgen signaling. 

Our findings demonstrating single-cell heterogeneity of AR signaling in treatment-naïve 

prostate adenocarcinomas provides deeper insights into previous studies that have classified 

primary tumors into subclasses with high and low AR activity (Mahal et al., 2018; Spratt et al., 

2019). In particular, analyses of nearly 20,000 patient tumors analyzed by the Decipher clinical 

assay revealed heterogeneity of AR gene expression and a signature of canonical AR target genes, 

splitting tumors into high-AR and low-AR subsets, with the low-AR tumors displaying worse 

treatment response and increased expression of neuroendocrine markers (Spratt et al., 2019). 

These results are consistent with an independent retrospective study of over 600,000 patients, 

showing poorer outcomes and higher expression of neuroendocrine markers by high-grade tumors 

expressing low levels of prostate-specific antigen (PSA), an AR-regulated gene (Mahal et al., 

2018).  

Our current study indicates that this heterogeneity in AR signaling exists at the single-cell 

level within patient tumors, and that the previous classifications of AR-high and AR-low tumors 

should be further refined to reflect the heterogeneous composition of patient tumors and the 

possibility of tumor evolution altering the balance of AR-high and AR-low states. Given that the 

AR-low population transcriptionally resembles a PrU-like state, these AR-low tumor cells may 

display greater castration-resistance. Notably, in the mouse prostate, a transition to PrU-like 

expression profiles is observed in the context of regression following castration (Figure 3), with 

distal LumA cells displaying the most pronounced shift (Figure 3—figure supplement 2). 

Furthermore, PrU cells have the greatest progenitor potential among the epithelial populations in 

functional assays (Crowley et al., 2020), a feature that may also contribute to castration-resistance. 

Finally, we have identified at least one cell state with neuroendocrine features that is 

associated with the AR-low population. Thus, the existence of AR-low populations within primary 

treatment-naïve prostate tumors raises the possibility that castration-resistance and neuroendocrine 
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differentiation are pre-existing properties that may be selected in part by androgen-deprivation 

therapies. Consequently, the detection of such AR-low tumor cells in treatment-naïve tumors may 

represent an important step in designing precision therapies for primary prostate cancer. 
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Methods 

Key Resources Table: 

Reagent or resource 
type Designation Source or reference Identifiers Additional Information 

Strain (Mus musculus) C57BL/6J (wild 
type) Jackson Laboratory C57BL/6J males Whole prostate isolated for 

imaging, 8-10 weeks old 

Strain (Mus musculus) C57BL/6J (wild 
type) Jackson Laboratory C57BL/6J male 

AP 

Proximal and periurethral 
prostate AP lobe dissected for 
EM, 10 weeks old 

Strain (Mus musculus) C57BL/6N (wild 
type) Taconic C57BL/6NTac 

males 
Prostates digested for scRNA-
seq, 8-10 weeks old 

Reagent (antibody) 
Anti-mouse Ck4 
(Krt4) (mouse 
monoclonal) 

Invitrogen 
MA1-35558, lot 
TB2524522, clone 
6B10 

IF (Mouse anti-human/mouse, 
1:50uL) 

Reagent (antibody) 
Anti-mouse Ck5 
(Krt5) (chicken 
polyclonal) 

Covance/BioLegend 905901, lot 
B271562 

IF (Chicken anti-human/mouse, 
1:1000uL) 

Reagent (antibody) 
Anti-mouse Ck14 
(Krt14) (rabbit 
polyclonal) 

Covance/BioLegend 
905301, Clone 
Poly19053, Lot 
B308016 

IF (Rabbit anti-
human/mouse/rat, 1:500uL) 

Reagent (antibody) 
Anti-Mouse Ck8 
(Krt8/18) (rat 
monoclonal) 

Developmental Studies 
Hybridoma Bank 

Troma-I, AB 
521836 

IF (Rat anti-mouse/human, 
1:100uL) 

Reagent (antibody) 
Anti-Human ChgA 
(Chromogranin A) 
(rabbit polyclonal) 

Abcam ab15160 IF (Rabbit anti-human/mouse, 
1:200uL. High pH antigen ret.) 

Reagent (antibody) Anti-human Msmb 
(rabbit polyclonal) Abclonal A10092, lot 

0204440101 
IF (Rabbit anti-human/mouse, 
1:100 uL) 

Software, algorithm Random Matrix 
Theory (Aparicio et al., 2020) Randomly pipeline http://52.201.223.58:1234/ 

Software, algorithm Python Optimal 
Transport (Flamary et al., 2021) Randomly pipeline https://github.com/rflamary/PO

T 

Software, algorithm Leiden algorithm (Wolf et al., 2018) Randomly pipeline https://scanpy.readthedocs.io/en/
stable 

Software, algorithm BBKNN (Polanski et al., 2020) Randomly pipeline https://github.com/Teichlab/bbk
nn 

Software, algorithm SCANORAMA (Hie et al., 2019)  https://github.com/brianhie/scan
orama 

Software, algorithm PALANTIR (Setty et al., 2019)  https://github.com/dpeerlab/Pala
ntir 

Software, algorithm PHATE (Moon et al., 2019)  https://github.com/Krishnaswam
yLab/PHATE 

Software, algorithm CellRanger v7.0.0 10x Genomics Seurat pipeline https://support.10xgenomics.co
m/single-cell-gene-
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expression/software/overview/w
elcome 

Software, algorithm Seurat v4.3.0 Satija lab Seurat pipeline https://satijalab.org/seurat/ 

Software, algorithm sctransform v0.3.5  Satija lab Seurat pipeline https://github.com/satijalab/sctra
nsform 

Software, algorithm glmGamPoi 
v1.10.2 Huber lab Seurat pipeline https://github.com/const-

ae/glmGamPoi 

Software, algorithm SoupX v1.6.2 Behjati lab Seurat pipeline https://github.com/constantAmat
eur/SoupX 

Software, algorithm DoubletFinder 
v2.0.3  Gartner lab Seurat pipeline https://github.com/chris-

mcginnis-ucsf/DoubletFinder 

Software, algorithm escape v1.8  Zhang lab Seurat pipeline https://github.com/ncborcherdin
g/escape 

Software, algorithm UCell v2.2.0 Carmona lab Seurat pipeline https://github.com/carmonalab/
UCell 

Software, algorithm dittoSeq v1.10 Sirota lab Seurat pipeline https://github.com/dtm2451/ditt
oSeq 

Software, algorithm presto v1.0.0 Raychaudhuri lab Seurat pipeline https://github.com/immunogeno
mics 

Dataset (scRNA-seq) 
(Mus musculus) ML001 (Crowley et al., 2020) GSM4556594 Whole prostate, C57BL/6J 

Dataset (scRNA-seq) 
(Mus musculus) ML002 (Crowley et al., 2020) GSM4556596 Anterior prostate lobe, 

C57BL/6J 

Dataset (scRNA-seq) 
(Mus musculus) ML003 This work GSM7024431 Ventral prostate lobe, C57BL/6J 

Dataset (scRNA-seq) 
(Mus musculus) ML004 (Crowley et al., 2020) GSM4556597 Dorsal prostate lobe, C57BL/6J 

Dataset (scRNA-seq) 
(Mus musculus) ML005 (Crowley et al., 2020) GSM4556599 Lateral prostate lobe, C57BL/6J 

Dataset (scRNA-seq) 
(Mus musculus) ML008 This work GSM7024432 Proximal-enriched whole 

prostate, C57BL/6J 

Dataset (scRNA-seq) 
(Mus musculus) T00_intact_1 (Karthaus et al., 2020) GSM4474186  Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) T00_intact_2 (Karthaus et al., 2020) GSM4474187 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) Ad001 (Joseph et al., 2020) GSM4338122 Whole prostate 

Dataset (scRNA-seq) 
(Mus musculus) DL64 (Mevel et al., 2020) GSM4594201, 

GL64 Whole prostate, P2-Runx1:RFP 

Dataset (scRNA-seq) 
(Mus musculus) AP (Guo et al., 2020) OEX003110 Anterior prostate lobe 

Dataset (scRNA-seq) 
(Mus musculus) VP (Guo et al., 2020) OEX003110 Ventral prostate lobe 

Dataset (scRNA-seq) 
(Mus musculus) DLP (Guo et al., 2020) OEX003110 Dorsal and lateral prostate lobes 
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Dataset (scRNA-seq) 
(Mus musculus) musAd004n5_UrF (Joseph et al., 2020) GSM4338169 Adult mouse urethra 

Dataset (scRNA-seq) 
(Mus musculus) T00_intact_1 (Karthaus et al., 2020) GSM4474186  Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) T00_intact_2 (Karthaus et al., 2020) GSM4474187 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) T01_Cast_Day1_1 (Karthaus et al., 2020) GSM4474191 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) T01_Cast_Day1_1 (Karthaus et al., 2020) GSM4474192 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) T02_Cast_Day7_2 (Karthaus et al., 2020) GSM4474193 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) T02_Cast_Day7_2 (Karthaus et al., 2020) GSM4474194 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T03_Cast_Day14_
1 (Karthaus et al., 2020) GSM4474195 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T03_Cast_Day14_
2 (Karthaus et al., 2020) GSM4474196 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T04_Cast_Day28_
1 (Karthaus et al., 2020) GSM4474197 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T04_Cast_Day28_
2 (Karthaus et al., 2020) GSM4474198 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T05_Regen_Day1
_1 (Karthaus et al., 2020) GSM4474199 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T05_Regen_Day1
_2 (Karthaus et al., 2020) GSM4474200 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T06_Regen_Day2
_1 (Karthaus et al., 2020) GSM4474201 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T06_Regen_Day2
_2 (Karthaus et al., 2020) GSM4474202 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T07_Regen_Day3
_1 (Karthaus et al., 2020) GSM4474203 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T07_Regen_Day3
_2 (Karthaus et al., 2020) GSM4474204 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T08_Regen_Day7
_1 (Karthaus et al., 2020) GSM4474205 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T08_Regen_Day7
_2 (Karthaus et al., 2020) GSM4474206 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T09_Regen_Day1
4_1 (Karthaus et al., 2020) GSM4474207 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T09_Regen_Day1
4_2 (Karthaus et al., 2020) GSM4474208 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T10_Regen_Day2
8_1 (Karthaus et al., 2020) GSM4474209 Anterior prostate lobe, FVB/NJ 

Dataset (scRNA-seq) 
(Mus musculus) 

T10_Regen_Day2
8_2 (Karthaus et al., 2020) GSM4474210 Anterior prostate lobe, FVB/NJ 
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Dataset (scRNA-seq) 
(Homo sapiens) 

MM033_human_c
lean_raw_counts_
matrix 

(Crowley et al., 2020) GSM4556601 Benign prostate tissue from 
prostatectomy 

Dataset (scRNA-seq) 
(Homo sapiens) OEX003113 (Guo et al., 2020) OEP000825 Benign prostate tissue from 

prostatectomy 

Dataset (scRNA-seq) 
(Homo sapiens) D17PrTzF_Via (Henry et al., 2018) GSM3293878 Prostate cell types isolated by 

flow sorting from normal tissue 

Dataset (scRNA-seq) 
(Homo sapiens) Tabula Sapiens (Tabula Sapiens et al., 

2022) 

https://tabula-
sapiens-
portal.ds.czbiohub.
org 

Normal prostate tissues from 
two organ donors 

Dataset (scRNA-seq) 
(Homo sapiens) BPH327PrGF_Via (Joseph et al., 2020) GSM4337069 BPH patient 

Dataset (scRNA-seq) 
(Homo sapiens) BPH340PrGF_Via (Joseph et al., 2020) GSM4337070 BPH patient 

Dataset (scRNA-seq) 
(Homo sapiens) BPH342PrF_Via (Joseph et al., 2020) GSM4337071 BPH patient 

Dataset (scRNA-seq) 
(Homo sapiens) DUOS-000115 (Karthaus et al., 2020) https://duos.broadi

nstitute.org/ Prostate cancer patients 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Chen et al., 2021) GSM4203181 Prostate cancer patients 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Hirz et al., 2023) GSM5494350 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Hirz et al., 2023) GSM5494356 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Hirz et al., 2023) GSM5494360 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Hirz et al., 2023) GSM5494362 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Hirz et al., 2023) GSM5494363 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Hirz et al., 2023) GSM5494365 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Hirz et al., 2023) GSM5494368 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Hirz et al., 2023) GSM5494373 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353214 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353215 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353216 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353217 Prostate cancer patient 
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Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353218 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353219 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353220 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353221 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353222 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353223 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353224 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353225 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353226 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353227 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353228 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353229 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353230 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353231 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353232 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353233 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353234 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353235 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353236 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353237 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353238 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353239 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353240 Prostate cancer patient 
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Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353241 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353242 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353243 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353244 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353245 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353246 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353247 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Song et al., 2022) GSM5353248 Prostate cancer patient 

Dataset (scRNA-seq) 
(Homo sapiens) 

Single-cell RNA-
seq (Ge et al., 2022) HRA000823 Prostate cancer patients 

 

Continuing analyses 

Mouse strains and genotyping, isolation of mouse prostate tissue, dissociation of mouse 

prostate tissue, and prostate single-cell RNA-sequencing was carried out as previously described 

(Crowley et al., 2020). Additionally, immunofluorescent imaging was performed as previously 

described (Crowley et al., 2020). 

Isolation of mouse prostate tissue 

Tissue was isolated from wild type C57BL6/N (C57BL/6NTac, 8-10 week old) mice to 

generate the new datasets described here. For the ventral prostate (VP) lobe dataset (ML003/ 

GSM7024431), the entire extent of the VP lobes was dissected from one male mouse at 8 weeks 

of age, from the distal tips to the proximal end within the rhabdosphincter. For the proximal and 

periurethral prostate dataset (ML008/GSM7024432), a proximally-enriched region was dissected 

from 3 male mice, 10 weeks of age. The rhabdosphincters were removed, and prostate tissue was 

collected from the periurethral junction with the urethra on one end (including minimal 
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surrounding urethra), to 1-2 mm beyond the proximal:distal boundary on the other end (to include 

some distal cells). Additionally, a tiny region of proximal seminal vesicle (SV) was dissected from 

2 mice to include in the sample after removal of secretions. These samples were processed as 

previously described (Crowley et al., 2020). All animal studies were approved by and conducted 

according to standards set by the Columbia University Irving Medical Center (CUIMC) 

Institutional Animal Care and Use Committee (IACUC). 

Electron microscopy 

Prostate tissue was taken from a C57BL/6 mouse at 8 weeks of age. An approximately 2 

mm region of the AP lobe within the rhabdosphincter near the periurethral-proximal boundary was 

micro-dissected. The sample was fixed, processed, sectioned, and imaged as previously described 

(Crowley et al., 2020).  

Mouse prostate analyses 

Two separate pipelines were used in parallel to analyze available mouse prostate datasets: 

Seurat, and randomly. The Seurat pipeline is summarized below. The Randomly pipeline is similar 

to what was previously published (Crowley et al., 2020), with detailed description below. 

Seurat scRNA-seq analysis pipeline 

FASTQ files for all datasets were either already in house or downloaded from the Short 

Read Archive (SRA) or the National Omics Data Encyclopedia (NODE). FASTQ files were then 

aligned and quantified using CellRanger v7.0.0. All scRNA-seq counts were corrected for ambient 

RNA using the SoupX package. The cleaned counts were then converted into Seurat objects using 

the Seurat package. Cells with high mitochondrial DNA content, low gene detection, and/or high 

RNA counts were filtered out to enrich for live single cells. Datasets were normalized, and their 

variances were stabilized with SCTransform. Cell doublets were then computationally detected 
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and filtered out using DoubletFinder. All individual datasets were then merged into a new Seurat 

object, their original counts normalized, and their variance stabilized using SCTransform.  

To produce an integrated dataset, integration anchors were calculated, and the datasets 

were then integrated using the reciprocal principal component analysis (RPCA) reduction in 

Seurat. A new PCA reduction and UMAP reduction were then generated using the integrated 

dataset. For first-pass cluster calling, neighbors and clusters were determined using Seurat at a 

resolution of 0.8 and a Louvain algorithm with multilevel refinement. These clusters were then 

minimally manually adjusted to reflect physical anatomy and marker expression previously 

validated by immunofluorescence staining. Gene set enrichment analysis was performed using the 

escape package with the “UCell” method and Hallmark mouse gene sets provided by MSigDB. 

Visualizations of the gene set enrichment analysis were performed using the dittoSeq package. 

Mouse prostate population signatures were generated in Seurat dataset with the wilcoxauc 

function of the presto package on the aggregated dataset. Signature genes with the most globally 

distinguished expression patterns were determined by applying a filter to collect only genes with 

an AUC ≥ 0.75 and an adjusted p-value ≤ 0.05. This was performed for each distinct cell 

type/cluster, as well as for informative subgroups (such as all distal luminal cells versus proximal 

luminal cells).  

Randomly scRNA-seq analysis pipeline 

Randomly analyses were conducted as previously described (Crowley et al., 2020). 

Sequencing data were aligned and quantified using the Cell Ranger Single-Cell Software Suite 

(v.2.1.1) with either the GRCm38 mouse or the GRCh38 human reference genomes. There are 4 

major steps: 1) filtering the raw sequencing data expression matrix, 2) correcting for batch effects 

using Seurat and processing with Randomly (http://52.201.223.58:1234/) (Aparicio et al., 2020), 

3) clustering data using the Leiden algorithm (https://scanpy.readthedocs.io/en/stable), and 4) 
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dimensional reduction for visualizations such as t-SNE and UMAP plots (included in Randomly 

package). Departures from our previous methods will be summarized below. 

Filtering the expression matrix 

Cell-gene matrices were pre-processed by filtering cells with less than 500 genes detected. 

We also removed cells whose proportion of transcripts derived from mitochondrially encoded 

genes was greater than 10%. The expression matrices were normalized by !"#!(1 + '()), where 

'() is transcripts per million. 

Random Matrix Theory application to denoise scRNAseq 

Random Matrix Theory (RMT) was first introduced by Wishart in 1928, but the 

mathematical foundations of RMT were developed by the theoretical physicist Dyson in the 1960s 

when he was describing heavy atomic nuclei energy levels. A key feature of RMT is universality, 

namely the insensitivity of certain statistical properties to variations of the probability distribution 

used to generate the random matrix. This property provides a unified and universal way to analyze 

single-cell data (Aparicio et al., 2020) and we previously used this method to describe new cell 

populations in prostate (Crowley et al., 2020). 

The RMT strategy relies on the fact that single-cell datasets show a threefold structure: a 

random matrix, a sparsity-induced signal, and a biological signal. Indeed, 95% or more of the 

single-cell expression matrix is compatible with being a random matrix (Aparicio et al., 2020). 

This could be understood as if the dataset is showing cells whose expression is randomly sampled 

from a given distribution in approximately 95% of the matrix inputs. In single-cell datasets, 

sparsity is also a key feature, as it can generate a fake signal that after removal increases the quality 

and performance of clustering in prostate scRNA-seq analyses, and led to identification of the 

novel PrU population (Crowley et al., 2020). From an operative point of view, the presence of 

localized eigenvectors related with sparsity implies the existence of an undesired (fake) signal.  
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Clustering 

Clustering was performed using the Leiden algorithm, as implemented in (Polanski et al., 

2020; Wolf et al., 2018). The determination of the optimal number of clusters relied on the mean 

silhouette score. Specifically, we conducted a series of clustering analyses across various Leiden 

resolutions (the clustering parameter) and calculated the mean silhouette score for each scenario. 

We established a relationship between the mean silhouette score, acting as a function of the Leiden 

resolution, and the respective number of clusters for each case (see Figure 1—figure supplement 

2 in (Crowley et al., 2020)). We selected the absolute maximum of this curve, and took the 

corresponding number of clusters. In certain instances, sub-clustering specific clusters proved 

beneficial. The process involved repeating the described procedure for a designated cluster. Sub-

clustering was particularly valuable for unraveling immune populations or differentiating between 

vas deferens and seminal vesicle populations. The robustness of sub-clustering was verified 

through supervised plotting of known genes associated with the aforementioned populations. 

Batch effect correction and data integration 

In Figures 1A and 4A, the samples corresponding to mice (Figure 1) and humans (Figure 

3) were aggregated, employing the BBKNN method (Polanski et al., 2020) with default 

parameters. In Figure 5A, the data for luminal acinar cells from normal prostate, BPH and PCa 

were integrated using SCANORAMA (Hie et al., 2019), using default parameters. 

Differential expression analysis 

The genes highlighted and presented in the dot-plots were chosen using a strategy based 

on differential expression. These selected genes underwent a t-test (one group vs. all others) with 

a corrected p-value (Benjamini-Hochberg correction) below 0.01. Additionally, as a secondary 

threshold for selection, these genes were required to display expression in a minimum of 60% of 

cells within the target population and in less than 25% of cells for all other populations. 
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Gene signatures for each human epithelial population were generated using a similar 

approach. All of the most differentially expressed genes for each population were selected that had 

corrected p-values of ≤ 0.05, with the secondary requirement of expression in a minimum of 60% 

of the cells within the target population and a maximum of 25% of the cells for other populations. 

Representations and visualizations 

To visualize the single-cell clusters, we performed dimensional reduction to two 

dimensions through t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold 

Approximation and Projection (UMAP) representations. Default parameters were utilized for both 

techniques: a learning rate of 1000, perplexity of 30, and early exaggeration of 12 for t-SNE; for 

UMAP, we set the number of neighbors to 15 and minimum distance to 0.3. Visualizations using 

t-SNE, such as dot-plots or ridge-plots, were carried out using the visualization functions from the 

Randomly public package in (Aparicio et al., 2020), and the visualization functions within 

SCANPY in (Polanski et al., 2020; Wolf et al., 2018).  

In Figure 5A, a two-dimensional visualization was performed using PHATE (Moon et al., 

2019), depicting the luminal acinar cells from 2 normal prostates (Tabula Sapiens et al., 2022), 3 

prostates with BPH (Joseph et al., 2020), and 46 prostates with PCa from Memorial Sloan 

Kettering Cancer Center (Karthaus et al., 2020), University of California, San Francisco (Song et 

al., 2022), Massachusetts General Hospital (Hirz et al., 2023), Peking University Third Hospital 

(Ge et al., 2022), and Shanghai Changhai Hospital (Chen et al., 2021), using default parameters. 

The data were integrated using SCANORAMA (Hie et al., 2019). 

Pseudotime analysis 

To depict the developmental trajectory and cellular fate of the aggregated luminal acinar cells 

depicted in Figure 5A, we employed PALANTIR (Setty et al., 2019) for the detection of single-

cell trajectories in pseudotime.  
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Cell type score 

For the analyses of Figure 3A and B, we constructed a “cell type score” to quantify the changes in 

transcriptomic profile for each cell type, based on the genes that are most specific and differentially 

expressed among the Basal, LumA, LumP, Mes1, Mes2, myofibroblast, smooth muscle and 

vascular endothelial populations. The cell type score was generated by assessing the mean 

expression of a specific set of differentially expressed genes that effectively characterize each 

population. The chosen genes for the cell type score underwent a t-test (one group vs. all others) 

with a corrected p-value (Benjamini-Hochberg correction) less than 0.01. Additionally, these 

genes were required to be expressed in at least 60% of cells within the target population and in 

fewer than 25% of cells for all other populations. To construct the cell type score, the mean 

expression of differentially expressed genes for each population was compared at each timepoint 

during regression. This was followed by division by the mean expression of the genes in the normal 

tissue before castration, and the resulting values were normalized to a scale of 1-100. 

Identification of tumor cells 

We applied InferCNV (Tickle et al., 2019) to the scRNA-seq datasets to discern malignant 

epithelial cells exhibiting genomic instability. Epithelial cells classified as non-malignant based 

on copy number alterations (CNV) via inferCNV may represent authentic benign cells or 

transformed cells lacking identifiable CNVs through scRNA-seq inference. The analytical 

approach involved initial examination of each patient sample independently, employing denoising 

and clustering transcriptomic analyses as detailed above, to identify cell populations akin to those 

in the human consensus atlas. Subsequently, inferCNV was executed for each patient sample 

within the same cohort to pinpoint cell populations with CNVs.  

To serve as control populations in inferCNV, various non-epithelial cell types were 

employed, along with external controls sourced from Tabula Sapiens (Tabula Sapiens et al., 

2022). For the Karthaus cohort (Karthaus et al., 2020), where only epithelial cells were identified, 
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Tabula Sapiens external controls were exclusively utilized as a reference population. In contrast, 

for the remaining cohorts we used mesenchymal populations detected in these samples and 

populations from Tabula Sapiens as controls. 

For each tumor, the CNV matrix obtained from inferCNV was presented in a heatmap, 

displaying previously identified populations with copy number alterations, using the 

standard/default scale, and applying the option of hierarchical clustering to visualize the heatmap. 

Further insights into copy number differences were derived through dimensional reduction of the 

CNV matrix analysis, employing PCA with its first 20 principal components. This dissimilarity 

was illustrated in a UMAP, revealing that clusters lacking clear CNVs, which include internal 

controls such as mesenchymal cells, tended to aggregate together, whereas clusters with distinct 

CNVs formed separate groupings (Figure 6—figure supplements 3, 4, 5, and 6). 

Epithelial populations devoid of CNVs but observed in cancer patients were labeled as 

“abnormal”, based on changes in their transcriptomic profiles (Figure 6—figure supplement 1). 

This categorization applied to LumAcinar cells lacking CNVs as well as non-acinar epithelial 

populations in Figure 6A and Figure 6—figure supplement 1-6. We note that the approach utilized 

for identifying tumor cells via inferCNV has intrinsic limitations, given its basis on inference from 

scRNA-seq data, and that many alterations such as mutations that might be present in tumor cells 

would not be captured by the techniques analyzed in this study. 

Assessing population similarity using optimal transport theory 

We employed Optimal Transport (Kolouri et al., 2017; Villani, 2003) to evaluate the 

transcriptomic similarity between cell types, as done previously (Crowley et al., 2020). The 

Wasserstein-1 distance serves as a metric for phenotypic distance among cell populations, defined 

as a distance function between probability distributions in a measurable metric space. 

Conceptually, the Wasserstein-1 distance aligns with the earth mover's distance, wherein 

probability distributions are envisioned as piles of dirt, and the cost of transforming one pile into 
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another corresponds to the Wasserstein distance. We employed this approach to compare normal 

tissue with each time point during regression and regeneration (Figure 3—figure supplement 2), 

using the aggregated mouse prostate dataset from Figure 1A as a reference.  

A similar methodology was applied to assess the similarity between mouse and human 

prostate epithelial populations (Figure 4—figure supplement 1D). In this case, optimal transport 

and Wasserstein distance were utilized to compare the aggregated mouse dataset with Tabula 

Sapiens. Initially, we identified orthologous gene pairs, separately normalized mouse and human 

datasets using !"#!(1 + '()), filtered out genes with an average expression less than 0.1 for 

human or mouse, and merged the corresponding mouse and human datasets. Employing RMT to 

eliminate sparsity-induced signals, we selected genes with biological signals in the shared 

mouse/human dataset. Subsequently, we calculated the Wasserstein distance in the common space 

between mouse and human, visualizing these distances through a set of nested heatmaps (Figure 

4—figure supplement 1D). Finally, in Figure 5D, Wasserstein distance was utilized to compare 

the phenotype of cancer cell states depicted in Figure 5A with normal tissue cell types. 

Data availability 

Single-cell RNA-sequencing data from this study have been deposited in the Gene 

Expression Omnibus (GEO) under the accession number GSE224452. The publicly available 

datasets used for analyses are listed in the Key Resources Table. 
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Figure Legends 

Figure 1. Reference plots of mouse prostate scRNA-seq data demonstrate extensive cell type 

heterogeneity. Shown are an aggregated composite plot (A), as well as plots of individual datasets 

corresponding to: C57BL/6 whole prostate (Crowley et al., 2020) (B), FVB anterior prostate lobe 

(Karthaus et al., 2020) (C), C57BL/6 whole prostate (Joseph et al., 2020) (D), C57BL/6 whole 

prostate (Guo et al., 2020) (E), C57BL/6 whole prostate (Mevel et al., 2020) (F), and C57BL/6 

proximal prostate (this work; G). Datasets were processed using the Randomly pipeline, which 

revealed 12 epithelial populations, 7 stromal populations, and 11 immune populations found across 

multiple datasets. Non-prostatic populations as well as populations that may correspond to cell 

states are only shown for the individual datasets. 

Figure 1—figure supplement 1. Supporting data for Figure 1A. (A) Alternative visualization 

of the aggregated dataset in Figure 1A to show source dataset for each population. (B,C) 

Additional subclustering suggests an intermediate LumA/Basal cell state in a specific dataset 

(Karthaus et al., 2020), as shown by a UMAP plot (B) and dot plot of marker expression (C).  

Figure 1—figure supplement 2. Additional subclustering of specific cell populations. (A,B) 

The immune compartment from (Karthaus et al., 2020) contains at least 5 distinct myeloid 

populations (A); dot plot shows distinguishing markers (B). (C,D) The immune compartment from 

(Joseph et al., 2020) contains at least 4 distinct myeloid populations (C); dot plot showing 

distinguishing markers (D). (E,F) The stromal compartment from (Karthaus et al., 2020) contains 

4 distinct populations with potential further subdivision of the Mes2 population. (G,H) The non-

prostate cells from (Karthaus et al., 2020) reveal potential proximal/distal subdivision of the 

seminal vesicles. (I,J) The ionocytes from (Karthaus et al., 2020) show potential heterogeneity as 

well as presence in both prostate and seminal vesicle tissue. 
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Figure 1—figure supplement 3. Reference plots of mouse prostate scRNA-seq data generated 

by the Seurat pipeline. Shown are plots arranged as in Figure 1, revealing 9 epithelial populations, 

5 stromal populations, and at least 4 immune populations across multiple datasets. This approach 

reproduced all epithelial and stromal populations; however, it did not subcluster some immune 

populations, so these were labeled as combined populations. B-G) Manuscript sources of the 

datasets that compose the aggregate UMAP, showing intermixing of cells from different mouse 

strains and processing methods within population clusters. 

Figure 1—figure supplement 4. Gene Set Enrichment Analysis of the mouse prostate 

populations using Hallmark Pathways. Pathway analysis of curated gene expression signatures 

shows the normalized expression of gene sets involved in different processes by cell type. Analyses 

for each pathway were performed on aggregated mouse prostate data in the Seurat pipeline.  

Figure 2. Imaging of mouse PrU cells reveals unique and shared features with prostatic and 

urethral cells. (A-C) Scanning electron microscopy (EM) images of PrU cells show a focal region 

of cells where they appear to be multilayered (A), a region that is not multilayered and displays 

unique features (B), and a higher magnification of this region (C). (D-F) The features of distal 

LumA cells (D), proximal LumP and basal cells (E), and LumP cells at higher magnification (F) 

are shown for comparison. Arrows indicate basal nuclear orientation (purple), mitochondrial 

density (red), apical membrane structures (orange), rough endoplasmic reticulum (green), and 

Golgi apparatus (blue). Scale bars in A-F indicate 5 microns. (G-L) Immunofluorescence staining 

show changes in basal and proximal keratin expression. (G) Overview of the periurethral region 

with neighboring urethral and proximal cells at low power. Insets show co-expression of basal 

keratins CK5 (red) and CK14 (green) in distal (H) and proximal (I) basal cells, and consistent CK5 

but reduced CK14 in periurethral (J) and periurethral and urethral (K) basal cells. Proximal keratin 

CK4 (white) is maintained through the proximal and periurethral region (L). No superficial-like 

cells were observed in the periurethral region. Scale bars in G-L indicate 50 microns. 
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Figure 2—figure supplement 1. Meta-analysis of a published dataset for the mouse 

periurethral region. (A) UMAP visualization of dataset from (Joseph et al., 2020) shows distal, 

proximal, periurethral, basal, neuroendocrine, and ionocyte cells, mesenchymal and immune 

populations, and several non-prostate populations such as the urethra. (B) Dot plot of differentially 

expressed markers between LumP (mixed), PrU (mixed), and urethra-only populations. Although 

they are visibly distinct and physically separated, both the prostate PrU and LumP populations 

have gene expression overlap with similar urethral populations. (C-E) Genes with enriched 

expression in the urothelium (C), prostatic PrU (D), and prostatic LumP (E). 

Figure 3. Time course of prostate regression and regeneration reveals androgen-dependent 

plasticity. (A,B) Meta-analyses of single-cell RNA-seq datasets for prostate regression and 

regeneration based on (Karthaus et al., 2020) (A) and for regression based on (Guo et al., 2020) 

(B). “Cell type score” is defined as the percentage of most specific differentially expressed genes 

for each population, averaged over the whole population (Methods). (C-E) Changes in gene 

expression that are enriched in urethral but not PrU cells, such as Areg and Ociad2, in the LumA 

(C), Basal (D), and LumP (E) populations, showing distinguishing genes for each population (left 

column), genes for general compartmental markers, and genes that are enriched for PrU and not 

co-expressed in LumP (right column), where the line indicates the average expression for each 

gene across the population and the bar indicates confidence interval (+/- 95%).  

Figure 3—figure supplement 1. Gene expression changes during prostate regression and 

regeneration. Line plots generated from meta-analysis of a regression-regeneration time course 

based on (Karthaus et al., 2020), where the line indicates average gene expression across the 

population and the bar indicates the CI (+/- 95%). (A-C) Genes that are enriched in urethral and 

not PrU cells, in Basal (A), LumA (B), and LumP (C) cells. LumA and Basal cells generally did 

not gain expression of urothelial markers, with the exception of Upk3a, which is specific to the 

urethra in C57BL/6 mice, whereas LumP cells gained expression of a subset of urothelial markers 
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in addition to the PrU markers. (D,E) Expression of distinguishing markers for the Mes 1 (D) and 

Mes 2 (E) fibroblast populations over the regression and regeneration time course.   

Figure 3—figure supplement 2. Heatmaps of total gene expression profiles for individual cell 

populations during prostate regression and regeneration. Profiles of LumA (A), LumP (B), 

Basal (C), as well as Mes 1 (D) and Mes 2 (E) based on data from (Karthaus et al., 2020) are 

compared to the normal gene expression profiles from the Tabula Sapiens. Measurements are 

given in Wasserstein distance, a metric of effort required to convert one profile into the other; red 

indicates greater similarity, and blue indicates less similarity between populations.  

Figure 4. Reference plots for human prostate scRNA-seq data. Shown are an aggregated 

composite plot (A), as well as the plots of individual datasets (B-E) for samples of benign human 

prostate and adjacent benign prostate. (B) UMAP plot corresponding to primarily LumAcinar cells 

taken from the peripheral zone of 1 patient (Crowley et al., 2020). (C) Plot containing primarily 

Basal and PrU cells from 1 patient with PCa (Guo et al., 2020). (D) Dataset containing primarily 

Basal, PrU, and LumDuctal cells from 1 patient without PCa (Henry et al., 2018). (E) Dataset 

containing mixture of prostate and seminal vesicle, originating from 2 organ donor patients with 

no history of prostate disease (Tabula Sapiens et al., 2022). (F) Dot plot of differentially expressed 

genes for the epithelial and stromal cell populations from the reference aggregated normal human 

prostate. The club cell marker SCGBA1 and hillock cell marker KRT13 are highlighted. (G) 

Heatmap comparing the total gene expression profiles of the cell types in the normal human 

prostate dataset (Tabula Sapiens et al., 2022) to those of the aggregated normal mouse prostate, 

using Wasserstein distance as a metric. Darker color indicates greater transcriptomic similarity. 

(H, I) Tables listing the most similar mouse and human epithelial populations based on gene 

expression, generated by overlaying the mouse cell type signatures onto the human populations 

(H) and vice versa (I). 
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Figure 4—figure supplement 1. Additional analysis of the normal human prostate atlas. (A) 

Alternative visualization of the aggregated dataset in Figure 4A showing the source datasets. (B,C) 

UMAP of the data from (Guo et al., 2020) using our descriptive nomenclature as shown in Figure 

4C (B), and the zonal identity of each cell (C). Although each large epithelial population contains 

cells from each zone, proportionally fewer of the LumAcinar cells were from the peripheral zone. 

(D, E) Human prostate nomenclature shown for the Tabula Sapiens normal prostate dataset 

(Tabula Sapiens et al., 2022), comparing the proposed nomenclature (D) to the nomenclature from 

(Henry et al., 2018) (E).  

Figure 5. Meta-analysis of scRNA-seq datasets from human prostate adenocarcinoma 

reveals disease evolution of Luminal Acinar cells. (A) PHATE plot of LumAcinar populations 

from 2 normal prostates (Tabula Sapiens et al., 2022), 3 prostates with BPH (Joseph et al., 2020), 

and 46 prostates with PCa from Memorial Sloan Kettering Cancer Center (Karthaus et al., 2020), 

University of California, San Francisco (Song et al., 2022), Massachusetts General Hospital (Hirz 

et al., 2023), Peking University Third Hospital (Ge et al., 2022), and Shanghai Changhai Hospital 

(Chen et al., 2021). Clustering of the aggregated data reveals that LumAcinar cells show the 

greatest variation, as LumAcinar cells from the normal and BPH prostates occupy 1 cluster each 

(Normal and Hyperplasia, respectively), while cells in the PCa samples subdivide into 4 major 

subpopulations (Intermediate, ERG-positive, AR-high, and AR-low). The PHATE plot splits these 

PCa subpopulations along two major branches. (B) Dot plot of cell type, PCa, subpopulation-

defining, and other relevant genes indicates that AR signaling is a major differentiating factor 

across the two branches. (C) Pseudotime analysis of the cells in A suggests a Normal or 

Intermediate origin for both branches in PCa. This also suggests progression through Hyperplasia 

to PCa in some cells. (D) Heatmap comparing the total gene expression profiles of the LumAcinar 

subpopulations in A to all normal epithelial populations. The AR-low branch has a notable shift 

towards PrU and LumDuctal marker expression. Wasserstein distance is used as a metric, and 

darker red indicates greater transcriptomic similarity.  
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Figure 5—figure supplement 1. Gene expression profiles and cohort details for LumAcinar 

cells from normal and transformed prostates. (A-C) PHATE plots of LumAcinar cells 

corresponding to Figure 5A. (A) Data contribution from the 6 cohorts (Chen et al., 2021; Ge et 

al., 2022; Hirz et al., 2023; Joseph et al., 2020; Karthaus et al., 2020; Song et al., 2022; Tabula 

Sapiens et al., 2022). (B) Disease state, subgroup, and tumor samples for the patients within each 

cohort. CNV analyses are detailed in the Methods and in Figure 6. (C) Average expression of the 

gene sets associated with normal and transformed LumAcinar cell states. Transformed and 

abnormal cells exhibit heterogeneous profiles that divide into those with high androgen receptor 

signaling (high-AR), ERG-positive, or low AR signaling. (D) Dot plot displaying selected genes 

with differential expression between normal and transformed LumAcinar cells, divided into those 

lost (left) or gained (right) during transformation. 

Figure 5—figure supplement 2. Gene expression profiles for AR-high and AR-low 

transformed LumAcinar cells. (A) Dot plot of the 90 most differently expressed genes in 

LumAcinar cells of the AR-low subgroup, corresponding to the AR-low signature. (B) Dot plot of 

the Hallmark Androgen Response Signature genes. (C) PHATE plot of the mean expression of the 

Hallmark Androgen Response gene set. (D) Dot plot of the AR-high signature from (Spratt et al., 

2019). Both signatures depict a broad negative correlation with the AR-low signature genes in (A). 

Figure 5—figure supplement 3. Markers of neuroendocrine differentiation in tumor and 

abnormal acinar cells. (A) PHATE plot highlighting the location of two distinct subsets of cells 

expressing neuroendocrine markers were identified through manual curation based on collective 

expression of genes associated with neuroendocrine differentiation within the entire group. The 

ASCL2-positive subset predominantly overlaps with the AR-low population, and the ONECUT2-

positive subset aligns with the AR-high and ERG-positive populations. (B, C) Dot plots depicting 

selected genes that characterize the ASCL2-positive (B) and ONECUT2-positive (C) subsets. 
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Figure 6. Variable CNV and gene expression patterns in LumAcinar cells from human 

prostate adenocarcinomas. (A) UMAP plot of the epithelial populations from 2 healthy prostates 

(Tabula Sapiens et al., 2022), 3 prostates with BPH (Joseph et al., 2020), and 17 prostates with 

treatment-naive PCa from Memorial Sloan Kettering Cancer Center (Karthaus et al., 2020) and 

Shanghai Changhai Hospital (Chen et al., 2021). (B) Dot plot of key prostate cell type and cancer 

markers. (C) Immunofluorescence staining of varying levels of MSMB (green) in LumAcinar cells 

across multiple prostate zones. MSMB is expressed at high levels in normal LumAcinar cells, but 

is reduced or absent in abnormal acinar areas where Basal cells expressing CK5 (red) are intact 

(yellow arrows), and in tumor-containing areas where Basal cells are absent (white arrow). 

Figure 6—figure supplement 1. Meta-analysis of human prostate scRNA-seq data across 

disease states reveals altered gene expression profiles and a LumAcinar bias of CNVs. (A,B) 

UMAP plots of RNA expression (A) and CNV profiles (B) of epithelial populations in 2 normal 

prostates (Tabula Sapiens et al., 2022), 3 patients with BPH (Joseph et al., 2020), and 4 patients 

with treatment-naive PCa (Karthaus et al., 2020). To identify tumor populations, inferCNV was 

used to detect CNVs across the disease samples, normalized against all epithelial populations of 

the normal prostate from Tabula Sapiens (Tabula Sapiens et al., 2022), and clusters with CNVs 

were labeled as definitive tumors. (C) UMAP plot of CNV profiles for each acinar cluster shows 

that hyperplastic cells have similar CNV profiles to abnormal acinar cells while definitive tumor 

cells are distinct. (D-G) Dot plots of differentially expressed genes, for the LumAcinar and NE 

populations (D), LumDuctal (E), PrU (F), and Basal cells (G) across these datasets. For 

LumAcinar and NE cells in which tumor populations were detected, populations are listed in order 

of CNV enrichment. Population names match the names used in the source datasets, including 

spatial regions for each sample from (Karthaus et al., 2020); additional classification was added 

in (D) to distinguish tumor acinar cells from abnormal acinar cells.  
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Figure 6—figure supplement 2. Marker expression for the LumAcinar and NE populations 

across disease states. (A-F) Dot plots of specific markers for BPH acinar cells (A), abnormal 

acinar cells (B), Tumor CNV group 1 acinar cells (C), Tumor CNV group 2 acinar cells (D), 

Neuroendocrine tumor cells (E), and both BPH and Tumor 1 acinar cells (F). Note that BPH acinar 

cells uniquely express genes for many heat shock proteins, and that abnormal acinar cells generally 

express the same genes as definitive tumor acinar cells, even when these cells were isolated from 

different regions of the prostate. (G) Immunofluorescence analysis of cell type and LumAcinar 

markers. (Left) MSMB is expressed in CK8/18-positive LumAcinar cells in the peripheral zone, 

and is absent where Basal cells are still intact, independent of proximity to NE cells. (Middle right) 

Reduced MSMB expression in LumAcinar cells can also be observed in the transition zone, which 

is less frequently a site of prostate cancer. (Right) Rare example of MSMB expression in a 

CK5+MSMB+ intermediate-like cell. 

Figure 6—figure supplement 3. InferCNV methodology to distinguish tumor and abnormal 

cell populations. (A-D) UMAP plots of gene expression (A,C) and CNVs (B,D) in prostate cell 

populations from patient HP99 (Karthaus et al., 2020). (A,B) show general cell populations and 

the Tabula Sapiens Luminal Ductal cells (used for CNV normalization), and (C, D) show specific 

populations detected by the RMT pipeline. (E) Heatmap of detected CNVs across sections 15 and 

17 taken from HP99, as well as the control LumDuctal cells (Tabula Sapiens et al., 2022) used 

for normalization. A population was determined to be a definitive tumor population if over 25% 

of the cells within the population were enriched for the same CNV over a control. HP99 has a 

Tumor 1 group population (CNVs on chromosomes 3, 9 & 11) and additional patient-specific 

CNVs, a Tumor 2 group population (CNVs on chromosomes 10, 13 & 16) and additional CNVs, 

and a NE Tumor population (CNVs on chromosomes 10 & 16). This de novo NE tumor population 

shares several CNVs with an acinar Tumor 2 population from the same region. Definitive tumor 

populations for HP99 were all detected in section 17, though transcriptomic changes could be 
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detected throughout populations in both sections 15 and 17, which have unique cell type 

compositions. 

Figure 6—figure supplement 4. InferCNV analysis of prostate tumors from the Chen cohort. 

(A,B) UMAP plots of gene expression (A) and CNVs (B) for the cell populations from (Chen et 

al., 2021) and a normalization control from (Tabula Sapiens et al., 2022). (C) Heatmap of CNV 

enrichment across pooled patient samples and control populations. Data were pooled and CNVs 

were normalized as a group to both internal mesenchymal populations and external normal 

LumAcinar cells from Tabula Sapiens. All definitive tumor populations are LumAcinar, and this 

cohort has completely variable CNV patterns between patients. Of note, one patient (SC173) in 

the Chen cohort may have undergone androgen-deprivation therapy, but it is unclear whether this 

sample was sequenced and/or included in our analysis.  

Figure 6—figure supplement 5. InferCNV analysis of prostate tumors from the Ge cohort. 

(A,B) UMAP plots of gene expression (A) and CNVs (B) for the cell populations from 12 PCa 

patients (Ge et al., 2022) and a normalization control from (Tabula Sapiens et al., 2022). (C) 

Heatmap of CNV enrichment across the patient samples. Data were pooled and CNVs were 

normalized as a group to multiple internal mesenchymal and epithelial populations as well as 

external normal LumAcinar cells from Tabula Sapiens. This cohort has CNV patterns that are 

observed in several patients; further, many patients had multiple tumor populations with distinct 

sets of CNVs, which we have labeled numerically. All definitive tumor populations are 

LumAcinar.  

Figure 6—figure supplement 6. Full InferCNV analysis of the patient 1 tumor from the Ge 

cohort. (A) UMAP plots of gene expression for cell populations from patient 1 (Ge et al., 2022), 

showing two distinct tumor populations and multiple abnormal epithelial cell types. (B) Dot plot 
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of the normal LumAcinar cells (Tabula), and Patient 1 LumAcinar Tumor 1 and Tumor 2 cells, 

showing that Patient 1 had both AR-high and AR-low tumor cells concurrently.  
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Figure 6—source data 1. Human prostate samples and corresponding clinical data. 
 

Sample 
ID 

Diagnosis Gleason 
Grade 

Gleason Score 
(highest) 

Stage Age Race Ethnicity Treatments PSA at 
sample 
acquisition 

Time of PSA 
(months before 
acquisition) 

PSA peak 

LHu1 Adenocarcinoma GG3 4+3 and 3+3 pT2N0 65 White Non-Hispanic None 9 6 9 

LHu2 Adenocarcinoma GG1 3+3 pT2N0 57 Combination 
Not Described 

Hispanic None 7 2 7 

LHu3 Adenocarcinoma 
(metastatic) 

GG5 4+5 ypT3N1 67 White Non-Hispanic Degarelix 36 0 94 

LHu4 Adenocarcinoma GG2 3+4 pT3N0 64 Combination 
Not Described 

Hispanic None 27 2 27 

LHu5 Adenocarcinoma GG4 4+4 pT2N0 69 Combination 
Not Described 

Non-Hispanic Tamsulosin 12 19 12 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2024. ; https://doi.org/10.1101/2024.01.30.578066doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.578066
http://creativecommons.org/licenses/by-nc-nd/4.0/

