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Abstract
Background: Recently, it has become possible to collect next-generation DNA
sequencing data sets that are composed of multiple samples from multiple biological
units where each of these samples may be from a single cell or bulk tissue. Yet, there
does not yet exist a tool for simulating DNA sequencing data from such a nested
sampling arrangement with single-cell and bulk samples so that developers of analysis
methods can assess accuracy and precision.

Results: We have developed a tool that simulates DNA sequencing data from
hierarchically grouped (correlated) samples where each sample is designated bulk or
single-cell. Our tool uses a simple configuration file to define the experimental
arrangement and can be integrated into software pipelines for testing of variant callers
or other genomic tools.

Conclusions: The DNA sequencing data generated by our simulator is representative
of real data and integrates seamlessly with standard downstream analysis tools.

Keywords: Single-cell DNA sequencing, simulator, DNA sequencing, Hierarchical
Dirichlet

Background
Simulation software is important for developing and improving statistical methodology
for next-generation sequencing data [1]. There are currently 149 such genetic data simu-
lators indexed by the National Cancer Institute [2], and four of these simulators produce
DNA sequencing reads with single-nucleotide variants: GemSIM [3], NEAT [4], SInC [5],
and CuReSim [6]. Huang et al. [7] proposed one of the first next-generation sequenc-
ing (NGS) simulators, but this simulator only generates bulk sequencing data. Gourlé
et. al. [8] developed a simulator specifically for metagenomic sequencing experiments. In
the past year, two novel simulators for NGS DNA sequencing data have been proposed.
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One tool incorporates human population genetic information to simulate structural vari-
ation and different types of nucleotide variants [9]. Another tool aims to simulate data
from single-cells incorporating allelic dropout, but not false positives or different types of
nucleotide variants [10].
The clonal structure of a given sample is difficult to assess from single-cell data alone.

Single-cell data suffers from issues like uneven sequencing and partial genome recov-
ery and it is often too expensive to sequence enough single cells to gain a representative
sample of the population. On the other hand, bulk samples effectively average over
the fine-grain structure present at single-cell level. Developing methods to resolve the
clonal populations and their genotypes and determine the relationships between those
populations may be advanced by drawing inferences jointly from single-cell and bulk data.
A significant portion of the total sequencing data in existence is generated from experi-

mental studies with model organisms or from repeated measurements of patient samples.
These studies have two aspects that are not addressed by existing NGS simulators. First,
these datasets contain sequencing data from both bulk tissue or culture as well as single
cells. Second, a hierarchical study design induces correlation between samples [11, 12].
For example, an individual cancer patient is sampled from a population, then a tumor is
sampled from the individual, and finally, a biopsy is sampled from the tumor. None of the
aforementioned simulation tools address these aspects of real datasets.
To address this need, we have developed a software package, single-cell NGS simu-

lator (SCSIM), to allow researchers to simulate bulk and single-cell NGS data from a
hierarchical grouped sampling design.

Implementation
Figure 1 shows a high level workflow diagram of the simulator. The command-line
software takes a single haploid reference sequence in FASTA format and a YAML con-
figuration file, and produces FASTQ reads that can be used for downstream alignment
and variant calling tasks. The source code can be downloaded from the github repository

Fig. 1 SCSIM simulation workflow. Inputs (shown in rounded boxes with green text) are the reference
sequence and experiment design. Outputs (shown in cornered boxes with orange text) are the bulk and
single cell FASTQ read files. Intermediate objects are shown in purple with no boxes
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https://github.com/flahertylab/scsim and the implementation can be run from a docker
container defined in the repository.
The nested sampling structure is implemented using a truncated hierarchical Dirichlet

mixture model. This model is related to the hierarchical Dirichlet process mixture model
in that if the number of components K → ∞ and the genotypes are drawn i.i.d. from a
base measure [13] then the model converges to a hierarchical Dirichlet process mixture
model. In sequencing data sets, it is more common to have a fixed number of geno-
types, so the Dirichlet mixture model is implemented for this simulator. Errors induced
by whole-genome amplification (WGA) of single-cells are simulated using the method
described by Zafar et. al. [14]. Then, given the set of diploid reference sequences, NGS
reads are simulated using dwgsim [15]. Finally, bulk NGS data is simulated by sampling
without replacement from the set of reads from pure samples in proportions defined by
the hierarchical Dirichlet model.

Mutated synthetic prototype genome simulation

Mutated diploid sequences are generated from a single reference (FASTA). Given K—the
number of mutated synthetic prototype genomes and n—the number of possible SNV
locations, one-third of SNVs are shared across all mutated sequences, one-third of SNVs
are shared across one-half of themutated sequences, and the remaining one-third of SNVs
are shared across a proportion of sequences chosen from a uniform distribution [14]. The
set of mutated synthetic prototype genomes is represented by H where hk is a vector
of length n containing the mutation location and type information for the kth mutant
genome. The locations of the SNVs are equally spaced across the region of interest in
the reference FASTA. Given the status of each SNV location in each mutated sequence,
the type of diploid mutation (heterozygous or homozygous) and base substitutions are
generated according to a transition probability matrix derived from Pattnaik et. al. (SiNC)
[5]. The transition probabilities, and SNV locations can be set by the user, and have default
values derived from literature.

Hierarchical sampling model

We define a biological unit as the top-level sampling unit. For example, in cancer
sequencing a biological unit may be an individual patient, or, in experimental model
organism sequencing, a biological unit may be a biological replicate. A sample is the
bottom-level sampling unit. In cancer sequencing, a sample may be a single-cell or bulk
biopsy, or, in experimental model organism sequencing, a sample may be a technical
replicate.
A hierarchical Dirichlet model is used to simulate correlation between samples. First,

the population distribution over mutated synthetic prototype genomes, G′′, is sampled
from a Dirichlet distribution with parameter α. Then, the distribution over mutated
sequences for biological unit i, G′i, is sampled from a Dirichlet distribution with param-
eter βiG′′ where βi controls the concentration of the distribution of the biological unit
around the population distribution. Finally, the distribution over mutated sequences for
sample j in biological unit i, G′ij, is distributed as a Dirichlet with parameter γijG′i where
γij controls the concentration of the sample around the biological unit distribution. The
distributions,G′′,G′i, andG′ij are allK−dimensional vectors because there areK mutant
synthetic genomes in H.

https://github.com/flahertylab/scsim
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The hierarchical Dirichlet generative model is summarized as

G′′ ∼ Dirichlet(α), (1a)

G′
i ∼ Dirichlet(βiG′′), for i = 1, . . . ,N (1b)

Gij ∼ Dirichlet(γijG′
i), for i = 1, . . . ,N , j = 1, . . . ,Ni (1c)

Hk ∼ SiNC(θ), for k = 1, . . . ,K (1d)

where SiNC is the model for generating variant locations and types which depends on
parameter θ [5]. Figure 2 shows a graphical model representation of Model 1 where X ij
are the reads generated according to the bulk and single-cell sampling models.
To ground the sampling model in a real data example, we consider a cancer sequenc-

ing dataset. First, a distribution over cancer genotypes is sampled from G′′. Then, for
each individual patient (biological unit), i, a distribution over cancer genotypes, G′i, is
sampled. This distribution represents the fraction of the total tumor burden in the indi-
vidual from each clonal genotype. Finally, for each biopsy (sample), j, a distribution over
cancer genotypes, Gij, is sampled. This distribution represents the fraction of the bulk or
single-cell biopsy from each clonal genotype. Clearly, the distribution over genotypes for
single-cell biopsy should be concentrated at a single genotype; whereas the distribution
for a bulk biopsy may be concentrated at a single genotype or more diffuse if the biopsy

Fig. 2 Graphical model representation of the SCSIM hierarchical model. To generate data from the model,
first, sample a distribution over K mutant genomes,G′′ . Sample a distribution for each biological unit
(individual),G′

i for i = 1, . . . ,N. Sample a distribution for each sample (biopsy),G′
ij for j = 1, . . . ,Ni . Sample

variant locations and types that define the mutant synthetic genomesH =[h1, . . . ,hK ]. Finally, sample the
bulk and single-cell reads for each sample X ij



Giguere et al. BMC Bioinformatics          (2020) 21:215 Page 5 of 10

is heterogeneous. The hierarchical Dirichlet model allows our simulator to generate data
from exactly this experimental sampling structure.

Sampling models

The observed reads for sample (i, j), X ij, are generated differently for bulk and single-cell
samples. The total number of samples for biological unit i is the summation of the single-
cell samples and the bulk samples, Ni = Nsc

i +Nbu
i . We describe the single-cell and bulk

read sampling models next.

Single-cell data sampling model For each of the Nsc
i single-cell samples, a whole-

genome amplification (WGA) model is applied to the corresponding mutated sequence.
Allelic dropout (ADO) and false positive (FP) mutations from the WGA process were
generated as done previously [14]. The ADO rate was set to 20% and the FP rate was set
to 3.2 × 10−5 [16]. The ADO and FP rates are calculated in reference to the entire length
of the reference sequence. Finally, sequencing reads and corresponding FASTQ files were
generated with dwgsim for each of the Nsc single-cell samples.

Bulk data sampling model First dwgsim was used to generate FASTQ reads for each
of the K mutated synthetic prototype genomes. Then for each of the Nbu

i bulk samples,
the FASTQ reads from each of the mutated synthetic prototype genomes were mixed
according to the sample distribution Gij.

Results
Here we test whether the output generated by SCSIM are consistent with the output
generated by real experiments. We say that the output is consistent when the FASTQ
read files generated by SCSIM produce variant calls that are comparable to variant calls
produced from FASTQ files from real experiments.

Simulation protocol In order to assess the consistency of reads simulated by SCSIM, we
used the results from two variant callers: BCFtools [17] and Monovar [14]. We measure
the accuracy of the variant callers in terms of (1) true positive rate or recall and (2) positive
predictive value or precision.
We extracted a 1 million base pair region from hg38 starting at chr20:100000. We gen-

erated three diploid synthetic prototype genomes each with 100 potential SNVs spaced
every 8080 base pairs. The zygosity of the SNVs was sampled according to the method
described in the “Implementation” section. The prior parameter for the Dirichlet distri-
bution across mutated synthetic prototype genomes, α was set to (0.1, 0.3, 0.6). Figure 3
shows the distribution of true SNVs across genomic position for each mutated synthetic
prototype genome. The concentration parameter for the Dirichlet distribution at the bio-
logical unit level βi, was set to 0.1 for all i. The concentration parameter for the Dirichlet
distribution for samples within biological units, γij was set to 0.1 for all (i, j). Two samples
were generated for each unit with unit 1 and 4 having one bulk and one single-cell sam-
ple, unit 2 having two single-cell samples, and unit 3 having 2 bulk samples. The mean
coverage level was set to 24×. For bulk samples, we drew 1,000,000 reads according to
the distribution over prototypes that was realized by the hierarchical Dirichlet model. A
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Fig. 3 Simulated true SNV locations across mutated synthetic prototype genomes

total of 90 SNVs introduced across 4 single-cell and 4 bulk samples from the described
simulation protocol are the true SNVs and served as the gold standard set.

Visualization of simulated reads The simulated FASTQ reads of single-cell and bulk
samples across 4 biological units were mapped to the human genome assembly (hg38)
using the Burrows-Wheeler alignment tool [18]. Figure 4 shows IGV visualizations of
three genomic locations with varying proportions of samples with true SNVs.
We compared the quality metrics of SNVs detected from simulated reads to the four

different human acute lymphoblastic leukemia patients that were previously published
[19]. That study collected both single-cells and bulk samples of six patients to better
understand genomic heterogeneity. A 1-Mbp region of chromosome 20 of the human
genome (hg38) was chosen as the reference genome. Both simulated reads and the patient
data were aligned and variants were called on 1-Mbp region. The Ti/Tv (transition to
transversion) ratio of both simulated and patient data fall within the range of 1.2–1.6. We
also compared substitutions percentages across the simulated reads and the patient data.
While most substitutions of the patient and simulated data fall within the comparable
range, less than expected T>A substitutions in our patient data and C>A in the simulated
data. This can be attributed to the nature of single-cell data which suffers from issues like
uneven sequencing, coverage, and partial genome recovery.
Mapped reads were used to call variants byMonovar [14] and BCFtools [17], two popu-

lar SNV callers used for the single-cell data. Monovar and BCFtools were run with default
parameter values on the BAM files of all single-cell and bulk data.
BCFtools and Monovar called 154 and 156 SNVs respectively across 4 single-cell and 4

bulk simulated samples. Our analysis showed that out of 90 true SNVs, 88 were called by
both BCFtools and Monovar resulting in a recall of 97.77% for both methods. BCFtools
had a precision of 57.1% and Monovar had a precision of 56.4%. Previous research has
shown that variant calls from BCFtools andMonovar tend to have high sensitivity and low
specificity (see [14] Supplementary Figure 3 and [20]). Low specificity may be acceptable
if the variant calls are heavily filtered to reduce the final false positive rate. Figure 5 shows
a Venn diagram of the concordance between true SNVs and called SNVs from BCFtools
and Monovar.
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a

b

c

Fig. 4 IGV visualization of reads generated by SCSIM for 4 single-cell and 4 bulk samples at a a genomic
location where each sample has a true SNV, b at a genomic location where half of the samples have a true
SNV, and c at a genomic location where a random fraction of the samples have a true SNV
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Fig. 5 Venn diagram showing concordance of called and true variants

It is common to post-filter the variant calls to increase specificity at the expense of
decreased sensitivity. We applied the following standard post-filtration steps to the vari-
ant calls from Monovar and BCFtools: (1) minimum mapping quality of reads (> 1), (2)
minimum base quality (> 30), (3) minimum number of variant-supporting reads (> 5),
(4) remove strand biasedness. As expected, after filtration, recall decreased, and precision
increased. The F1-score, a weighted measure of precision and recall, for both Monovar
and BCFtools is 0.779. In comparison, the F1-score before filtration is 0.715 for Monovar
and 0.725 for BCFtools. These F1-scores are in-line with previously reported analysis on
real and simulated data which is consistent with the total number of reads across all sam-
ples indicating that our simulation tool provides FASTQ reads consistent with real data
[14, 21].

Conclusions
Given the increase in the amount of single-cell next-generation DNA sequencing data
there is a need for reproducible bioinformatics methods for performing statistical infer-
ence on that data. To our knowledge there are no methods for jointly simulating bulk
and single-cell sequencing data, yet these simulation tools are needed to test and val-
idate inference methods. SCSIM jointly simulates bulk and single-cell next-generation
sequencing data and generates correlated samples using a hierarchical truncated Dirich-
let distribution for sampling the distribution over mutant sequences for bulk samples.
Our implementation, using a docker container, allows it to be inserted in a bioinformatics
pipeline without modifying existing dependencies.

Availability and requirements
Project name: single-cell DNA sequencing data simulator
Project home page: https://github.com/flahertylab/scsim
Operating systems(s): Any
Programming language: Python
Other requirements: docker
License: MIT
Any restrictions to use by non-academics: none

https://github.com/flahertylab/scsim
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