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A B S T R A C T

The next generation of wireless communication networks will rely heavily on machine learning and deep
learning. In comparison to traditional ground-based systems, the development of various communication-based
applications is projected to increase coverage and spectrum efficiency. Machine learning and deep learning can
be used to optimize solutions in a variety of applications, including antennas. The latter have grown popular for
obtaining effective solutions due to high computational processing, clean data, and large data storage capability.
In this research, machine learning and deep learning for various antenna design applications have been discussed
in detail. The general concept of machine learning and deep learning is introduced. However, the main focus is on
various antenna applications, such as millimeter wave, body-centric, terahertz, satellite, unmanned aerial vehicle,
global positioning system, and textiles. The feasibility of antenna applications with respect to conventional
methods, acceleration of the antenna design process, reduced number of simulations, and better computational
feasibility features are highlighted. Overall, machine learning and deep learning provide satisfactory results for
antenna design.
1. Introduction

Machines are developing the abilities of humans, such as problem
solving, decision-making, and learning. ML automates analytical model
building through data analysis. On the other hand, DL is an ML skill
that helps machines mimic human behavior by processing data.
Through using ML and DL, many applications can gain an advantage,
and the antenna is one of them. As the complexity of antennas in-
creases, ML and DL are used to optimize the performance of the an-
tennas. ML and DL have been used to create multiple trained models
for antenna design applications, allowing antenna design applications
to become more efficient and rapid. With the help of high computing
power and software engineering capabilities, ML and DL for different
antenna designs have become the most important fields of recent
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research. Millimeter wave, body-centric, terahertz, satellite, UAV, GPS,
and textile are just a few of the antenna design topics. Body-centric is
human to human communication with the assistance of wearable an-
tennas. Terahertz frequencies are used for spectroscopy in different
areas. Satellites are objects that orbit around the earth and
send communication signals. UAVs are aircraft with ground-based
control, and textile technology focuses on textile fabric made from
textile fibers.

Without the utilization of machine learning and deep learning algo-
rithms, antenna design is hard to design and maintain. There is a problem
with acceleration in antenna design without ML and DL. Maintaining low
errors and high productivity is difficult without ML and DL. Without the
support of DL andML reduction in simulation, preserving work feasibility
and calculation of antenna behavior is a very hard job to do.
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In this section, the authors introduce all the applications for various
antenna design fields by using ML and DL. Firstly, in [1], To increase the
mean data rate of a multi-antenna wireless system and implement hybrid
beam forming in mmWave frequency bands, a Reinforcement Learning
(RL) algorithm was used to speed up the selection process of spatial
beams. RL is an area of ML used to maximize the notion of growing
reward. In [7], taking maximum advantage of ML with previous beam
training information using locations, nearest vehicles, and sizes of the
receiver were used to learn the optimal beam pair index. For research
into mmWave or massive MIMO antennas, a dataset is needed, so in [18],
the dataset for mmWave or massive MIMO antennas has been described.
In [19], authors describe a hybrid beam forming (BF) design for the
downlink of multi-user mmWave systems, in which the number of AEs
used at the base station to achieve BF benefits per user is proportional to
the user's distance. A machine learning framework for learning
environment-aware beam-forming codebooks for large-scale MIMO sys-
tems was developed. In [25], authors provide an overview of millimeter
wave channel concepts as well as an explanation of how map-based
channels are classified. In [34], a system for future body-centric
communication was developed using off-the-shelf non-wearable de-
vices such as Wi-Fi routers, network interfaces, and an omnidirectional
antenna. In [25], authors provide an overview of millimeter wave
channel models as well as an indication of how map-based channels are
classified. A THz DL computing Tomography (CT) system is presented in
section [37], capable of visualizing hidden objects using a variety of
material systems. A ML model Support Vector Machine (SVM) was used
to design and optimize reflect arrayantennas. To simplify feasible beam
hopping (BH) in multibeam satellite systems, a Dl-based path was
developed in [47]. A full description of the ML design, the design of
collectors and relays, and a brief description of the choice of UAV types
have been given in section [73]. A machine learning-based hybrid
framework for propagating both aleatory and epistemic uncertainties in
antenna design is proposed in [78]. In [93], a neural network (NN)
dependent delay locked loop (DLL) is established in the GPS receiver for
multipath reduction. An overview of the applications of machine learning
and deep learning to the development of various antenna designs has
been presented in this paper. The used methods and their outcomes have
been presented. A comprehensive review of different antenna designs,
the general concept of machine learning and deep learning, and ways of
electromagnetic computation are also studied in this paper.

The paper is structured in the following way-Section 1 introduces the
topic, Section 2 discusses machine learning and deep learning for various
antenna design applications, Section 3 discusses analysis, and Section 4
concludes the presented study.

2. Machine learning and deep learning for various antenna
design application

Machine learning and deep learning are showing wonderful results in
various applications such as UAV, THz, textile, GPS, and Satellite. Its
excellent capabilities for learning representations in real environments
make it more suitable for applications. By using machine learning, the
UAV is used for many civilian purposes and many other purposes. On the
other hand, body-centric communication systems also use machine
learning and deep learning to increase their capabilities. A review of
Table 1. Beam selection alignment probability and achieved throughput ratio
with different classifiers [7].

PA (%) RT (%)

Naïve-Bayes 59.31 91.14

AdaBoost 45.80 75.05

RBF-SVM 55.89 89.32

Gradient Boosting 69.05 96.49

Random forest 85.14 98.32
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recent reported uses and applications of machine learning and deep
learning for various antennas has been performed in this paper.

2.1. Machine learning and deep learning for millimeter wave for antenna
design applications

The 30–300 GHz frequency band or the 1 cm to 1 mm wavelength
range is the millimeter wave (mmWave) region of the electromagnetic
spectrum. For the design of data transmission and sensing systems, the
use of this millimeter wave frequency has many advantages. Machine
learning and deep learning for millimeter wave applications have been
described for different applications. mmWave technology is used in
various types of fields. It has huge unlicensed bandwidth and has great
flexibility and capability. Many types of wireless applications use
mmWave antennas, and by using machine learning algorithms with the
system, it becomes more flexible. Machine learning tools are finding
useful applications in both mm-wave and massive MIMO antenna design.
The large antenna array designed for mm-wave systems is required for
hybrid beam-forming.

2.1.1. Wireless systems hybrid beamforming algorithm using reinforcement
learning

To maximize the mean data rate of a multi-antenna wireless system,
hybrid beamforming was implemented in millimeter wave (mmWave)
frequency bands. A Reinforcement Learning (RL) algorithm is also
demonstrated to speed up the selection of spatial beams.

There are two parts to a hybrid beamforming architecture. One is the
analog beamformer, and the other is the digital pre-coder. The pre-coding
weights for the various frequency portions of the baseband signal and
flexibility happen when the digital pre-coder connects parallel streams of
input symbols to RF transmission chains. The analog beamformer con-
nects the transmit antennas with the output of the RF blocks. For wide-
band RF signals, because of its analog characteristics, the beamformer
applies the same phase shift to each antenna [2]. The hybrid beam-
forming scheme can be implemented in many ways and in [3, 4], and [5],
those ways are reported. A hybrid beamforming algorithm, which is the
focus of this section, can maximize the earnable sum data rate of a
mmWave Massive MIMO system. The weights of the analog beamformer
can only belong to a set of uniformly quantized phase shift values for this
purpose, and it is done jointly by the digital pre-coder and the analog
beamformer to be used in transmission [6]. It is assumed that for a
particular analog beam former, a lower dimensional wireless channel can
be gained. Using Singular Value Decomposition (SVD), a
lower-dimensional wireless channel's capacity to transmit digital
pre-coder can be derived. By using a brute force search for the given
channel state, the analog beamformer can be gained. It is possible to
achieve this by moderating the number of transmitted antennas and
phase shift values of each antenna. Reinforcement Learning (RL)was used
to speed up the selection of the analog beamformer in this section. RLis
mentioned based on a Machine Learning (ML) algorithm. The ML algo-
rithm has earned experience from previous work and, using that expe-
rience, this RL algorithm assesses the execution of the candidate solution
in every case of the process. Brute force search and the mentioned RL
algorithm show similar sum data rates. But for the RL algorithm, fewer
iterations are required.

2.1.2. Millimeter wave vehicular beam training with situational awareness
In this study, a feasible machine learning framework with situational

realization has been proposed. This study also proposed vehicle locations
and sizes in the domain to estimate the most favorable beam pair indexes.
Three different ways have been applied to with appropriate feature
ordering in polar coordinates, in Cartesian coordinates, and in grids of
occupancy. Based on the situational features to forecast the best beam
pair index, various classification methods have been compared. The
remarkable development of prediction accuracy has occurred because of
model use of GPS inaccuracies, the frequency of vehicle location
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reporting location errors in realistic implementations, and connected
vehicles' various penetration rates.

A wide evaluation has been introduced for the newly introduced
beam selection path. In this study, importance was given to the alignment
probability and achieved throughput matrices. The beam selection per-
formance has been compared with various machine learning models. The
prediction performance at various levels is then evaluated by varying the
number of vehicles in the feature. Noisy features of some realistic issues
are also discussed in the study. With no GPS error, a straightforward
feature set is encoded in Cartesian coordinates. Table 1 shows the clas-
sifiers utilized in this investigation. From the table, it can be seen that the
random forest got an 85.14% alignment probability, which is a better
result than other classifiers. With the alignment probability, the earned
throughput does not scale, and though Naïve Bayes or gradient boosting
have less alignment probability than random forest, there is no main
difference between their throughput. This happens because several
beams of power are almost the same. The model is good enough to find
good beams, though the accuracy is not 100%.

It is advantageous to sacrifice some optimality in order to achieve low
overheads, and this is especially important for millimeter-wave vehicular
systems. In the study, system performance is compared and evaluated at
various levels of situational awareness.

2.1.3. Beam alignment in millimeter wave massive multiple input multiple
output (MIMO)

To earn data transmission and directional beam alignment (BA), a
massive multiple input multiple output (MIMO) antenna array can be
utilized to reduce the high path loss of the mmWave signal. Being packed
into small form factors can be done by large antenna arrays because the
millimeter wavelength is short enough. Multiple users with multiple
beams are all served by the base station (BS) in an mmWave multi-user
multi-stream system. Beam training based on a theoretical code-book is
generally utilized to align beams for various users. For instance, in [9],
authors suggested a method named "adaptive compress sensing (ACS). In
[10], there is a method that works faster than the ACS method, and that
method is the hierarchical search (HS) method. In [11], to combine the
benefits of the ACS and the HS, a multi-path decomposition and recovery
(MDR) method has been proposed. Using a hierarchical codebook to
generate beam training is not unimportant for aligning beams for a large
number of users. Using a hierarchical codebook to generate beam
training is not unimportant for aligning beams for a large number of
users. For all users, the BS must position beams sequentially. Time is
wasted when, for every layer of the hierarchical codebook, the optimal
code word index is fed back. Sensors or radars might provide the BS with
information about the user's location. In mmWave systems, those sensors
and radars are used for beam alignment, and they will have greater
hardware overhead. An alignment process with partial beams leveraging
AMPBML has been proposed in this paper for the multi-user mmWave
massive MIMO system. The NN for the AMPBML is trained offline using
simulated environments according to the mmWave channel model. The
NN is then launched live to estimate the beam distribution vector using
incomplete beams. The beams for all users are then aligned at the same
time using the obtained indices of the dominating entries of the beam
distribution vector. In this study, beam alignment for all users at the same
time has been done by a hierarchical codebook and remarkably saves the
entire training time. In this study, there is no need for previous knowl-
edge of user location details to train NN, and remarkably, the system
overhead will be reduced. The AMPBML shows better results than
existing methods in terms of spectral efficiency and total training time
slots. The better results of AMPBML also include hierarchical search,
multi-path recovery, multi-path decomposition, and adaptive com-
pressed sensing.
3

2.1.4. Millimeter wave massive multiple input multiple output for hybrid
precoding

For future communications, millimeter wave massive multiple input
multiple output (MIMO) is a remarkable solution. In mmWave MIMO, to
minimize the complexity of the hardware and energy spending related to
components of mixed signal, digital pre-coding and hybrid analog are
important methods. Present hybrid pre-coding schemes have high
computational complexity and cannot use spatial information. In the
proposed solution, every specification of the precoders to get the most
effective use of a deep neural network, the decoder is treated as a map-
ping relation (DNN). In this study, hybrid precoding and a deep learning
architecture that supports mmWave massive MIMO were applied. The
importance of this study is that it can enhance the spectrum feasibility of
mmWave massive MIMO and also minimize the bit error ratio (BER). For
those above results, the required computational complexity becomes less,
and hybrid pre-coding gives better performance than conventional
schemes.

In [12], a framework for the mmWave MIMO system is being created
by combining deep learning (DL) with hybrid pre-coding. Here, this
model is viewed as a deep network and a black box (DNN) as an auto
coder. In the black box, activation functions create corresponding map-
ping relations by optimizing multiple layers of the network. Through the
training stage, DNN is able to lower the computational time. This hap-
pens when, through the training stage, DNN captures structural details of
the hybrid pre-coding scheme.

The performance of the DNN-based mmWave massive MIMO method
has been explored in [12] using numerical analysis. The DNN framework
is a process and is built by Keras. Observing the models in [13], the
channel model was created without loss of generality. The BER perfor-
mance is compared with many standard methods. The BER was also
analyzed using different batch sizes of the training dataset and learning
rates. In the simulation, the network has been trained for about 45,000
iterations. To verify better results, the fully digital SVD-based pre-coding
method, completely GMD-based pre-coding method, SVD-based hybrid
pre-coding scheme, and the traditional schemes have failed to maintain
performance against the deep learning-based method. The BER result is
compared with several batch sizes so that the mmWave massive MIMO
scheme's performance can be analyzed. Then, with various learning rates,
the DNN based mmWave massive MIMO scheme analyzes the BER versus
SVR. The spectrum feasibility result has been given in [12] for the
completely digital GMD based pre-coding scheme, the SNR of the
DNN-based hybrid pre-coding scheme, and the spatially sparse
pre-coding method. As the SNR is enhanced in all the schemes, the
spectrum feasibility also gets better. Exploration of the relationship be-
tween the iterations of the deep learning-based strategy analyzed with
the analog pre-coding scheme and MSE. The above investigation was
carried out to determine the stability and performance of the suggested
hybrid pre-coding approach.

2.1.5. Hybrid precoding for wideband millimeter wave massive MIMO
systems

Millimeter wave (mmWave) massive multiple input multiple output
(MIMO) has been proposed as a viable solution for future Internet of
Things (IoT) data rates. Hybrid precoding is a viable result for mmWave
large MIMO systems without a notable sum rate loss to reduce the
number of radio frequency (RF) chains. The current study is evaluated
using an unrealistic narrowband mmWave channel basedon using hybrid
precoding or, on the other hand, the high resolution (HR) phase shifters
(PSs) with huge power waste on hybrid precoding. For practical fre-
quency selective wideband mmWave large multiple input multiple
output systems, an energy efficient hybrid pre-coding approach based on
one bit PSs has been investigated. A cross-entropy optimization (CEO)



Figure 1. Map-based model with its characteristics [25].
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based hybrid pre-coding strategy to optimize the earnable sum rate of the
reviewed system has also been published as the CEO algorithm for ma-
chine learning breakthroughs. In the case of HR-PSs in general, the
suggested CEO-dependent hybrid precoding plot from the event with
one-bit PSs has been enlarged to show that the solution may be used in
various plots. In terms of energy feasibility and near-optimal sum rate,
the presented systems outperform some convocational methods.

Themillimeter wave has unexplored and good spectrum resources. To
fulfill the high data rate, the necessity for IoTmmWave is considered.
Extreme propagation loss because of short wavelengths happens when
high frequency mmWave signals are at 30–300 GHz, and this problem
can be solved by high antenna array gain. The short wavelengths of
mmWave communications are assigned high antenna array gain [15]. A
new problem could arise from the use of a massive antenna array. In a
sub-6 GHz MIMO system, for example, a dedicated radio frequency (RF)
chain is typically required for each antenna to implement fully digital
pre-coding [16]. For RF chains in mmWave, totally digital pre-coding is
not sustainable [17]. A solution can be obtained from analog pre-coding
with a RF chain, but it does not support multiplexing. Hybrid pre-coding
has been suggested for multiplexing and sum rate of total digital pre-
coding. A portable-sized digital pre-coder is enough to work out spatial
multiplexing because of the low rank of mmWave channels. This hybrid
pre-coding can get an almost optimal sum rate.

In this study, proposed solutions were compared with various solu-
tions. In [14], energy feasibility and in terms of sum rate, CEO-based
hybrid pre-coding has been explained. ACEO-based hybrid precoding
with one bit PSs has been proposed for routinely selectable wideband
mmWave large multiple input, multiple output systems. According to the
results of the investigation, one bit PSs based hybrid pre-coding uses less
power. Utilizing one-bit-PSs to experience array gain loss is done, and the
result remains limited and constant. This answer proposes a CEO-based
low complexity method to address the sum rate maximization problem.
For the sum rate maximization problem, one bit PSs dependent hybrid
precoding was built under practical control.

2.1.6. A generic deep learning dataset for massive MIMO antenna
The researchers presented the deep MIMO dataset, which is essential

for any research. They provide a dataset of mmwaves or a massive MIMO
antenna design dataset. This is actually the generic dataset for mm wave-
antennas. They also give detailed information about the structure of the
generic dataset of the massive MIMO antenna. They provide some in-
formation about the channel's dataset design.
4

2.1.7. Multi-user hybrid beam-forming relyingon learning-aided link-
adaptation

This study is based on a hybrid beam-forming architecture for multi-
user mmWave systems' downlink, in which the number of antenna ele-
ments used at the base station to achieve beam-forming gains per user is
proportional to the user's distance. The design is based on simulations
that show that the proposed learning assisted in adapting the target bit
error rate, resulting in a much higher data rate than traditional link-
adaptation based on signal to noise ratio threshold values.

2.1.8. Learning beam codebooks with neural networks: towards
environment-aware

In [20], a machine learning framework designed to learn
environment-aware beam-forming codebooks for large-scale MIMO sys-
tems is presented. It is based on a neural network model that employs
hardware limitations as well as learning beam codebooks from the
environment and the user's location. This learning platform aids in the
reduction of codebook size and can result in significant improvements
over traditional codebook design.

In [20], the authors provide a hardware constraint on large-scale
MIMO systems as well as an artificial neural network-based framework
for learning environment-aware beam-forming codebooks. For the sur-
roundings and user location, machine learning patterns have been used.
Designing beam-forming codebooks has become an important research
topic in academia and industry [21]. However, in large scale MIMO
systems, the hardware limitations of mmWave/THz and the use of
analog-only or hybrid transceiver architectures imposed new constraints
on codebook design problems. This motivated the development of new
beam-forming codebooks [22, 23], and [24]. In the system model, a
millimeter wave BS (base station) equipped with M antennas can
communicate with a single antenna user. In the machine learning
approach, supervised learning is used. For the solution, there have been
two communication scenarios. The first scenario is the Line of Sight
(LOS) scenario, which is an outdoor scenario when users meeta LOS
connection with BS. The other one is the None Line of Sight (NLOS)
scenario, which is an indoor scenario and will happen when a user does
not get a LOS connection.

In the end, the learned codebook in the LOS scenario with 64 beams
hits about 90% of its upper bound, and with 128 beams, it reaches about
95% of its upper bound. It is very important in areas where analog phase
shifters' resolution is limited. From the NLOS results, we can see that with
64 beams, learned codebooks reach about 90% of their upper bound.



Figure 2. Performance evolution of map-based channels [25].
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These results assure the similarity of the framework to learning beam
codebooks that can optimize the size and beam patterns.

2.1.9. Map-based millimeter-wave channel models
In [25], an overview of millimeter wave channel models is offered, as

well as the classification of map-based channels. Map-based models
should be used in different modeling applications in the millimeter
wave-range and they can be used as a supplement to SW test beds as they
can support HW measurement.

Mobile broadband, mMTC (massive machine-type communication),
and ultra-reliable low-latency communication are the technologies
preferred for mobile broadband. Researchers have been debating po-
tential frequency bands to serve such applications [26]. Map-based
mm-wave design channel models that can utilize RT (Ray-tracing) have
gathered momentum. It can also model irregular cell layouts and support
new application link types such as D2D (device to device), V2X (vehicle
to everything), and A2X (application to everything) (air to everything).
RT is used to produce multipath channel parameters in map-based
Figure 3. Three modules (signal transformation, information extr
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channel models (also known as site-specific propagation models) [27,
28]. Figure 1, shows the map-based model with its characteristics. It
represents the area and scenario of selected applications and adopted
technologies.

The database used contains a large number of snapshots for training
sets used in machine learning methodologies [7, 28]. In the dataset, a
DNN (deep neural network) based beam selection algorithm is used,
which is a machine learning algorithm. Figure 2 shows that there is an
overall performance evolution of map-based proposed models. In part 2,
they used DNN-based beam selection algorithms and simulations of pa-
rameters. In the proposed algorithm, CDFs (Cumulative Distribution
Functions) are used, and GSCM (Geometry-based Stochastic Channel
Model) is used in the training sets and database.

Different models show different results. The beam selection algorithm
has low accuracy, which is 12.8% using CDF, and the DNN-based beam
algorithm using PDP (Power Day Profile) accuracy is 45.2%, which is
more flexible. So, it will be very efficient.
action, and the neural network)of the proposed model [102].



Figure 4. Three real test sceneries of the model [2]. (a) First Scenario, (b) Second Scenario, (c) Third Scenario.

Table 2. Accuracy result of three scenarios [102].

Types/accuracy Knock Left swipe Right swipe Rotate

Scene 1 48.33% 38.33% 51.67% 98.00%

Scene 2 35.00% 5.00% 23.33% 96.67%

Scene 3 38.33% 3.33% 30.00% 98.33%
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2.1.10. Network analysis using millimeter-wave narrow-band energy traces
In [29], a model for evaluating a machine learning framework for

performing protocol layer analysis and diagnosing physical layer faults in
60 GHz networks was provided. The major goal is to provide a machine
learning framework that can appropriately classify transmitted networks
and aid in the detection of network faults. The main focus of this type was
on millimeter wave antennas and large bandwidth.

In essence, this model is a machine learning framework that uses
template matching and EDHMM to infer protocol layer information
automatically. The major aimwas to determine the structural elements of
the unpredictable behavior by analyzing the variability of channel traces.
The challenge was solved using a directional antenna and a machine
learning system.

2.1.11. Long-range gesture recognition using millimeter wave radar
A long-range gesture recognition model based on mm-wave radar is

provided in this research. It is flexible in human-computer interaction
(HCI).

Contactless gesture detection is a common way to achieve natural
human-computer interaction (HCI) for a better experience, hence “in air”
gestures will increasingly replace external physical gesture devices [30,
31]. Wireless communication has become the main focus of HCI. From all
the other waves (sonic wave, WIFI signal, ultrasound wave), mm wave is
the most suitable choice for this model. This design is based on a machine
learning algorithm called CNN (Convolutional Neural Network). The first
step is to create a long-range gesture detection model by extracting
spatial-temporal aspects of the hand's reflection spots. After that, CNN is
utilized to learn the attributes of the points for recognition. It can then
recognize gestures automatically by using a millimeter wave radar sensor
to implement the model. Figure 3 shows three modules of the proposed
model. In Figure 3, they are signal transformation, information extrac-
tion, and the neural network. In hardware, Section MM Wave radar is
used. In radar, the 3TX and 4RX antennas are used in sensing.

To verify the model, three real scenarios are used. For the test, some
furniture was used in it. In the first scene, two participants stood 2.4 m
away from the radar and were required to repeat each of four gestures for
30 min in order to collect 60 gesture data points. The first scenario is
shown in Figure 4 (a). Then, in the 2nd and 3rd scenes, the two
6

participants were at the same distance and just the placement of the chair
and table was changed, as shown in Figure 4 (b-c).

From the output, the accuracy result was as in Table 2. The results of
rotation scenarios are almost the same and have a high degree of
accuracy.

The first three gestures' accuracy decreased greatly, and it is
concluded that the external environment affects the model the most.

2.1.12. Large intelligent surfaces aided mm-wave massive MIMO systems by
deep channel learning

In this paper, a deep learning strategy for channel estimation in large
intelligent surfaces (LIS) with massive MIMO is proposed (multiple input
multiple output). A twin convolutional neural network (CNN) architec-
ture is created and maintained with the received pilot signals to estimate
both direct and cascaded channels, and each user gets access to the CNN
to estimate their own channel if there is a multi-user situation.With state-
of-the-art deep learning based techniques, the performance of the pro-
posed deep learning system is compared, and it shows better results. To
obtain a vigorous estimation execution, several channel realizations are
used to train the deep network. A separate set of test data is generated.
Training data in the prediction stage, is used to confirm the performance.
The existing DL based techniques [104, 105] are outperformed by the
proposed deep learning framework and achieve reasonable channel
evaluation accuracy. As a result, the suggested DL approach has
demonstrated robust channel estimate performance, which is tolerant of
changes in user positions of up to four degrees.

2.1.13. Deep learning based antenna selection for channel extrapolation in
FDD massive MIMO

Massive multiple-input multiple-output (MIMO) systems include a
large number of antennas, which makes obtaining accurate channel state
information difficult, especially in the frequency division duplex mode.
As demand for data transfer rates rises, massive multiple-input multiple-
output (MIMO) systems have emerged as a crucial technology for the
next generation of wireless communication [107]. Massive MIMO pre-
sents a significant issue for the base station (BS) in obtaining correct
channel state information (CSI), particularly in frequency division duplex
(FDD) mode [108]. For the FDD massive MIMO system, Yu et al. [109]
designed an efficient downlink channel reconstruction approach. The
distance between antenna elements in a massive MIMO system can be
narrow enough that the channels have a significant correlation. The
fundamental advantage of DL-based channel extrapolation is that it does
not require an accurate model and may easily combine existing antenna
selection approaches [110, 111, 112, 113]. As a result, proper DL-based
antenna selection should be designed, as should effective downlink
channel extrapolation from partial uplink channels. In this study, we used
probabilistic sampling theory to characterize discrete antenna selection



Figure 5. Schematic diagram of THz TDS system [37].
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as a continuous and differentiable function. For comparison, the perfor-
mance of the DL and uniform antenna selection-based channel extrapo-
lation is studied. Our proposed method outperformed the DL and uniform
antenna selection-based schemes in simulations, and it was able to
properly handle significant frequency gaps and uplink channel estimate
inaccuracies.

2.1.14. 5G MIMO data for machine learning: application to beam-selection
using deep learning

In [114], a specific dataset for investigating beam-selection tech-
niques on vehicle-to-infrastructure using millimeter waves has been
described. It presented a traffic simulator that combined a vehicle traffic
simulator with a ray tracing simulator for generating channel realizations
that are represented in the 5G scenario. It was designed to update the
features of the traffic simulator. A specific dataset was used for investi-
gating beam selection techniques. In this, many other modeling tech-
niques using nyusim and quadriga [115, 116] were compared with RT. In
this research, RT (Ray-tracing simulation) was used. RT can generate
data for two key requirements. RT was convenient in this scenario, and
different types of deep learning algorithms were used in the data pro-
cessing. Among all of them, random forest and deep neural networks
have given almost 60% accuracy. As the main focus was on mmWave
MIMO, RSU antenna arrays were used for transmitting and receiving
data. Future work on this paper is to make it more convenient and
cost-effective.

2.2. Machine learning for body-centric communications

In the last few years, wearable body-centric communication systems
have increased their applications and their areas. These systems are used
in various applications like healthcare, sports, military, identification
systems, smart phones etc. The applications are given below.

2.2.1. Body-centric for THz networks
THz communications are being celebrated as the key enablers for

wireless communication systems. Recently, THz has been used so much
in in-body and on-body communications. In this design, they actually
talked about the THz band for body-centric communications and its
technologies, channel, noise modeling, modulation schemes, and
network topologies. From this paper you get some description of the THz
sensing and imaging applications in the healthcare sector. It is very
necessary to think about the RHz band to fight this pandemic. COVID-19
is impacting humans and the overall worldwide economy. Finally, the
body-centric THz application design gives knowledge about using the
THz band for in-body and on-body communications. In this paper they
examine the THz band noise, modeling, modulation etc.

2.2.2. Human muscle mass measurement through passive flexible UWB-
myogram antenna sensor to diagnose Sarcopenia

Humanmuscle mass measurements are a hot issue in the antenna area
these days. As a result, the researchers discussed Sarcopenia in this
design. The researchers demonstrate a non-invasive, passive flexible
Ultra-Wide Band (UWB) myogram antenna sensor for predicting
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sarcopenia using human muscle mass assessment in this design. The
result is a change in muscle fiber shape [60].

In this case, a non-invasive method for predicting sarcopenia by
measuring skeletal muscle mass using passive flexible UWB-Myogram
antenna sensor signals from various muscle locations was employed.
Sarcopenia is diagnosed using a variety of diagnostic criteria, including
quantitative and qualitative muscle mass measures. Furthermore, earlier
detection of skeletal muscle mass measurement prevents metabolic side
effects such as diabetes, depression, abnormal cholesterol levels, and
weight gain. They use three ways to assess proteins, all of which are
associated with using machine learning, such as linear regression for
prediction data.

Sarcopenia is caused by a lack of skeletal muscle mass in humans.
Dual energy X-ray absorption has recently been used to quantify skeletal
muscle mass with some restrictions. The use of a passive flexible UWB-
Myogram antenna to quantify skeletal muscle mass has been demon-
strated. Sarcopenia can be predicted by measuring lean mass after fat
signals have been separated from skeletal muscle mass using an NMF
filter. For qualitative assessments, the proposed method eliminates the
use of empirical calculations of lean mass. According to the prediction
equation, a protein value of fewer than six indicates the presence of
Sarcopenia, while a value of less than five indicates a severely affected
person.

2.2.3. Privacy-preserving non-wearable occupancy monitoring system
exploiting Wi-Fi imaging for next-generation body centric communication

The main focus of this application was on new, non-wearable, device-
free, privacy-preserving wi-fi imaging-based occupancy detection sys-
tems for future smart buildings. Wireless and wearable gadgets are being
developed to develop the next generation of communication networks.
They discussed the detection of a person's existence during their daily
activities without deploying on the person's body in this study.

2.2.4. Deep learning framework for subject-independent emotion detection
using wireless signals

In this method, unique noise filtering techniques are used to gather
most of the individuals' heartbeat and breathing signals from radio fre-
quency reflections off the body. Deep learning approaches are also
employed for comparing their findings. Their proposed wireless emotion
detection gadget could also be used with ECG data in this paper.

2.2.5. Antennas and propagation for body-centric communications
Body-centric communication systems play an important role in the 4G

generation of mobile communication systems. In this paper, authors
provide details about the current position of body-centric communication
systems.

Antennas for body-centric communications have been summarized
well in recent publications [73, 74], including antennas for 10 MHz body
surface communications [75] and button antennas [76, 77, 78]. Band-
width is determined by the system or by spectrum allocations. It is very
difficult to specify the radiation pattern requirements. The use of various
sectors, like medical sensing and support, with either skin-mounted
sensors or implants, is also getting attention. In this design, they



Figure 6. Schematic diagram of the THz DL CT model [37].
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summarize the antennas and propagation for body-centric communica-
tion systems.

2.3. Machine learning for THZ communication system

The frequencies of THz are used for spectroscopy in different types of
areas. The THz antenna can transmit and receive THz electromagnetic
waves in the THz system as it has some features like wide frequency,
small size bandwidth, and high rate. The THz frequency has significance
in met material identification, the 6G network, visualizing hidden objects
and beam selection. As we know, network systems are improving day by
day, so 6G is the future network technology and is flexible. Met material
and other hidden objects are important as we are not able to visualize
some of the objects that are hidden. Beam selection is important as hybrid
beamforming is very important for overcoming the attenuation that is
created by the extremely high frequency in the THz band.

2.3.1. Terahertz deep learning computed tomography
A THz DL CT (Terahertz Deep Learning Computing Tomography)

system that is capable of visualizing hidden objects with multiple-
material systems is presented. Figure 5 shows the schematic diagram of
the experimental setup, and Figure 6 is the schematic diagram of the THz
DL CT model.

The final results of the comparison of THz CT and THz DL CT models.
The THz DL CT model may use kernel filters to recreate superior images
in the high spatial frequency area, which is useful for visualizing the
interior structure of 3D objects. As previously stated, the MSE (mean
square error) of the THz DL CT model was 1.86 percent, which is lower
8

than the standard THz CTmodel. The final result, shown in Figure 7 (a-c),
demonstrate that THz DL CT is a model capable of visualizing concealed
objects using material systems.

2.3.2. Low complexity beam selection scheme for terahertz systems
When compared to some existing beam selection schemes, a proposed

beam selection model that uses a machine learning algorithm that is an
RFC (Random Forest Algorithm) based beam selection scheme is capable
of providing a better arrangement between sum-rate and complexity by
choosing the proper parameter settings. In this paper, it is considered that
there is a THz multi-user uplink system featuring hybrid beamforming
architecture on both the base station and user sides. The channel char-
acteristics of L propagation pathways are assumed to be approximated
and known on the base station side in this model, and the channel-related
additional content is not taken into account. There is an exhaustive
search approach for the maximum sum rate that can compute the sum
rate under all beam combinations and locate the best transmitter and
receiver pair. They also utilized the SVM model to see the results in this
study, and after applying it, it was discovered that the SVMmodel causes
data bias, which undermines the balance of two data sets. As a result, the
RFCmodel's training set is similar to the SVMmodel's. This paper covered
the communication problems and the machine learning approach that
will help to improve the 5G communication system as well.

2.3.3. Secure deep learning for intelligent terahertz metamaterial
identification

It's a system that uses the THz technology and the crypto-oriented
CNN model to detect the presence of metamaterial in mixtures.



Figure 7. (a) Comparison between THZ CT and THz DL- CT. (b) Numerical metrics on two algorithms, (c) Visible image and 3D THz images by THz DL-CT on a testing
object [37].

Figure 8. Workflow of private preserving THz metamaterial identification [39].
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Figure 8 shows the workflow of private-preservation THz metamaterial
identification. In the THz TDS (Time Domain Spectroscopy), a commer-
cial photoconductive antenna is used to get electromagnetic response
signals. The THz wave passes through the two lenses. To obtain huge
amounts of data, random augmentation was employed in accordance
with probable noise, and these augmented signals were translated to the
frequency domain using a quick Fourier transformation. In the training
step, CNN can learn to discriminate between features. After the network
has been trained, it will be able to detect the presence of metamaterial.
They encrypted the original data before passing it through the network
and receiving all the results in ciphertext. This ciphertext can also be
decrypted independently.

In the end, to compare the results, they used the SVM algorithm, the
human baseline, and CNN. In the human baseline, the mean accuracy was
56.97%, the SVM method's accuracy was 87.9%, and CNN had 100%
accuracy on every fold. These experiments were already done by SVM,
but in this paper they proved that deep learning with CNN gives better
accuracy in identifying the existence of metamaterials in mixtures.
9

2.3.4. 6G wireless communications: vision and potential techniques
It is a design of the potential requirements and an overview of 6G

mobile networks. As we can see from 2G to 5G, the progress of mobile
communication networks is centered on serving people. 5G technology
allows for a latency time of 1 ms, and for that, 6G aims to make it less
than 1ms or nonexistent or undetectable latency. 6G is designed so that it
can be more flexible than 3G to 5G. To increase data throughput, 6G will
use a higher frequency spectrum than previous generations. It will
outperform all other technologies in terms of latency and architectural
adjustments. For THz communication, UM-MIMO and PM-MIMO tech-
niques are used. In Figure 9, it is the design of 6G based on time-
frequency-space resource utilization.

It will be possible to obtain it using machine learning approaches such
as classification or neural networks, rather than any other calculation. As
a big, data-driven network, 6G will be able to manage large amounts of
data. Figure 10 has some promising features.

As given techniques, there are some power supply issues, network
security issues, and hardware design issues. Millimeter waves and THz



Figure 9. 6G based on the time-frequency-space resource utilization [40].

Figure 10. Some promising techniques of 6G network [40].
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bands need to be recreated again for joint use. If the issues can be
overcome, then it will be flexible.

2.3.5. Next generation terahertz communications: a rendezvous of sensing,
imaging, and localization

It's a comprehensive and forward-thinking vision of THz communi-
cations that incorporates machine learning and THz antennas. As may be
seen, the majority of current THz transceiver designs are electrical and
photonic. While photonic technologies offer a data rate advantage,
electronic platforms have a higher power generation capability (100
mW–1 mW compared to typical tens of microwatts in photonics) [42].
THz-band communication is trying to play a vital role in future 6G
technology. THz communications, unlike mmWave communications,
may take advantage of the enormous accessible bandwidths in the THz
band to attain a terabit per second data rate without the use of any extra
spectral efficiency augmentation techniques [43]. In this paper, we pre-
sent some advanced technology areas that can be developed using THz
technology. For example, in the areas of imaging, localization, and
sensing. Previously, THz signals were used in imaging and sensing ap-
plications like food security, gas detection, and water dynamics. THz TDS
is the most popular method for THz sensing [45]. THz can be easily used
in imaging applications. The high gain of directional antennas allows for
substantially higher spatial resolution (sub-millimeter spatial differenti-
ation [44]) and targeted directed sensing and imaging. As future gener-
ations are expected to make wireless services location based, 6G
networks that are based on mm-wave and THz frequencies are needed.
For high-speed drone communications, THz bands like antennas are
needed to detect location. Machine learning is needed for these services
as the next generation is almost entirely based on artificial intelligence.
Machine learning can handle large data sets. For instance, the THz-based
localization system can locate any place. We need to use an antenna for
collecting data, and machine learning will help with map interpolation.
So, we can say that THz applications will be many in future communi-
cation systems.

2.4. Machine learning and deep learning for satellite antenna design
application

A satellite is a spacecraft that travels around the planet in orbit. These
satellites deliver signals to a central station, which develops program-
ming for smaller stations that broadcast the signals locally through cables
or the airwaves. For various applications, the use of machine learning and
deep learning for satellites is explained below.

2.4.1. Acceleration of design and cross polar optimization for shaped beam
reflect array antennas for space applications

A machine learning approach called Support Vector Machine (SVM)
was used to develop and optimize reflectarray antennas in [46]. As a
result, computing time is reduced without a decrease in accuracy. The
main significance of [46] is that by using SVMs, crosspolar isolation and
crosspolar discrimination can be improved, and the computing time re-
mains the same.

As indicated in [46], artificial neural network (ANN), kriging, and
support vector machines (SVM) algorithms can be used to develop sur-
rogate models for the characterization of unit cells, so that the FW-LP
(full-wave electromagnetic tool based on local periodicity) can be
replaced. Then, based on a number of input parameters such as fre-
quency, substrate, and geometrical characteristics, the FW-LP tool is used
to create the unit cell pattern of electromagnetic behavior. A function was
obtained from ANN or SVM and to train ANN or SVM those patterns were
used. The function has a high degree of resemblance to training patterns
and can predict unit cell patterns for fresh values. To characterize the
whole matrix of reflection coefficients, SVMs are applied. ANN was uti-
lized to determine the phase response of the reflectarray unit cell. In [46],
it is stated that ANNs have recently been employed for the substrate,
cross polarization for dual polarized unit cells, and phase shift to project
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the losses of the unit cell. Kriging has also been used to project the phase
replay and associated losses. SVMs, Kriging, and ANN accelerated
computation were used to analyze reflectarray antennas. An application
used machine learning methods to create the design of reflectarray an-
tennas. The analysis algorithm is called hundreds or even thousands of
times to obtain the unit cell geometry that gives each reflectarray
element the required phase shift. SVM is used in this case to make
reflectarray design and to preserve efficiency of cresspolar and copolar
manufacturing, as well as to significantly speed up operations. Many
methodologies for training SVMs have been devised for the analysis of a
large reflectarray for Direct Broadcast Satellite (DBS) applications, as
detailed in [46]. The design process is detailed and carried out using a
Method of Moments based on Local Periodicity to gain access to accuracy
and computation time acceleration (MoM-LP). ML algorithms are a
hopeful system to speed up reflectarray study.

2.4.2. Beam hopping in multibeam satellite system
A Deep Learning (DL) based path has been developed to simplify

feasible beam hopping (BH) in multibeam satellite systems. In the sat-
ellite coverage area, to manage time variants and irregular traffic re-
quests, BH canmaintain flexibility. A learning and optimization approach
was used to create a rapid, near-optimal, and viable solution for BH
scheduling. In [47], it is mentioned that getting optimal performance
within a reasonable time is not possible for traditional frequent optimi-
zation paths and data-driven techniques. Many studies suggest that the
path taken in [47] can improve the solution's performance and capability
by using the optimization component, while the learning component can
speed up the process of BH pattern selection and allocation.

The fundamental purpose of this work is to ensure that satellite
resource distribution in multibeam system situations with non-uniform
traffic needs is optimized by utilizing data-driven pathways. In [48], it
is mentioned that for future broadband multibeam satellites, it is
important to have the ability to control the system resources over the
service coverage area. The demand for some spot beams in large multi-
beam satellites surpasses the limit and they are known as hot spots. On
the other hand, the demand for some spot beams is less than the service
they can provide, known as cold spots. So this causes a problem because
where demand is high, capacity is low, and where capacity is high, de-
mand is low as well. Because the resources per beam are set and
consistently distributed throughout beams, standard payloads provide
the same capacity for each beam. But in this solution with flexibility, the
system capacity can be maximized for allocation in different areas where
needed. In manyways, the satellite's payload flexibility can be ensured by
the distribution of power, time, and bandwidth. In [47], it is mentioned
that in the satellite coverage area, a high level of flexibility to maintain
time variants and irregular traffic requests can be provided by the Beam
Hopping (BH) system. For some period of time, all the satellite resources
can be focused on providing service to a selected subset of beams with BH
until the demand is met. Depending on a space time-dispatch pattern, in
every time slot, the group of illuminated beams swaps and it is replayed
from time to time. In [49], an iterative algorithm for BH illumination
design has been proposed. On the other hand, in [50], BH for power
minimization has been proposed, so it is clear that different works show
the beam illumination pattern design in different ways. Gaining feasible
BH patterns while search space expands more rapidly is hard for pattern
design inBH. A satellite system requires a long computation time to
render a complex optimization process because it is composed of hun-
dreds or thousands of beams. To get a better solution, the complexity of
BH design is expected. In wireless networks, complex resource manage-
ment can be done by creating efficient algorithms with DL. In [47], re-
searchers looked into the role of DL in BH optimization [47]. A better
methodology to combine learning and optimization methods for BH has
been presented to overcome the shortcomings of conventional algorithms
and classical learning models. The number of elements in the beam
patterns for BH gives the top forecast precision in deep learning. The
combination of optimization components and DL can be done simply by



Figure 11. Antenna elements (AEs), a phased array antenna (PAA) system, and an optical beamforming network (OBFN) are all examples of optical beamforming
networks [52].

Figure 12. The right diagram is its neural network configuration and in the left there is OBFN system (4 � 1) [52].
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the proposed algorithm. In [47], using computational time and opti-
mality, an analogy has been made between the proposed DL-based
optimization algorithm (DBO), optimal and suboptimal paths. This so-
lution shows better BH pattern selection, feasibility, and enhancement in
performance.

2.4.3. Tuning optical beamforming networks
A deep neural network representation of adjusting Optical Beam-

forming Networks (OBFNs) was developed in this part. To get signals
from particular projections, phased array antennas (PAAs) are level and
small, requiring OBFNs to be tuned so that communication between
satellites and plains can be done. This topic is important because tuning
large scale OBFNs for any delays can be done with the help of deep neural
networks.

The planes should focus their transmission beams in the direction of
the satellite so that they can receive or transmit Radio Frequency (RF)
signals to or from the satellite. Antennas with omnidirectional are not
good for low gain. In [53, 54], it is mentioned that steering dish an-
tennas mechanically is the usual solution. This solution has drawbacks
like increased drag force, high maintenance costs, and a large dimen-
sion. In [55, 56], it is mentioned that because of low maintenance costs,
agility, and reduced drag forces, the potential solution is the Phased
Array Antenna (PAA) system. A PAA system is developed using a
beamforming network and an array of antenna elements (AEs), as
shown in Figure 11. From a specific angle, a time-delayed version of the
aimed signal is received by every AE. With predetermined delay values,
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the received signal will be delayed while it goes through RF paths. In
[53], for simplification of the tuning process to the bottommost path,
the signal arrives first. As it is discussed [57], the delay points are tuned,
so that the aimed delays can be matched while the signal passes with
the help of a beamforming network. In [57] mentioned, the delay points
are tuned, so that the aimed delays can be matched while the signal
passes with the help of a beamforming network. According to [58], the
aimed signal adds up in phase using a delay and a combination char-
acteristic of the beamforming network. The intended signal and its
time-delayed form are well defined in [52]. An optical beamforming
network was employed in [59, 60], and [61] with optical ring resona-
tors (ORRs) as configurable delays. The ORRs genetic method [64] and
nonlinear programming optimization [62, 63] were employed to find
the optimum parameter.

The OBFN structure is designed to cover a wide bandwidth while
maintaining low cost, scalability, and a low number of ORRs. For the
same bandwidth and antenna specifications, Nugroho et al. [53]
discovered that the asymmetrical binary tree-structured OBFNs and their
neural network representations as shown in Figure 12 are scalable and
have the least amount of ORR.

Figure 12 shows the diagram of the neural network configuration,
and on the left there is the OBFN system (4� 1). From training examples
of a neural network, we can obtain input vectors and their corresponding
aimed output. The signal received by each antenna element is the neural
network's input in Figure 12. The aimed output is acquired via the
reference path, and this is the signal.



Figure 13. (A) A triangular PD, π(x), and (B) the corresponding possibility Π (solid) and necessity N (dashed) measures [78].
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To take advantage of OBFN, a deep learning algorithm is suggested so
that the OBFN system can be tuned in a big way. The unique structure of
OBFNs can be viewed using a deep neural network. A deep learning al-
gorithm works for a specific OBFN structure to find ideal ORRs param-
eters for 4 � 1, 8 � 1, or 16 � 1 OBFN. Utilization of quantifiable signals
by deep learning methods can be done as a preparation paradigm since it
has data-driven skills. For future development, it is important for online
tuning to use real data as a measurable signal, as used in [52].

2.4.4. Mobile tracking and antenna pointing in satellite terrestrial network
Growing mobile services have been unable to provide facilitation for

conventional satellite terrestrial networks in recent years. Reduction of
the communication load by processing collected data through accurate
mobile terminal location is the main problem mentioned in [65]. An
artificial intelligence (AI) based pointing and tracking method for mobile
terminals and stations in satellite terrestrial networks has been developed
to ensure that mobile stations and terminals experience minimal
communication interference and can access ideal antenna signals from
other stations or terminals. An AI-based self-learning (ASL) network
framework has been designed for data sampling and filtering in this so-
lution. The framework also supports unsupervised satellite selection,
antenna adjustment schemes, and mobile terminal and station tracking
by mobiles.

With the rise of mobile services supported by satellite terrestrial
networks, both data analysis and data transmission need greater time and
resources [66, 67]. In [68, 69], it is mentioned that the distribution of
high-quality service on satellite terrestrial networks has become more
difficult. Conventional satellite terrestrial network service quality has
been declining because of the increased number of devices and mobile
stations. It is quite difficult to communicate with several mobile devices
quickly over a standard satellite terrestrial network. Mobile device
movement pathways, on the other hand, are quite complicated. For ter-
minals and stations, mobile pointing, tracking, and data analysis based on
AI are very important.

While talking among satellites, wemust follow and precisely point the
mobile target for ground stations and terminals in satellite terrestrial
networks. To get ideal signal reception requirements, stations or termi-
nals require changing the pointing of satellite antennas on time while
relative movement happens between satellites. Because of high turbu-
lence in the mobile carrier for mobile services in the satellite terrestrial
network, the elevation of the ground mobile station and terminal, as well
as the antenna azimuth, will change rapidly. By aiming antenna beams at
compatible satellites, we can increase communication. Artificial intelli-
gence is used to evaluate the quality of mobile communication on sat-
ellite terrestrial networks, engage with mobile targets, and explore a new
road to integrative collaboration. Multi-mode perception information
must be considered when using different types of sensors to detect in-
formation about moving things. Then pointing and tracking were
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introduced to mobile phones. In [70], it is mentioned that to get data
from various sources and then learn to schedule tasks, optimize alloca-
tion of resources, and train needs unsupervised learning with satellite
terrestrial networks.

2.4.5. Satellite communication
In the satellite communication (SatCom) system, the use of artificial

intelligence (AI) mechanisms was explored in this study. Conventional
SatCom is dependent and controlled totally by human intervention. The
AI equipment can do SatCom related work and can deal with those
challenges. In the SatCom field, long-term AI -related development has
been discussed.

A reduced client standard and high operational expenditure (OPEX)
have been encountered because satellite operators' teleports need human
involvement. Satellites are built to reconfigure their communication
budget on a millisecond basis with the imminent placement of a flexible
payload. To maintain the client's service level covenant, short design
time, response time, frequency, power, and beamforming are needed for
radio resource management algorithms. By adding the requirement to
coordinate space networks of hundreds or thousands of satellites, the
emergence of satellite mega constellations only creates problems. Soon,
everyday satellite operations are expected to include automation algo-
rithms. Deep learning has the ability to simulate any nonlinear function,
and it will play a prime role. AI may have an impact on flexible payload
optimization, beam congestion prediction, interface detection and clas-
sification, and anomaly detection in telemetry data.

2.5. Machine learning for unmanned aerial vehicle

Wireless communication networks will rely heavily on unmanned
aerial vehicles (UAVs). When compared to older ground-based technol-
ogies, their acceptance in various communication-based applications is
predicted to improve coverage and spectral efficiency. This new strategy,
on the other hand, will introduce fresh changes to the network's
communication mechanisms. In this case, the machine-learning structure
should be able to solve the different issues that have already been
recognized when UAVs are used for communication. A comprehensive
review is presented, including all relevant research papers in which
machine learning approaches have been applied to UAV-based commu-
nications to improve different design and functional elements such as
channel modeling, resource management, and security.

2.5.1. UAV in the machine learning environment
For academic and industrial research, unmanned aerial vehicles and

machine learning are key applications. This paper's main focus is on
applying machine learning and its techniques to many fields. This is a
very useful application for UAVs, which are used in the environment. The
unmanned aerial vehicle (UAV) and machine learning are two of the
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most important aspects of the fourth industrial revolution. This was
actually created to research the importance of machine learning and the
scope of use for the UAV. The UAV was actually used because of its low
altitude, high resolution, flying capability, and probability. In this
application, they focus on the implementation of the UAV environment.
Finally, they proved that the UAV andmachine learning both have a huge
scope for scientific research.

2.5.2. UAV based 5G radio access networks
The authors explain why, how, and which sorts of machine learning

approaches are effective for constructing UAV-based radio access net-
works in this application. They concentrated on supervised and rein-
forced learning systems in particular. They also discussed radio access
networks and compared them to radio access networks based on un-
manned aerial vehicles.

2.5.3. Construction resource localization based on UAV-RFID platform
They discuss data collection via a UAV-RFID integrated platform and

data analysis utilizing the k-nearest neighbors machine learning tech-
nique in this UAV application. This paper characterizes localization as a
classification problem by discretizing the location regions and applying
a machine learning technique to solve the problem. They discuss data
collection via a UAV-RFID integrated platform and data analysis utiliz-
ing the k-nearest neighbors machine learning technique in this UAV
application. This paper characterizes localization as a classification
problem by discretizing the location regions and applying a machine
learning technique to solve the problem. Preliminary tests show that
using the UAV-RFID platform to locate construction materials is a viable
option.

Understanding the context of building sites necessitates having
location data for construction resources. To obtain location data, most
sites still rely on human observations. Technology and research, on the
other hand, have limitations when it comes to locating construction re-
sources, as most of them have a restricted recognition range and accuracy
for outside building sites. By combining UAV with RFID platforms, the
limiting identification range of RFID might have been overcome due to
the higher agility of UAV. Preliminary tests show that using the UAV-
RFID platform to locate construction materials is a viable option.

Understanding the context of building sites necessitates having
location data for construction resources. The majority of sites still rely on
human-centered observations to obtain location data. Technology and
research, on the other hand, have limitations when it comes to locating
construction resources, as most of them have a restricted recognition
range and accuracy for outside building sites. By combining UAV with
RFID platforms, the limiting identification range of RFID might have
been overcome due to the higher agility of UAV.
Figure 14. Flowchart of
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2.5.4. Artificial intelligent for UAV enabled wireless networks
The authors provide a detailed summary of current research in the

area of artificial intelligence-enabled UAV networks in this article. They
also go through some of the current research's limitations and present
some prospective concepts that could be pursued in the near future. They
also report on some of the work done in Florida for UAV-based networks
in order to examine the deployment of intelligence at the boundary of
UAV networks. Furthermore, they provide a thorough introduction to
each artificial intelligence topic covered in this work, allowing readers
from a variety of backgrounds to comprehend it.

Smart cities and aerial base station deployment are two examples of
UAV applications that providemotivation. The researchers looked at how
machine learning techniques are utilized to improve the performance of
UAV networks in these applications. They also provide some insight into
how FL techniques are applied to UAV networks.

2.5.5. Predicting within-field variability in grain yield and protein content of
winter wheat using UAV-based multispectral imagery and machine learning
approaches

Crop yield and quality forecasting are essential for profitable agri-
culture. Commercialization has resulted in low-cost multispectral cam-
eras being attached to UAVs, and the development of machine learning
algorithms has made the prediction process more valuable. Machine
learning is used to forecast wheat grain production and protein content
by using spectral reflectance and plant height. In this research, they
compared the performance of machine learning based on reflectance and
classic linear regression models for forecasting wheat grain yield and
protein content.

2.5.6. Cattle detection and counting in UAV images based on convolutional
neural networks

The authors proposed using UAV photos to detect and count cattle in
this investigation. The targets all look to be almost the same size, which is
a peculiarity of UAV photos. Furthermore, introducing the concept of
domain adaptation could help improve the performance of a slightly
different dataset. Other slow-moving animals can also be detected and
counted using cattle detection and counting devices.

2.6. Machine learning for textile communication systems

These antennas are designed with textile materials. These antennas
are important for developing wireless electronic textiles. It helps
communicate between garments and sensors with external devices.
Wearable antennas are flexible, and washable, and the following papers
are focused on these. Sensors and techniques are used to make the textile
system more flexible.
BO algorithm [78].



Figure 15. Proposed hybrid algorithm [78].
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2.6.1. Machine learning-based hybrid random-fuzzy modeling framework
for antenna design

It's a mixed-machine learning approach for propagating aleatory and
epistemic uncertainties in antenna design. UQ (uncertainty quantifica-
tion) for antenna design follows statistical methods, and there are some
complex scenarios to design with that. In textiles, the UQ approach is
followed [79]. As it uses statistics, they use probability distribution
functions with some random variables, and, because of that, some
represent variables affected by epistemic uncertainty. In this paradigm, x
is a real-valued parameter represented by a PD (Possible Distribution)
(x), such that:

π: R → [0,1],9 x 2 R: π (x) ¼ 1.

In this case, PDF represents the frequency of an event over a given
time interval, and PD represents the value that x is presumed to be. And
0 denotes an impossibility, whereas 1 denotes a possibility. As shown in
Figure 13, PD can be specified as rectangular or triangular. PDs are
commonly used to represent so-called total ignorance, which occurs
when no information about a parameter's variability is known [80]. The
epistemic variable in fuzzy sets is x. It is distinguished by its cuts. Cuts are
indicated by red lines in Figure 13.

Due to various constraints, a machine learning strategy combining BO
(Bayesian Optimization) and the PC expansion method has been devel-
oped. Figure 14 BO is mainly used for global optimization problems.
Figure 15 is the proposed hybrid algorithm which is combined with BO
and PC.

The proposed algorithm speeds up the standard of hybrid algorithms
as it uses the BO framework. The final hybrid UQ method presents better
accuracy and higher computational efficiency.

2.6.2. On the use of knitted antennas and inductively coupled RFID tags for
wearable applications

A knitted folded dipole antenna with an inductively connected
RFID chip was designed and tested. Wireless smart gadgets are now
employed in clothing. Physiological sensors and low-power computing
units are integrated into these garments, enabling continuous
biomedical monitoring and activity tracking [82, 83]. RFID (radio--
frequency identification) technology uses low-power radio waves to
collect data and automatically identify items. It has been demon-
strated that the backscattered power (RSSI) transmitted by a passive
RFID tag may be employed as a metric for identifying material
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deformations for typical metal-based tags [84]. They used
knitted-based manufacturing techniques to create comfortable and
battery-free wearable stain sensors, just as they did in this work.
Comfortable to wear, very stretchy, with impedance matching be-
tween chip and antenna, and appropriate radiating properties to
continue communication at various levels of physical deformation, are
all requirements for this sensor. A wearable stain sensor is paired with
a folded dipole antenna in this device. SVM and Gaussian filters are
two machine learning techniques that are used to evaluate data. The
goal of this system was to track the movements of the body, hence
knitted antennae implanted in the host garment with inductively
connected RFID tags were constructed.

2.6.3. ClothFace: a batteryless RFID-Based textile platform for handwriting
recognition

It's a ClothFace technology prototype based on UHF-RFID for hand-
writing recognition embedded in cotton fabric. Textile antennas and a 10
� 10 array of RFID ICs (integrated circuits) with a unique code were
employed in this. Human-machine interaction is always reliant on touch
or body movement, and the most prevalent on-body interfaces, such as
trackpads and tapping buttons [86, 87, 88, 89], are typically blended
around the arm to identify hand movement. Skin electronics [90] have
recently been proposed as a flexible technology for on-body touch and
gesture recognition. This project is an expanded version of [91], which
showed a basic prototype of ClothFace technology, a battery-free texti-
le-based handwriting platform. The upgraded work will be a real-time
recognition system that will be tested in real-world scenarios. It can
recognize any number from 0 to 9 and can also handle complex functions
thanks to machine learning methods. The test error rates ranged from
0.23 to 1.7 for picture identification using a machine learning technology
called CNN (Convolutional Neural Network). This technology will enable
us to turn the clothing and textiles we wear on a daily basis into so-
phisticated user interfaces. It can help the user increase their character
recognition accuracy.

2.6.4. Surrogate-based infill optimization applied to electromagnetic
problems

An overview of SBO (Surrogate Based Optimization) methods is
presented. Mostly, this paper focused on data-driven approximation
using several SBO methods. There are many types of surrogate models,
like SVM and Gaussian Process (GP). Basically, SBO creates a mapping



Table 3. Comparison of the different machine learning techniques used in the investigated papers for Millimeter Wave.

Reference
No.

Antenna Used Algorithm Used Comparison to Result

[1] MIMO antenna Reinforcement Learning (RL)
algorithm

Brute-force search Reduction in the number of iterations required to locate the most
suitable analog beamformers and digital precoders for transmission,
without compromising the upper bound data rate reached through
brute-force search.

[7] Millimeter wave
antenna

Random forest Naive-Bayes,
AdaBoost, RBF-SVM and Gradient Boosting

The results suggest that given perfect assumptions, we may get up to
86 percent alignment probability.

[8] MIMO antenna Alignment Method with
Partial Beams using ML
(AMPBML)

Multi-path decomposition and recovery, as
well as adaptive compressed sensing and
hierarchical search.

In terms of total training time slots and spectral efficiency, the
AMPBML outperforms existing methods such as adaptive compressed
sensing, hierarchical search, and multi-path decomposition and
recovery.

[12] MIMO antenna Deep learning based hybrid
precoding method

Hybrid precoding schemes The result is minimization of the bit error ratio and enhanced
spectrum feasibility of the mmWave massive MIMO with low
computational complexity.

[18] MIMO antenna ray-tracing data The dataset can be used in deep learning applications.

[19] hybrid
beamforming

KNN deep learning Learning assisted adoption gives a higher data rate than the
conventional link data rate.

[20] M antenna LOS Developed a machine learning-based framework for learning the
surroundings and beamforming codebooks that are hardware
responsive.

[25] Large array
antenna

beam selection Map- based millimeter Wave channel model

[29] Misaligned
antennas

EM Developing channel traces

[102] Antenna
(3TX,4RX)

R-D,FFT mmWave sensing is used to create a long-range gesture recognition
model.

[103] MIMO antenna Deep Learning state-of-the-art DL based
techniques

The existing DL based techniques [104, 105] are outperformed by the
proposed deep learning framework and achieve reasonable channel
evaluation accuracy.

[106] MIMO antenna Deep Learning and
Problemistic sampling
framework

ULA The Massive MIMO channel extrapolation algorithm is effective.

[114] RSU Random forest, deep neural
network

SVM, decision tree, AdaBoost The result gives about 63% accuracy, and it is a very convenient
technique.
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between input and output parameters. It speeds up other optimization
algorithms. Textile antennas are made of a nonconductive textile sub-
strate. To tackle the inverse problem of textile antennas, the SUMO
(Surrogate modelling) toolkit is employed. SBO is a toolkit that is based
on the EI (Expected Improvement) criterion and is incorporated into the
SUMO toolbox. To overcome the EM problem, they employed a machine
learning approach called SVM. SVM aids in the reduction of errors be-
tween measured and simulated data.

2.7. Machine learning and deep learning for global positioning system
antenna design application

In order to get an accurate determination of geographical locations,
the Global Positioning System (GPS) has been developed for civil and
military use. Transmission of information by using satellites in Earth
orbit allows us to measure the distance between the user and the satellite.
For many applications, the use of machine learning and deep learning for
GPS has been described below.

2.7.1. In multipath environments a machine learning approach for GPS code
phase estimation

A neural network (NN) dependent delay locked loop (DLL) is built
into Global Positioning System (GPS) receivers for multipath reduction in
[93]. The NN works on samples that are evenly spaced in the autocor-
relation function. A statistical distribution model takes into account
multipath time delay and power attenuation, and the NN is trained using
that model. Three additional solutions are compared to the recom-
mended solution. In high multipath situations, the NN based DLL pro-
duces less code phase root mean squared errors than the three standard
models.
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Multipath interference in the Global Positioning System (GPS) has
been recognized as one of the critical error drivers. Multipath signals
alter autocorrelation functions in the phase locked loops (PLLs) and delay
locked loops (DLLs) of GPS receivers. This causes carrier phase estimates
and biases in the code and leads to errors in the navigation solution.
Many techniques have been developed to mitigate the effects of multi-
path. They are grouped into two categories: one is signal processing
techniques, and the other is antenna techniques. The conventional early-
to-late (E-L) DLL was unable to handle the aforementioned scenarios.
They do not make use of multipath signal statistical models and are still
sensitive to multipath effects. A NN-based DLL (NNDLL) was created in
[93] to alleviate positioning issues caused by multipath by focusing on
the autocorrelation function in the receiver's evaluation. It provides more
information about multipath signals than a pseudo range measurement.
As a result, the proposed method differs from other machine
learning-based multipath mitigations. The NN's goal was to determine
the receiver's motion and the type of multipath environment in order to
adapt the receiver's tracking strategy. In [94], NN is in charge of sample
processing for the autocorrelation function. This technique uses samples
from the autocorrelation function to create an estimate of the code phase
error. This occurs both in the presence and absence of multipath. The
proposed method does not necessitate any hardware modifications;
however it does necessitate more autocorrelation function samples for
comparison, as with other traditional methods. From the results, it is
clear that the given NNDLL performs better than the conventional solu-
tion in high multipath situations.

2.7.2. On unmanned aerial systems detection of GPS spoofing attacks
Many civil and military software packages have gained an interest in

unmanned aerial systems (UAS). A machine learning method has been



Table 4. Comparison of the different machine learning techniques used in the investigated papers for body centric.

Reference
No.

Antenna Used Algorithms Used Compared to Result

[32] THz antennas supervised algorithms Use of the THz band for body- centric networks.

[33] UWB antenna linear regression Absorption of electromagnetic radiation by muscle tissues under radiating near-
field circumstances.

[34] planar antenna k-nearest algorithm, support vector
machine.

linear
regression

The system was built with off-the-shelf, non-wearable components.

[35] TX antenna and Rx
antenna

classical machine learning deep learning In comparison to other methods, using a wireless signal for standby emotion
detection is a better option.

[36] conventional antenna ML Current position of the body- centric communication networks.

Table 5. Comparison of the different machine learning techniques used in the
investigated papers for THz.

Reference
No.

Antenna Used Algorithm
Used

Compared
to

Result

[37] PCA THz DL-CT THz CT It shows much
superior image
quality.

[38] NB,Nu, NR RFC SVM Reduce the
computational
complexity hybrid
beamforming

[39] Photoconductive CNN SVM Developing
identification of
metamaterials in
mixtures

[40] Multi-mode
multiple antenna

DNN Demo of 6G mobile
network

[41] UM-MIMO DNN Plasmonic
antennas,
PCA

Future vision of THz
communication
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proposed to detect GPS spoofing signals based on an artificial neural
network. The aftermath shows a low probability of incorrect alarms and a
favorable probability of detection.

Depending on various sensors, including the Global Positioning
System (GPS), the Unmanned Aerial System (UAS) does its operation.
According to [96, 97], and [98], GPS makes UAS an ideal system for
tracking and navigation goals with a precision of up to 3 m. For location
tracking and time synchronization in real time, GPS is used by several
devices. Signals are received by at least four satellites, which act as GPS
receivers. Because of the unencrypted signals of the satellite, the public
GPS receiver is not secure and cyber-attacks, including GPS spoofing,
can happen through those GPS receivers. So cyber-attacks can happen at
a higher power, and in the attack, fake signals like satellite signals are
transmitted by hackers. The hacker can later rebroadcast the GPS signals
that were previously stored. By changing the time delays and informa-
tion in the signals, an attacker can cause the receiver to calculate a
random position. This can be done with minimal software and hard-
ware. In [99], a method based on state approximation analysis using
Support Vector Machine was presented to detect GPS spoofing attempts
on UAS. However, in the long run, this strategy degrades in perfor-
mance. Another method in [100] dubbed Crowd-GPS-Sec is used to
locate and identify GPS spoofing assaults on aircraft and UAVs. How-
ever, this method is not feasible because it takes fifteen minutes to
achieve a localization accuracy of roughly 150 m. By this point, hackers
have already done their harm. Because traditional solutions have
shortcomings, this study proposes a new machine learning method
based on artificial neural networks (NN). In this technology, an algo-
rithm analyzes actual or fake GPS signals and makes judgments about
the existence or absence of attacks.

2.7.3. Dethroning GPS in low power accurate 5G positioning system
In this study, a Deep Learning (DL) dependent millimeter wave

(mmWave) positioning solution's energy consumption is evaluated.
Then, with the advanced and accurate outdoor positioning systems, it
was later differentiated. With millimeter wave networks, the suggested
method reduces the energy requirement for precise pointing. So, for
mobile devices, the design provides efficient and accurate positioning.

This research closes the loop on a formally proposed Beamformed
Fingerprint (BFF) placement approach for mmWaves by demonstrating
energy feasibility across several DL models. This approach achieves an
uneven perfection level in the appearance of non-Line-of-Sight (NLOS)
(one order of magnitude better than the prior state of the art). This
research compares the energy consumption of locating and tracking
systems that work using mmWaves. Because fingerprint positioning ap-
proaches can share the same precise DL models, a large number of results
can be transferred between them. The developed system outperforms
GNSS-based systems in terms of accuracy and feasibility.

3. Analysis

For antenna design, machine learning has shown great results, but it
also has some issues. Choosing the perfect algorithm for any experiment
is a major challenge. Because all kinds of simulation data are not suitable
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for all algorithms, an unsuitable algorithm may not be able to find the
perfect result. So datasets need to be checked first before using an al-
gorithm. Before starting work, we need to know very well what area of
the problem we are working on. Because valueless results can be found
from wrong assumptions, and it will be a waste of time and resources.
Getting a clean dataset is very hard, and getting an accurate result is also
necessary. Several simulations have to be done, so that proper training
data can be found. Preprocessing data is a difficult task because the data
needs normalization and feature selection, and for large datasets, a huge
amount of time is needed. Debugging the algorithm for solving a problem
is also an important task in the field of machine learning.

To investigate the performance gap between the suggested design and
the traditional design, we employed Monte Carlo simulations, where the
average is derived using 100 channel realizations, and a total of 1000
symbols are used for each channel realization. Furthermore, the desired
or required BER is set to 103 in these results. By simulating the proposed
learning-assisted adaptation, we were able to show that it easily fulfills
the required BER while giving a much greater data rate than traditional
link-adaptation based on SNR threshold values.

In the learning beam codebook, it is capable of optimizing the beam
patterns, but in more complicated scenarios it is not applicable. Map-
based mmWave channel models have some hardware issues. That's
why they are cost-effective. Long-range gesture recognition is also costly
for the radar, and the model accuracy is not stable, nor is it tested in
different types of scenarios.

In [26], a Reinforcement Learning (RL) technique for spatial beams
was developed to maximize the mean data throughput of a multi-antenna
wireless system that implies hybrid beam-forming in the millimeter wave
frequency band to speed up the selection process. From the result, it is
clear that only a fraction of the iterations are required for the RL-based
approach. On the other hand, the compared brute force solution



Table 6. Comparison of the different machine learning techniques used in the investigated papers for Satellite.

Reference
No.

Antenna Used Algorithm Used Compared to Result

[46] Reflectarrays SVM MoM-LP Accelerate computing time without compromising accuracy.

[47] Multibeam
antenna (MBA)

Branch-and-bound (B&B) and simplex
algorithms (SA) are examples of DL-based
optimization (DBO) algorithms

Typical data-driven strategies
and traditional iterative
optimization approaches

The optimization component can ensure the solution's efficiency
and increase overall performance while speeding up the method
of BH pattern selection and allocation.

[52] Phased Array
Antennas (PAAs)

Deep neural network Non-linear programming Large-scale OBFNs can be tuned for any desired delay.

[65] Satellite Antennas Reinforcement
Learning (RL) algorithm

Traditional satellite-terrestrial
networks

Ascertain that our mobile stations and terminals receive the best
antenna signal and are subjected to the least amount of
communication interference from other stations or terminals.

Table 7. Comparison of the different machine learning techniques used in the investigated papers for UAV.

Reference
No.

Antenna Used Algorithm Used Compared to Result

[72] planar k-neural networks support vector
machines

Synthesize the research on unmanned aerial vehicles (UAVs) based on a machine learning
environment.

[73] conventional reinforcement
learning

Why, how and which types of algorithms are used in U-RANS

[74] reflectarrays k-nearest algorithms Localization as a classification problem by using machine learning

[75] mimo antenna artificial intelligence Get a detailed overview of the AI's potential applications in UAV-based networks.

[76] planar linear regression Grain yield and protein content are predicted.
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necessitates numerous iterations. But there is no clear solution to data
security and clean data collection.

Locations, sizes of the receiver, and nearest vehicles were used to
determine the ideal beam pair index in [32], which took full advantage of
machine learning equipment with previous beam training information.
Many levels of situational acknowledgment are a key part of this study,
and an inclusive analogy of numerous classification schemes has been
addressed. As a result, it is stated that 86% alignment probability can be
achieved, but there is always a security concern. A lot of factors can go
wrong, and that can lead to missing vehicle locations in the feature. The
noisy features are GPS inaccuracy, location updating frequency, and
penetration rate.

In [35], a massive multi-input multi-output system using millimeter
wave (mmWave) by multiple users for beam alignment has been pre-
sented. An alignment approach with partial beams utilizing Machine
Learning (AMPBML) has been suggested without any prior information,
such as user location details. But there is always an issue of clear data for
testing and training. The implementation is also time-consuming.

Every specification of the pre-coders used to obtain the optimum
decoder is regarded as a mapping relation in the deep neural network
(DNN) in the [39] solution. In this study, a deep learning assisted
mmWave massive MIMO architecture was employed for practical hybrid
pre-coding. However, because Deep Learning lacks common sense, the
system is vulnerable. When mistakes are made, the results can be severe.

An energy-efficient hybrid pre-coding approach utilizing one-bit PSs
has been investigated in [41] for practical frequency-selective wideband
mmWave massive MIMO systems. Furthermore, as the CEO algorithm for
machine learning advances, a cross-entropy optimization (CEO) based
hybrid pre-coding technique to optimize the earnable sum rate of the
reviewed system has been presented. But for this solution, a huge amount
of time and resources are needed. There is also high error susceptibility.

At this moment, the detection of COVID-19 is primarily done via
polymerase chain reaction (PCR) tests. However, researchers are looking
for advantageous alternative solutions. Besides the detection of COVID-
19, there is also a focus on carrying out antibody tests that can help
determine a previously infected person, resulting in a better under-
standing of the virus' spread. Besides using the THz band in imaging for
detecting viruses, THz technology can also assist patients' remote oper-
ations during a pandemic. For example, THz-based wearable sensors or
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implants on the patient's body can collect health data at high rates and
forward it to the healthcare support staff, where actions can be taken
remotely to assist patients. The development of any new technology al-
ways raises both positive and negative feelings. Nowadays, the major
focus is on 5G technology, and there is a strong belief among a consid-
erable number of people that 5G technology negatively affects human
health [57].

The auto encoder model was implemented in a MATLAB tool in this
article, and scalograms generated from Wi-Fi signals were used for
training, validation, and testing.

They describe the use of next-generation body-centric communica-
tion for occupancy monitoring, which can provide a cost-effective and
privacy-preserving solution for lowering energy usage and carbon foot-
print. They used machine learning algorithms; in this section, they didn't
give any description of the K-nearest algorithms. In other papers, there
are no conflicts of interest.

In the THz antenna with a machine learning approach to 6G network,
we can see there are some hardware issues like antennas, so it will be
costly. Again, if we see beam selection, there are some assumptions in
multi-user uplink, so it is not suitable in all situations. Using THz DL CT is
very time-consuming. THz communication will be very flexible in the
future, but as we need 6G networks and other hardware, it will become
very cost-effective.

A machine learning technique called Support Vector Machines
(SVMs) was used to develop and optimize reflect arrayantennas [89]. As
a result, computing time is reduced without a decrease in accuracy. The
main significance of [89] is that by using SVMs, cross polar isolation and
cross polar discrimination can be improved and the computing time re-
mains the same. But there is a problem with a lack of quality data,
inadequate infrastructure and resources. SVMs do not work well with
large datasets because the required time is higher.

In [90], to simplify feasible beam hopping (BH) in multibeam satellite
systems, a Deep Learning (DL) based path was developed. In the satellite
coverage area, to manage time variants and irregular traffic requests, BH
can maintain flexibility. A learning and optimization approach was used
to create a rapid, near-optimal, and viable solution for BH scheduling.
But there are some problems with Deep Learning. The duration of
development is long, large and clean data is needed, and it is also
computationally expensive.



Table 8. Comparison of the different machine learning techniques used in the investigated papers for Textile.

Reference No. Antenna Used Algorithm Used Compared to Result

[78] Dual-polarized textile patch antenna PDF Hybrid machine learning-based framework

[81] Folded dipole antenna, SVM Knitted folded dipole antenna design and application

[85] Dipole antenna CNN CNN Clothface technology that can recognize handwriting

[92] Textile antenna SUMO toolbox Overview of SBO

Table 9. Comparison of the different machine learning techniques used in the investigated papers for GPS.

Reference
No.

Antenna
Used

Algorithm
Used

Compared to Result

[93] GPS antenna Neural network
(NN)

Conventional early-minus-late DLL,
narrow correlator, and high resolution
correlator.

In high multipath situations, the NN-based DLL generates lower code phase root mean
squared error than the three traditional approaches (standard early-minus-late DLL,
narrow correlator, and high resolution correlator).

[95] GPS SMA
antenna

Neural network Support Vector Machine and Crowd-GPS-
Sec

It has a high likelihood of detection and a low likelihood of false alert.
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A deep neural networkmodel of tuning Optical Beamforming Networks
(OBFNs)was devised in [95]. Small and flat Phased Array Antennas (PAAs)
must be tuned for OBFNs in order to receive signals from space, allowing
planes and satellites to communicate. But problems can be faced with
repairing and maintaining satellites. Also, much more data is required in
neural networks than in traditional machine learning algorithms.

An artificial intelligence (AI) based pointing and tracking method for
mobile terminals and stations in satellite terrestrial networks was
developed in [108] to ensure that mobile stations and terminals experi-
ence minimal communication interference and can access ideal antenna
signals from other stations or terminals. But there are also some limita-
tions, and those require supervision, cost, and maintenance. There is no
one-size-fits-all solution.

In [115], the use of AI in satellite communication has been discussed.
There is no practical application for this study.

The research on combining unmanned aerial vehicles and machine
learning is still in its early stages. The current study discovered that
research in this area is inconsistent, with the majority of it relating to
computer/wireless networks, smart cities, the military, agriculture,
mining, and statistical analysis of wild life. In UAV, the random forest and
support vectors have been employed in different ways. It can be done on
a model for detecting and identifying unregistered consumer UAVs, and
trained machine learning models for recognizing objects in UAV and
satellite imagery can also be constructed.

Deep RL can also be used to adjust the speed of the UAV cloudlet (s)
dynamically in order to improve user performance. When the derived so-
lutions operate on data with different properties than the data used to train
themodel, theperformanceofMachine learning techniquesmaybereduced
or unanticipated behaviors may occur. They can also obtain resource loca-
tion information more quickly and efficiently using this method.

It should be noted that machine learning tools are frequently used in
the literature to solve problems that could be solved in a more simple and
deterministic manner, giving the impression that the need for machine
learning is not well justified, which could lead to machine learning
misapplication in many cases.

In this paper, they can also use machine learning algorithms and re-
identification using the features of each target. In the future, the
pattern of the animal's skin and the shape of the animal's body can be
considered.

In textile antenna design, all of the work is focused on the flexibility of
textile areas. In the UQ method, some random variables are introduced,
but not all the variables are used to show the result. In cloth face tech-
nology, it is cost-effective as there are some hardware issues. The SBO
method has not been experimented with on other antennas.

In the simulation result of the proposed NNDL is compared to that of
traditional code phase tracking solutions such as E-L DLL, HRC, and
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narrow correlator. While the NN outperformed traditional approaches in
a multipath environment, the NNDLL was shown to be able to match the
performance of traditional code phase tracking approaches when multi-
path was not present. With genuine GPS signals, the NNDLL was able to
achieve nearly half the RMSE of an E-L DLL while being trained with
simulated GPS signals. But there are many problems with neural net-
works, and those are the large amount of data needed, the lack of clean
data, and the computationally expensive nature.

Based on an artificial neural network, proposes a machine learning
method for detecting GPS spoofing signals. But there are some problems
that can be faced by this solution, and those are high error-susceptibility
and a lack of skilled resources.

In the Deep Learning dependent millimeter wave positioning solu-
tion's energy consumption is evaluated. But some issues can be faced with
these problems, such as the long duration of development, the huge
amount of data needed and the cost. DL systems are fragile and when
errors are made, the errors can be huge (see Tables 3, 4, 5, 6, 7, 8, and 9).

4. Conclusion

This paper provides an overview of the uses of machine learning, deep
learning, and artificial intelligence in antenna design. A comprehensive
study was conducted on various antenna designs, and we found that the
newly developed methods of antenna design by machine learning, deep
learning, and artificial intelligence give better results than conventional
methods. We explored the fields of millimeter wave, UAV, THz, satellite,
textile, body centric, and GPS for antenna design. We found that the use
of machine learning, deep learning, and artificial intelligence can save
time and, with the minimization of errors, can provide high accuracy for
the above fields of antenna design and also speed up the antenna design
process. In this study, fewer simulations, efficient antenna behavior
prediction, and less computational time have been seen in the field of
antenna design by machine learning, deep learning, and artificial
intelligence.
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