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Abstract

Extracellular signals are captured and transmitted by signaling proteins inside a cell. An

important type of cellular responses to the signals is the cell fate decision, e.g., apoptosis.

However, the underlying mechanisms of cell fate regulation are still unclear, thus compre-

hensive and detailed kinetic models are not yet available. Alternatively, data-driven mod-

els are promising to bridge signaling data with the phenotypic measurements of cell fates.

The traditional linear model for data-driven modeling of signaling pathways has its limita-

tions because it assumes that the a cell fate is proportional to the activities of signaling

proteins, which is unlikely in the complex biological systems. Therefore, we propose a

power-law model to relate the activities of all the measured signaling proteins to the prob-

abilities of cell fates. In our experiments, we compared our nonlinear power-law model

with the linear model on three cancer datasets with phosphoproteomics and cell fate mea-

surements, which demonstrated that the nonlinear model has superior performance on

cell fates prediction. By in silico simulation of virtual protein knock-down, the proposed

model is able to reveal drug effects which can complement traditional approaches such

as binding affinity analysis. Moreover, our model is able to capture cell line specific infor-

mation to distinguish one cell line from another in cell fate prediction. Our results show

that the power-law data-driven model is able to perform better in cell fate prediction and

provide more insights into the signaling pathways for cancer cell fates than the linear

model.

Introduction

The extracellular signals are captured and transmitted into the cells through signaling path-
ways. Generally, signal transduction involves various protein modifications such as phos-
phorylation. The signals are transmitted down to the nucleus or other cellular organelles to
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regulate their physiological functions and control the cell fates (e.g., apoptosis, proliferation
and cell cycle). Although wet-lab experimental evidence has suggested some proteins to be
crucial to one of the cell fates (e.g., engagement of TNF is able to trigger cell death [1]), it is
still unclear how the signaling proteins are integrated to systematically decide the cell fates.
Therefore, computational models are needed to study how the signaling “input” is related to
the cell fate “output”.
Many statistical methods have been employed to model the relationship between the input

and the output of a system, including the autoregressive with exogenous terms (ARX)model
and the power-law statistical model. In an ARXmodel [2, 3] the current value of each variable
of interest is predicted based on its previous values in the time series and the past values of the
exogenous series. The power-law distributions [4, 5], in which some quantity varies as a power
of another quantity, have been investigated and applied in an extraordinarily diverse range of
scientific areas, such as earth and planetary sciences [6] and social sciences [7]. In biology,
studies have also shown that many complex phenomena of living systems scale with the bio-
mass in a simple power-law fashion. For example, the metabolic rate scales as the 3

4
power of

mass [8] across nearly all life forms and the population density is inversely proportional to the
individual body size with a power � 3

4
[8]. However, to the best of our knowledge the power law

has not been applied to studying the specific relationship between cellular signaling and cell
fates (e.g., apoptosis of cancer cells).
A straightforward way to model a signaling pathway is to assume a linear relationship

between the inputs and the outputs. Janes et al. [9], Gaudet et al. [10] and Lee et al. [11]
applied linear models to identify the effects of extracellular perturbations such as drug com-
binations on cancer cell death. They assumed that the phenotypic outputs are linearly related
to the signaling inputs. By using the method of partial least squares regression (PLSR), differ-
ent cellular responses between cell lines as well as various drug treatments were detected.
However, signaling pathways are so complex in their interactions (e.g., multiple levels of
cross-talks and feedbacks) that their behaviours are expected to be nonlinear [12, 13]. Lege-
wie et al. [14] found that the inhibition of pathways that control apoptosis results in a posi-
tive feedback leading to bistability. Eissing et al. [15] also revealed that a positive feedback
loop plays an important role in signal-induced apoptosis. Callard et al. [16] summarized sev-
eral nonlinear properties of biological systems, such as the difficulty in predicting the behav-
iors of the whole system based on parts, a small change in a specific component can have
significant effect on the system thus making this component essential. They also studied typi-
cal cytokine dose-response curves and indicated that cells have no response if the concentra-
tion of cytokine is below a certain value; on the other hand, the cellular response is
approximately an exponential function of the signal quantity until the response reaches a pla-
teau maximum.
In this paper, we propose a power-law model to predict the probabilities of cell fates based

on the activity levels (e.g., the phosphorylation levels) of signaling proteins. Simulations based
on generalized Boolean network and ordinary differential equations are exploited for model
validation. The results show that the proposedmodel has better performance than the linear
models on cell fate prediction.Moreover, the proposedmodel is also able to identify the signal
transduction events that are blocked by the drugs, thereby revealing the drug-induced signaling
pathway alterations. When our nonlinear model is applied to cell line discrimination, the cell
lines are much better separated and more concentrated compared with the results of the linear
model. Testing on 3 different cancer datasets [10, 11, 17] suggests that our nonlinear power-
law model has some superiority over the linear model.

Power-Law Model of Cancer Signaling Data
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Methods and Data

Data

We downloaded 3 cancer datasets to evaluate the performance of the proposedmodel. The first
dataset is from the published work of Lee et al. [11]. In this dataset, activity levels of 32 signal-
ing proteins are measured at 8 time points. The measurements of 6 types of cell fates (i.e. apo-
ptosis, proliferation and cell cycle phases including G1, S, G2 and M) refer to the normalized
numbers of cells of the cell fates which are measured at 5 different time points using flow
cytometry. 6 treatments designed for 3 breast cancer cell lines (i.e. BT20, MDA-MB-453 and
MCF7) are performed on triplicate plates (i.e. 3 replicates). In each cell line, there are 18 obser-
vations of both signals and cell fates at each time point. In total, there are 432 (3 replicates × 8
time points × 6 treatments × 3 cell lines) measurements for each signaling protein and 270 (3
replicates × 5 time points × 6 treatments × 3 cell lines) observations for each cell fate. The pre-
processing of the data was as follows. First, we extracted the signaling “inputs” and cell fate
“outputs” with the same experimental treatments and the cell lines. Second, we removed the
observationswith 0 or negative values or NANs (not measured). Finally, there are 164 observa-
tions left (75 of BT20, 56 of MDA-MB-453 and 33 of MCF7). We further calculated the pro-
portion of apoptotic cells under each observation, because our model aims to predict the cell
apoptosis.
The second dataset [10] contains measurements of phosphorylation levels acquired from

HT-29 cells (human colorectal adenocarcinoma cell line) under 12 different treatments (i.e.
combination of 3 stimuli of TNFR, EGFR and Insulin). In each treatment, the phosphorylation
levels of 19 proteins are measured at 13 time points. Four types of cell apoptotic responses (i.e.
cleaved caspase-3, sub-G1, phosphatidylserine exposure and membrane permeabilization) are
measured at 3 time points. For every experiment there are 3 replicates (except at time point 0 at
which 6 replicates were made). As such, the second dataset consists of 504 (3 replicates × (13+1)
time points × 12 treatments) measurements for each signaling protein and 108 (3 replicates × 3
time points × 12 treatments) measurements for each cell response.
The third dataset is from the DREAM8 (Dialogue for Reverse EngineeringAssessments and

Methods) challenge in 2013 [17]. The DREAM8 dataset consists of 4 breast cancer cell lines,
namely, BT20, BT549, MCF7 and UACC812, and each cell line is perturbedby the combina-
tion of 3 inhibitors and 8 ligand stimuli. These 3 inhibitors target at AKT, AKT with MEK, and
FGFR1 with FGFR3, respectively. The 8 ligand stimuli include Serum, PBS, EGF, Insulin,
FGF1, HGF, NRG1 and IGF1. In each cell line, a number of phosphoproteins are measured at
7 time points after a perturbation, e.g., 48 phosphoproteins in BT20, 45 in BT549, 41 in MCF7
and 45 in UACC812. Overall, there are 234, 252, 312 and 312 observations for cell lines BT20,
BT549, MCF7 and UACC812, respectively. Note that this dataset contains only breast cancer
proteomics data without any measurement of cellular response.

Nonlinear power-law model

Suppose P is the score indicate the probability of cell death, xi (i = 1. . .n, where n is the number
of measured signaling proteins) indicates the signaling activity (e.g., phosphorylation level) of
the i-th protein and αi (i = 1. . .n) represents the contribution of the i-th protein to the cell
death. Then our good is to construct a statistical model P ¼ Fðx1; x2; . . . ; xnÞ that relates the
signaling “inputs” to the phenotypic “outputs”. The most commonly used linear model [10, 11]
can be written as

P ¼
Xn

i¼1

aixi þ ε; ð1Þ

Power-Law Model of Cancer Signaling Data
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where ε is a noise term representing the influence of the unmeasured signaling proteins to cell
death.
If we regard the activities of signaling proteins as the independent variables and the cell

death as the dependent variable, the coefficientαi can be identified by regression methods.
These parameters can be used to capture the covariance between independent and dependent
variables, i.e., to infer their causal relationship [18].
Despite promising results of using the linear model for signaling analysis [11], it is unlikely

that the probabilities of cell fates are proportional to everymolecular species with a constant
ratio, i.e., the linear function in Eq (1) may be unable to model the nonlinear relationship in a
biological system. To search for suitable nonlinear models, we first designed simulation experi-
ments to study how cell fates are related to signaling proteins one at a time, i.e., construction of
a functionwith a single variable. We first extracted a network (Fig 1(a)), which describes cell
death regulation, from the model suggested by Lee et al. [11]. In this network, cell death is
enhanced by DNA damage while inhibited by EGFR. Then SimBoolNet, an open source Cytos-
cape plugin which had been designed for dynamically simulating the process of signal trans-
duction based on an extended Boolean network model [19], was employed to run the
simulations. We selected EGFR and DNA Damage as the input signals. Since we have insuffi-
cient prior knowledge to determine the parameters here, the default settings of the software
were employed: the edge weights (value 2[0, 1]) of both activation and blockage were set to 0.8;
moreover, the input levels (value 2[0, 1]) of EGFR and DNA Damage were both set to 0.8. The
simulation generated time-series data containing 100 time points. Fig 1(b) shows the simula-
tion results of DNA Damage and Cell Death. Considering the simulated time-series data as
vectors with length of 100, the Curve Fitting Tool fromMATLAB R2015b was used to analyze
the data and identify the function that best describes the relationship between cell death and
each node in the network. The results may provide a clue to help construct a function that
relates cell death with all signaling proteins (i.e. a multivariate function).
For comparison, we employed four different models, i.e., power function, linear function,

exponential function and Gaussian function (Eq 2), to do the regression. In Eq 2, y and x
represent the cell death and the activity level of a signaling protein at the same time point

Fig 1. (a) A signaling network for cell death regulation [11]. Cell death is enhanced due to DNA damage

while inhibited by the signals transmitted from EGFR. The arrow shape represents activation while a flat-

head edge means inhibition. Pink nodes denote the species that have experimental measurements. (b) The

simulation results of DNA Damage and Cell Death.

doi:10.1371/journal.pone.0165049.g001
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t (t = 1. . .100). Four statistical measures generated by the Curve Fitting Tool were used to eval-
uate the goodness of fit: sum of squares due to error (SSE), R-Square (value 2[0, 1]), degrees of
freedom adjusted R-Square (value< = 1) and root mean squared error (RMSE). For SSE and
RMSE whose values are always between 0 and 1, a value closer to 0 indicates that the model has
a smaller random error component and that the fit is better. By contrast, for R-Square and
adjusted R-Square, a value closer to 1 indicates a better fit.

Power : y ¼ a� xb

Linear : y ¼ a� x þ b

Exponential : y ¼ a� expb�x

Gaussian : y ¼ a� exp�
ðx� bÞ2

c2

ð2Þ

To relate a dependent variable to more than one independent variables in a biological pro-
cess, Savageau used the Power-Law formalism in biochemical systems theory such that one var-
iable (e.g., the rate of a biological process) is represented as a power function of others (e.g., the
concentrations of biologicalmoleculars) [20, 21]. Since many biological processes can be
approximated by a straight line in a log-log plot over a wide range [22], we formulated the
model as a product of power functions of the variables, given as

y ¼ c �
Yn

i¼1

xbi
i ; ð3Þ

where y and xi represent the components of the biochemical system, and c is a constant.
Therefore, we combined all the 6 nodes (i.e., DNA Damage, EGFR, Oncogenic Signature,

Casp8, Casp9 and Casp3) together as independent variables and fit the simulation data into
Eqs (1) and (3), respectively. Least-squares regression was employed to estimate the coefficients
of the regression functions, and root mean squared error (RMSE) was used to measure the
goodness of fit.
Given the results in Section “Analysis of simulation data”, we propose a model to relate the

cell death to the activities of all the measured signaling proteins, given as

P ¼ eb0 �
Yn

i¼1

xbi
i þ ε; ð4Þ

where the parameter βi(i = 1. . .n) represents the contribution of the ith protein to the cell
death and ε is a small constant term to keep the function from crossing the origin (i.e., the
value of a dependent variable is not required to be zero when the value of an independent vari-
able equals zero). The proposedmodel is used to describe the system at any time point during a
biological process, not necessarily the steady state.

CellDesigner simulation

In addition to the above simulation using BooleanNetwork (i.e., SimBoolNet), we also com-
pared the linear model with the nonlinear model on simulating data generated by solving
ordinary differential equations (ODEs) which is a continuous model of biological systems
with known biochemical kinetics. ODE models have been successfully applied to modeling
numerous processes in living systems [23–26]. CellDesigner is a process diagram editor for
biochemical networks as well as an ODE-based simulator [27]. We chose CellDesigher to test
if our nonlinear model can accurately describe the relationships generated with an ODE-
basedmodel.

Power-Law Model of Cancer Signaling Data
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We selected from the BioModels Database [28] an ODE-basedmodel that was constructed
to quantitatively analyze the pathways responsible for controlling extrinsic apoptosis in single
cells [9]. The network is composed of 112 nodes. Simulations were conducted using the simula-
tor of CellDesignerwith the default setting of the parameters, which spanned 20,000 time
points. We then selected data every 200 time points and collected 100 observations. Before fit-
ting the simulation data, the molecular species whose concentrations remained 0 during all the
time points of the simulation were removed and as such 58 nodes were retained. Apoptosis was
chosen as the dependent variable and all the other 57 nodes were regarded as the independent
variables. PLSR was employed to preform the regression. Five-fold cross-validation was carried
out, and the parameters in Eqs (1) and (4) were learned based on the training data set. The pre-
diction was performed on the testing data set. The above process was repeated for 200 times to
generate 1000 outputs.
Both the Spearman and Pearson correlation coefficients between the model predictions and

the testing data were calculated to assess the performances of Eqs (1) and (4). The Spearman
correlation coefficient benchmarks monotonic relationship and the Pearson correlation coeffi-
cient is a measure of the linear correlation between two variables. If both coefficients are high
(e.g., higher than 0.9), the model predictions are considered to have high accuracy.

Evaluation metrics of model performance

In addition to simulation studies, we also carried out cross-validation on the 3 real cancer data-
sets and employed PLSR to estimate the parameters. PLSR is used when the goal is to predict
causal relations between independent and dependent variables. It seeks to maximize the corre-
lations between the principle components of independent variables and those of dependent
variables. Therefore, PLSR emphasizes the independent variables that have strong covariance
with the dependent variables.
For the nonlinear model, we substituted the cell death data and signaling protein data of the

training data set into Eq (5) which is the logarithmic deformation of Eq (4), given as

ln ðP � εÞ ¼ b0 þ
Xn

i¼1

bi ln ðxiÞ; ð5Þ

and employed PLSR to estimate the parameter βi (where i = 0. . .n, and n is the total number of
measured signaling proteins). For the linear model, we directly use the original PLSR to esti-
mate all the parameters from the training data set. Hence, we were able to make predictions
using both the linear and the nonlinear models on the testing data set.
Besides the Spearman correlation and the Pearson correlation, Kullback-Leibler divergence

was employed as the loss function to assess the discrepancy between the predicted and the
actual probabilities (e.g., the proportion of dead cells among all the cells in the real data is con-
sidered as the cell death score). In information theory, the Kullback-Leibler divergence is used
to quantify the difference between two distributions [29]. Suppose p̂ is the predicted distribu-
tion and p is the actual distribution, the loss function is written as

Lðp; p̂Þ ¼
Xm

i¼1

pi log 2ðpi=p̂iÞ; ð6Þ

wherem is the total number of predictions. The value of Kullback-Leibler divergence is non-
negative. If the distributions of predicted and actual probabilities are perfectlymatched, this
value will be zero.

Power-Law Model of Cancer Signaling Data
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Identification of drug effects

The identification of drug effects plays an important role in biomedical research and pharma-
ceutical applications. One primary objective is to selectively target a signaling pathway while
making the others unaffected. The in vivo drug effects on the signaling pathways can be esti-
mated according to the change of the signals downstream the drug target [30]. For example, in
Fig 1, if Casp9 is the drug target, the activity of Casp3 will decrease (since the signal transduc-
tion from Casp9 to Casp3 is blocked) even though the signal transduction to Casp9 is not
blocked.
According to the different treatments, we divided the real data set [11] into two groups: con-

trol group and drugged group. Using the control data, we learned the parameters in Eqs (4)
and (7). Eq (7) describes the relationship between one signaling protein with all the other mea-
sured proteins. The parameters in Eq (7) form a matrixM with each element λij representing
the influence of the j-th signaling protein on the i-th protein [31].

xi ¼ eli0 �
Yn

j¼1

xlij
j þ εi; ð7Þ

where λij = 0, if i = j, otherwiseλij = 0 will be learnt from the data.
We iteratively selected the k-th signaling protein as the blocked protein. Every entry of the

k-th column of the matrixM is thus set to zero, meaning there is no influence of this protein on
the other proteins any more. And βk in Eq (4) is also set to zero to remove the contribution of the
k-th protein to cell death. Subsequently, the new parameter b

0

jðj ¼ 1 . . . n; and if j ¼ k; b0j ¼ 0Þ is
calculated as b

0

j ¼
Pn

i¼1
lijbi to modify the influence of the j-th protein to the cell death after the

knock-downof the k-th protein. The term λij βi denotes that the contribution of the j-th protein
to cell death is made by influencing the activity of the i-th protein as an intermediary. Then
using the signaling data of the druggedgroup, the predicted probabilities of cell death were calcu-
lated and root mean squared error (RMSE) was employed to measure the goodness of fit to the
real data. If the fit is good, it can be inferred that the drug blocks the signal transduction from the
drug-targetednodes to the k-th signaling protein. This in silico simulation of protein knock-
down is thus able to predict drug effects.

Results and Discussion

Analysis of simulation data

Single variable scenario. Table 1 shows the curve fitting results when the cell death is one
of the following functions of EGFR (or DNA Damage), namely power function, linear function,
exponential function and Gaussian function, respectively. We can see from the table that the

Table 1. Curve fitting results of Power function, Linear function, Gaussian function and Exponential function. The statistics are about EGFR and

DNA Damage.

Node Function SSE R-Square Adjusted R-Square RMSE

EGFR Power 1.3 � 10−3 0.99 0.99 3.6 � 10−3

Linear 2.1 � 10−2 0.97 0.97 1.5 � 10−2

Exponential 8.0 � 10−2 0.88 0.88 2.9 � 10−2

Gaussian 1.5 � 10−2 0.98 0.97 1.2 � 10−2

DNA Damage Power 1.3 � 10−3 0.99 0.99 3.7 � 10−3

Linear 2.0 � 10−2 0.96 0.96 1.4 � 10−2

Exponential 7.9 � 10−2 0.88 0.87 2.8 � 10−2

Gaussian 1.4 � 10−2 0.97 0.97 1.2 � 10−2

doi:10.1371/journal.pone.0165049.t001
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power function has the best fit to the simulation data. Taking EGFR as an example, the SSE
and the RMSE of the power function are closest to 0 and the R-Square and the adjusted
R-Square of the power function are closest to 1. This means that using a power function is
probably the best way to describe the relationship between cell death and EGFR among the
four functions. A similar conclusion can be drawn for Oncogenic Signature, Casp8, Casp9 and
Casp3 (data not shown). We then triedmany other settings (e.g., different edge weights and
input levels) to run SimBoolNet which showed that the power functionwas also the best fit to
the simulation data (data not shown).

Multiple variables scenario. Then all the 6 nodes (i.e., DNA Damage, EGFR,Oncogenic
Signature, Casp8, Casp9 and Casp3) were combined together as independent variables and fit
the simulation data into Eqs (1) and (3). The RMSE values are 6.19 × 10−5 and 4.13 × 10−5

when the simulation data was fitted into Eqs (1) and (3), respectively. The Pearson’s correla-
tions coefficients between the model predictions and the synthetic data were also calculated.
The correlation coefficient between our model predictions and the synthetic data was 0.89,
while the coefficientwas 0.74 for the linear model prediction. The result shows that Eq (3) fits
the simulation data better than Eq (1).

CellDesignersimulation. From Fig 2, it is clear that the number of outputs with both
coefficients higher than a threshold (e.g., 0.9, 0.8 and 0.7) from the nonlinear model is larger
than that from the linear model. As the threshold increases from 0.7 to 0.9, the superiority of
the nonlinear model over the linear model becomesmore obvious. The regression results dem-
onstrate that the present nonlinear model fits the ODE-based system simulation data better
than the linear model.

Results on breast cancer cell lines

Prediction of cell fate. Based on the phosphorylation levels of 32 signaling proteins at a
time point, we intended to predict the cell death at the corresponding time point. Both the lin-
ear (Eq (1)) and our nonlinear (time point. Both the linear Eq (4)) models were employed to
relate the cell death to the activities of proteins. Cross-validation was used to estimate the per-
formance of both models on cell death prediction.
First we carried out 5-fold cross-validation on the data set within the same cell line. Because

the number of observations of cell line MCF7 is smaller than the number of parameters, we
ignored this cell line to avoid overfitting. Altogether, we did 100 times of validations and gener-
ated 1000 outputs for the linear model and 1000 outputs for the nonlinear model (Fig 3).
Fig 3(a) and 3(b) show that the distribution of the outputs generated by the nonlinear

model is more concentrated than the outputs of the linear model in the area where both the
Spearman correlation coefficients and the Pearson correlation coefficients are high. Also, it is
clear that the number of outputs with both coefficients higher than a threshold (e.g., 0.9, 0.8
and 0.7) from the nonlinear model is larger than that from the linear model (Fig 3(c)). When
the threshold is set to 0.7, satisfactory results of the nonlinear model is 96.2%, compared with
65.5% from the linear model. The difference increases from 30.7% to 42.0% when the threshold
is 0.8. A remarkable difference (32.4%) is also observed if the threshold is set to 0.9. Moreover,
one-way analysis of variance (one-way ANOVA) was used to compare the correlations of
model predictions with the real data of cell fate over time points between our model and the
linear model. Table 2 shows the means and standard deviations of the correlation coefficients,
and the p-value of the one-way ANOVA analysis. We observed that the correlations between
our model predictions and the real data are significantly better than the linear model, suggest-
ing that the nonlinear model performs better than the liner model of cell fate prediction with
statistical significance.

Power-Law Model of Cancer Signaling Data
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Among 1000 outputs, both the linear and the nonlinear models make 13,100 predictions.
Using Eq (6), we calculated Kullback-Leibler divergence for the predictions of both models.
67.2 is obtained by the nonlinear model which is smaller than 277.7 by the linear model. This
further demonstrates that the probabilities predicted by our nonlinear model are more
accurate.
We then combined 164 observations from all the 3 cell lines as a whole dataset to do 5-fold

cross-validation. This experiment was designed for the situation when the data have no cell
line information. Cross-validation was run for 200 times and 1000 outputs were generated.
Fig 4 displays the performance comparison between the linear and the nonlinear models. It

is clear that for all the 3 thresholds, the proposed nonlinear model has superiority over the lin-
ear model on cell death prediction. A consistent conclusion can be drawn from the Kullback-
Leibler divergence, since for the 32,800 predictions of the linear and the nonlinear models the
values are 1,117.5 and 450.5, respectively. Moreover, Akaike information criterion (AIC) was
calculated based on Eq (8) where Lðp; p̂Þ is the loss function from Eq (6), k is the number of
parameters andm is the number of predictions. Since the numbers of parameters in the linear

Fig 2. Cross-validation of the linear and the nonlinear models on synthetic data. Five-fold cross-validation of the linear (blue bars)

and the nonlinear (yellow bars) models on the simulation data generated with an ODE-based system. For example, 999 out of the total

1000 predictions made by the nonlinear model have both the Spearman and the Pearson correlations with the testing data higher than 0.7.

doi:10.1371/journal.pone.0165049.g002

Power-Law Model of Cancer Signaling Data
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Fig 3. Performance comparison of cell death prediction within each cell line. More outputs have high

coefficients in the nonlinear model (a) than in the linear model (b). (c) Comparison between the two models

by counting how many outputs have both coefficients higher than a threshold (e.g., 0.7, 0.8 and 0.9).

doi:10.1371/journal.pone.0165049.g003

Power-Law Model of Cancer Signaling Data
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and the power-law models are the same (i.e., 33), the values of AIC for the linear model and
nonlinear model are 10.1 and 8.8, respectively, demonstrating that it has a better fit than the
linear model has a better fit.

AIC ¼ ln ðLðp; p̂ÞÞ þ
2k
m
; ð8Þ

Table 2. The mean and standard deviation of the correlation between model predictions and the real data. The p-value of one-way analysis of vari-

ance shows that the correlations between our model predictions and the real data are significantly better than the correlations between the linear model pre-

dictions and the real data.

Our model The linear model p-value from one-way ANOVA

Mean SD Mean SD

Spearman correlations 0.90 0.06 0.74 0.17 2.6E-145

Pearson correlations 0.89 0.08 0.82 0.13 2.3E-41

doi:10.1371/journal.pone.0165049.t002

Fig 4. Comparison of cell death prediction by the linear and the nonlinear models when combining all three cell lines together.

doi:10.1371/journal.pone.0165049.g004
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Then, we tested both the linear and our nonlinear models by training and predicting in
alternative cell lines to see which model can perform better. We chose the cell lines of BT20
and MDA-MB-453 but ignoredMCF7 because the number of observations in MCF7 is smaller
than the number of parameters. Table 3 shows the result of the prediction across cell lines.
With regard to the absolute value of the correlation coefficient, the closer it is to 1, the better is
the correlation between the predicted and real data. When BT20 is used for training and
MDA-MB-453 is used for testing, the nonlinear predictions are more monotonically correlated
with the testing data and have less loss of information than the linear predictions, but the linear
predictions have better linear correlation with the real data. Alternatively, whenMDA-MB-453
is employed as the training data set, the proposed nonlinear model outperforms the linear
model on both correlations. Also, the Kullback-Leibler divergence indicates that the nonlinear
model can capture more information.
Overall, when predicting cell death probabilities from the activities of signaling proteins,

our nonlinear model has some superiority over the linear model.
Drug effects identificationby in silico simulation of protein knock-down. Suppose

node u is the upstream signaling protein of node v and node u is a drug target. As such, the
drug will block the signal flow from u to v. The signals transmitted to v are decreasedwhile
those transmitted to u should remain unchanged. The interactions between v and other pro-
teins are thus weakened. In the data-driven methods, the correlations between v and other
nodes in the network (including other proteins and the cell death) are reduced. However, this
does not necessarily happen to u. Hence, in the dataset of drug treatment, the contributions of
v to other proteins should be less significant than in the control data, and the impact of the
knock-down of v on cell responses should be relatively small. Therefore, by setting both βv in
Eq (4) and λiv in Eq (7) to zero (i.e., remove the influences of v on the other molecules), the pre-
dicted probabilities of cell death should have smaller discrepancies (e.g., smaller RMSE) with
the real data in the drugged group.
For each of the 32 signaling proteins [11], we simulated the knock-down and ranked them

according to the RMSE. STAT3, p27, p53, ERK and HSP27 are the top 5 proteins with the
smallest RMSE. Therefore, we assumed that the drug target should be the common upstream
node of these top-ranked proteins. Next we extracted pathway information from the GeneGO
MetaCore database [32]. Fig 5 displays the pathways that contain the top-ranked proteins as
well as some related proteins. We can see that EGFR is the common upstream node of all the
5 proteins thus it is inferred as the drug target. A red edge denotes that the reaction should be
removed from the pathway, since the signal transduction from EGFR to ERK is blocked. In
[11], the drug (erlotinib) used is indeed known as an EGFR inhibitor. Erlotinib is a small mol-
ecule that is able to block the signal transduction downstream of EGFR, such as the PI3K-AKT
or the RAS-RAF-MAPK-MEK-ERK pathway [33]. In our experiment, however, AKT was
ranked the fifth from the bottom, meaning the signals transmitted to AKT were not blocked,
which suggests that the PI3K-AKT pathway in Fig 5 cannot be removed although the drug tar-
gets EGFR. This interpretation was also consistent with that in [30], the authors of which

Table 3. Performance of the linear and the nonlinear models in predicting cell fate across cell lines.

Train Test Model Spearman Pearson Kullback

BT20 MDA nonlinear 0.64 0.53 0.19

linear 0.60 0.68 0.23

MDA BT20 nonlinear 0.70 0.57 0.30

linear -0.36 -0.25 1.0

doi:10.1371/journal.pone.0165049.t003
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identified erlotinib-inducedpathway alterations using Integer Linear Programming and pre-
dicted that the RAS-RAF-MAPK-MEK-ERK cascade was removed while the PI3K-AKT net-
work was retained. This is because the PI3K-AKT pathway was used by other pathways which
cannot be blocked by erlotinib. Therefore, knowing that the drug is well designed to hit certain
molecules is not sufficient for identifying the drug effects. The experiment shows that the pro-
posedmodel is able to identify not only the drug target but also the drug effects by rewiring
signaling pathways in silico, which shows a great potential to complement the analysis based
on the drug’s biochemical activity (e.g., binding affinities). In addition, the in silico simulation
of protein knock-downwas executed using the linear model to test if the linear model is able
to identify the drug targets and drug effects. Following the same process aforementioned, the
top 5 proteins with the relatively small RMSE between the linear model predictions and the
real data were Caspase 9, BID, RIP, JNK and S6. However, based on GeneGOMetaCore data-
base [32], Caspase 9, BID, JNK and S6 are all downstream of PI3K-AKT pathway which
should not be blocked by an EGFR inhibitor since PI3K-AKT pathway is used by other path-
ways (e.g., TNFR-PI3K-AKT) [30]. There was no evidence of RIP being downstream of EGFR
[32]. Therefore, the linear model showed limited capability of identifying drug targets and
drug effects.

Identifying time-staggered input-output relationship. The process of phosphorylation
of signaling proteins and the transduction of the signals to the downstream pathways are
accomplished within minutes. On the other hand, it may take hours for the cells to adjust its
phenotypes in response to the input signals. Therefore, the identification of time-staggered
input-output relationships is very important. We extracted 10 time points (i.e., 0, 0.1, 0.25, 0.5,
1, 2, 4, 6, 8 and 12 hours) from the data set in [11]. The phosphoproteomics data cover time
points form 0 to 7 and the cell fate data are measured at time points 0 and from 6 to 9. So we
designed experiments (Table 4) to see what time-staggered degree can reveal the most of the
input-output relationship (Fig 6). Take the time-staggered degree equal to 2 as an example, we
assumed that the “output” at time point t is the response to the “input” at time point “t−2”.
The “output” at time point 0 will be related to the “input” also at time point 0.
We constructed four data sets corresponding to the four time-staggered degrees (Table 4) to

predict the cell death. Fig 6 shows the numbers of outputs that have relatively high accuracy.
The results generated by the proposed nonlinear model show that it is most reliable that the
“output” at time point t is the response to the “input” at time point “t−3”. The same conclusion
can be drawn for the linear model.

Cell line discrimination. To model a biological system statistically, it is important to cap-
ture the common features while keeping the specific characteristics between different cell lines.
Therefore, we designed an experiment to verify the performance of our nonlinear model in cell
line discrimination. Signaling and apoptosis data from all the three cell lines [11] were com-
bined together. Principal components were extracted using PLSR (for the nonlinear model,
PLSR was used after log transformation) and observations of signaling proteins were projected
against the first two principal components (Fig 7(a)). Blue, red and black asterisks represent
observations from the BT20, MCF7 and MDA-MB-453 cell lines, respectively. The same pro-
cess was done using the linear model and the result is shown in Fig 7(b). It is clear that the
observations are highly cell line dependent. BT20 (red cluster) and MCF7 (green cluster) have
similar features on the first principal component whileMDA-MB-453 has a significantly differ-
ent behavior. On the other hand, the second principal component captures variance that can
be used to distinguish BT20 and MDA-MB-453 fromMCF7. Based on the linear model, a sig-
nificant overlap can be found between the MCF7 and MDA-MB-453 clusters and the BT20
cluster is slightly scattered. By contrast, the 3 clusters generated by our nonlinear model are
more separated and concentrated. Specifically, over ten data points are misclassified (e.g., an
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Fig 5. Pathway information extracted from GeneGO database [32]. An arrow shape edge represents activation and a flat-head edge

means inhibition. Pink nodes denote the proteins that have experimental measurements. The dash line denotes the predicted drug effects,

i.e., signal transduction is blocked here.

doi:10.1371/journal.pone.0165049.g005
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observation fromMCF7 is classified into the BT20 cluster) by the linear model while there is
only one misclassified data point by the nonlinear model.

Results on HT-29 cell line

In the above experiments, the activity level of each signaling protein is considered as an inde-
pendent variable and the dimension of the independent variables is the number of signaling
proteins. For HT-29 cell line data, we constructed a relatively high dimensional space for
independent variables [9, 10] besides the dimensions of the signaling proteins. In particular,

Table 4. Experimental design for identification of time-staggered input-output relationships.

time-staggered degree Time Point

Input 0 1 2 3 4 5 6 7

2 Output 0 6 7 8 9

3 Output 0 6 7 8 9

4 Output 0 6 7 8 9

5 Output 0 6 7 8 9

doi:10.1371/journal.pone.0165049.t004

Fig 6. Performance of the linear and the nonlinear models at different time-staggered degrees. Blue bars and yellow bars indicate

the numbers of validations which have both Spearman and Pearson correlation coefficients higher than 0.8 and 0.9, respectively.

doi:10.1371/journal.pone.0165049.g006
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Fig 7. Principal component analysis for cell line discrimination. (a) The nonlinear model. (b) The linear

model.

doi:10.1371/journal.pone.0165049.g007
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the independent variables comprise the 19 signals at all 13 time points (247 independent
variables), the instantaneous-derivative between each pair of adjacent time points for all the
19 proteins (247 independent variables), the maximum signal, the mean signal and the
steady-state signal for each protein, etc. All together, a 570-dimensional space was con-
structed and the top 20 most informative dimensions identified in [9] were all included. For
dependent variables, a 12-dimensional space was extracted (4 types of cellular responses at 3
time points) and all the data were normalized into the interval (0, 1) using the sigmoid
function.
We then compared the performance of the model proposed in [10] and our proposed

model in the prediction of cell death using a leave-one-out cross-validation. RMSE between the
model predictions and the testing data are 2.11 and 1.77 for the model of Gaudet et al. [10] and
our model, respectively. Our model achieves a lower RMSE, indicating that it could better pre-
dict the cell apoptotic responses.
We also designed experiments following the same procedure as in Section “Drug effects

identification by in silico simulation of protein knock-down” to identify the effect of the pertur-
bations on the pathways. Caspase-3, which plays a crucial role in the execution-phase of cell
apoptosis, was selected as the dependent variable. All the remaining 18 proteins were treated as
independent variables. The control group of the dataset in [10] was used for training the
parameters in Eqs (4) and (7). The observations treated by one of the 3 stimuli (i.e., TNFR,
EGFR and Insulin) were first extracted as the perturbedgroup. The in silico protein knock-
down was simulated and the proteins which induce relative large discrepancywith the real data
after knock-down are identified as the enhanced signals by the stimuli. The typical targets of
the stimuli are all ranked very high as expected, such as JNK and IKK (ranked 3rd and 4th) for
TNFR; EGFR and AKT (1st and 3rd) for EGFR; ERK,MEK and AKT (1st, 4th and 5th) for
Insulin [10]. However, when we looked into the combination of TNFR and EGFR, the signal
flows of TNFR-JNK and TNFR-IKK were significantly weakened (11th and 18th), and the sig-
nal of AKT was enhanced (2nd). On the other hand, significant reduction of the AKT signal
(ranked 16th) was detected under the the combination of TNFR and Insulin. This suggests that
the synergistic effect of TNFR and EGFR could enhance the signal flow PI3K-AKT, while the
cascades of TNFR-PI3K-AKT and Insulin-IRS1-PI3K-AKT could conflict with each other
when both TNFR and Insulin are present (Fig 8).

Results on DREAM8 dataset

The DREAM8 data released in 2013 are normalized using a procedure developed in [34]. We
reversed the procedure to generate the raw data as follows. First, we multiplied each normalized
linear value by the correction factor to get the median-centered ratio in linear value. Second,
we converted median-centered ratios in a linear value to a median-centered log2 value. Then,
we divided each median-centered data by its standard deviation for normalization. Since no
cell response were directly measured in the data set, we iteratively selected one signaling pro-
tein as the dependent variable and the remaining signaling proteins were regarded as indepen-
dent variables.
Within each cell line, the dataset was divided into two subsets, i.e., two thirds were used for

training and one third for testing. On the training part, leave-one-out cross-validation was
employed to learn the parameters in Eq (4). With the mean values of the parameters from the
cross-validation, we were able to make predictions on the testing data. We repeated the above
procedure for 100 times. Table 5 shows the RMSE which estimates the accuracy of the model
predictions for each cell line. It is clear that our nonlinear model predicts the biological system
with a higher accuracy than the linear model.

Power-Law Model of Cancer Signaling Data

PLOS ONE | DOI:10.1371/journal.pone.0165049 October 20, 2016 17 / 21



Conclusions

Data-drivenmodels are able to provide new biological insights by analysing a dataset itself.
They are particularly useful when the underlyingmolecularmechanisms are unclear. In this
paper, we proposed a nonlinear power-law model to describe the relationship between cell
fates and cell signals. Simulations based on an extendedmodel of Boolean network and ordi-
nary differential equations (ODEs) provideed hints about the form of the nonlinear function as
well as how to validate the proposedmodel. By predicting the cell responses, we compared the
performance of our nonlinear model with the linear model on 3 real data sets, demonstrating
that the proposed nonlinear model has higher accuracy than the linear model. Given network
topology, the proposedmodel performs well on drug target identification and is able to reveal
the drug effects by rewiring the signaling pathways in silico. Then our nonlinear model was
used for time-staggered input-output relationships identification and cell line discrimination.

Fig 8. Schematic representation of the signaling network induced by TNF, EGF, and insulin [10, 32].

The measured signals are highlighted in pink. Green lines with arrows and red lines with flat-heads indicate

activation and inhibition, respectively.

doi:10.1371/journal.pone.0165049.g008

Table 5. Performance of the nonlinear and linear model on DREAM8 dataset. The values are the

RMSE between the model predictions and testing data of activity of signaling proteins.

Cell lines Nonlinear model Linear model

BT20 0.41 0.71

BT549 0.46 0.69

MCF7 0.33 0.39

UACC812 0.57 1.46

doi:10.1371/journal.pone.0165049.t005
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In spite of the promising performance of our proposedmodel, limitations have also been
noticed. First, as a data-driven method, it is unable to incorporate prior biological knowledge
to take into account the underlyingmechanisms. Second, our model has not been tested for the
situation whenmore than one signaling proteins are inhibited or the corresponding genes are
knocked out at the same time. Moreover, when we compared the performance of the linear and
the nonlinear models in predicting cell fate across cell lines, the superiority of the proposed
model may not significant enough. In future, we will include network topology to improve the
model so that it can deal with synergistic effect of multiple perturbations.

Supporting Information

S1 File. SimBoolNet data. The compressed zip file contains the data in ‘.mat’ format which
can be accessed by MATLAB. This data file comprises the outputs of SimBoolNet when simu-
lated the dynamics of the network in Fig 1(a). The rows and the columns of the data matrix
represent the nodes in Fig 1(a) (i.e., Casp8, Casp9, OncogenicSignature, Casp3, CellDeath,
DNADamage and EGFR) and the simulation iterations. Besides the simulation described in
the main text, another 10 times of simulations using different parameter settings are provided
to explore the robustness of the curve fitting results to the parameters.
(ZIP)

S2 File. CellDesignerdata. The compressed zip file contains the ‘.mat’ data which comprises
the outputs of CellDesignerwhen simulated the dynamics of the network in [9]. The rows and
the columns of the data matrix represent the simulation iterations and the 112 species in the
ODE model of [9].
(ZIP)

S3 File. Breast cancer cell lines data. The compressed zip file contains the ‘.mat’ data which is
from the published work of Lee et al. [11]. The data are separated into 3 data files according to
the breast cancer cell lines, i.e. BT20, MDA-MB-453 and MCF7. Each data file comprises the
measurements of signaling proteins and cell fates from the same cell line. The rows and the col-
umns of the data matrix represent the observations and the signaling proteins (or cell fates),
respectively.
(ZIP)

S4 File. HT-29 cell line data. The compressed zip file contains the ‘.mat’ data which is from
the published work of [10]. The rows and the columns of the data matrix represent the observa-
tions and the signals (or cell responses), respectively.
(ZIP)

S5 File. DREAM8 data. The compressed zip file contains the ‘.mat’ data which is from the
DREAM8 challenge in 2013 [17]. There are four cell lines, namely BT20, BT549, MCF7 and
UACC812. The rows and the columns of the data matrix represent the observations and the
signals, respectively.
(ZIP)
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