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ABSTRACT

Global mRNA abundance depends on the balance
of synthesis and decay of a population of mRNAs.
To account for this balance during activation of T
cells, we used metabolic labeling to quantify the
contributions of RNA transcription and decay over
a 4 h time course during activation of leukemia-
derived Jurkat T cells. While prior studies suggested
more than half of the changes in mRNA abundance
were due to RNA stability, we found a smaller but
more interesting population of mRNAs changed sta-
bility. These mRNAs clustered into functionally re-
lated subpopulations that included replicative his-
tones, ribosomal biogenesis and cell motility func-
tions. We then applied a novel analysis based on
integrating global protein-RNA binding with concur-
rent changes in RNA stability at specific time points
following activation. This analysis demonstrated ro-
bust stabilization of mMRNAs by the HUR RNA-binding
protein 4 h after activation. Our unexpected findings
demonstrate that the temporal regulation of mRNA
stability coordinates vital cellular pathways and is in
part controlled by the HUR RNA binding protein in
Jurkat T cells following activation.

INTRODUCTION

Two major processes in the cell determine the abundance of
each mRNA: the rate of its transcription and the rate of its
decay. The temporal regulation of these two processes en-
ables global changes in gene expression that drive dynamic
cellular responses. For example, in the immune system, T
cell responses following activation are driven by the rapid
induction of cytokines and chemokines involving both tran-
scriptional and post-transcriptional regulation (1-6). Tight
temporal control of expression of these immunoregulatory
genes is crucial in order to strike the balance between an im-
mune response that is sufficient to clear an infection yet re-
strained enough to prevent inflammatory damage. Indeed,
control of inflammatory gene expression is increasingly rec-
ognized to include global regulation of mRNA decay in T

cells. For example, many studies have described the impor-
tance of post-transcriptional regulation of cytokines and
chemokines that cause major cellular changes in growth,
proliferation, differentiation and metabolism (6-10). But in
most of these cases, the role of post-transcriptional regu-
lation is unclear. Two distinct approaches have been used
to globally assess the involvement of post-transcriptional
regulation in activating T cells (2,5). One study compared
nuclear run-on assays with total mRNA in the first hour
of Jurkat T cell activation and extrapolated that more than
one-half of the expressed genes were changed, primarily by
mRNA decay (2). An earlier study using transcriptional in-
hibition of primary human T cells over a 2 h period of ac-
tivation by co-stimulation identified substantially less regu-
lation by mRNA decay (5). The former study utilized inva-
sive cellular methods that disrupted cell metabolism in ad-
dition to binary definitions of change, while the latter only
resolved changes for very short-lived mRNAs and could not
address transcription-dependent regulation. Therefore, the
behavior of and relationship between transcriptional and
post-transcriptional contributions to global gene expres-
sion changes during T cell activation require further exam-
ination.

Recently, methods have been developed that quanti-
tate transcription and stability rates simultaneously using
pulsed nucleotide analogues such as 4-thiouridine (4sU)
(11-16). This nucleotide analog is efficiently incorporated
into nascent mRNAs without perturbing cell metabolism
(11). This method uses the analysis of the relationships be-
tween total, labeled and unlabeled mRNAs to accurately
measure stability, even for stable mRNAs (11). Further-
more, this approach has been effectively used to quantify
mRNA synthesis and decay rates during dynamic changes
in gene expression (13,15,16). In recent studies, we used 4sU
metabolic labeling to assess the transcription and stabil-
ity in CD8* T cells responding to HIV antigens (17), and
in a model of Hepatitis C virus infection (18). Therefore,
4sU metabolic labeling is an established quantitative proce-
dure that is capable of measuring dynamic changes in both
transcription and decay during T cell activation. Moreover,
metabolic labeling can serve as a useful platform to quan-
tify how changes in RNA stability correspond with mRNA
targeting by specific RNA-binding proteins.
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In a previous study, we reported that HuR, an RNA bind-
ing protein (RBP) known to stabilize certain mRNAs, sub-
stantially changed its RNA targets following Jurkat T cell
activation (19). At each time point post-activation, HuR
maintained its well-studied preference for binding to U-rich
mRNASs (20-24). Groups of these U-rich mRNAs, however,
changed in their binding with HuR after activation. These
changes were concentrated in functionally related groups
of mRNAs that encoded cell cycle, mRNA processing and
Wnt signaling proteins (19). A change in RBP binding,
however, does not necessarily lead to a change in stability or
regulation. In fact, many RBP targeting experiments have
clearly shown that RBPs bind some mRNAs that are not
regulated. And previous approaches to understanding the
impact of RBP binding have typically used measurements of
mRNA abundance of the targeted mRNAs after disruption
of RBP expression to indicate potential regulatory events at
RBP binding sites (1,24,25). Measuring global mRNA de-
cay rates, however, can more directly measure the impact of
changes in HuR binding on RNA abundance. Therefore, we
quantified changes in mRNA stability during early Jurkat T
cell activation, and integrated these changes with data from
HuR binding to investigate how HuR affects the stability of
its mRNA targets.

To this end, we utilized 4sU metabolic labeling to quan-
tify the dynamics of transcription and decay over a 4 h time
course using the Jurkat T cell activation model. We charac-
terized the global transcriptional and post-transcriptional
regulatory dynamics and matched the relationships in sta-
bility changes with HuR targeting specificity. Contrary to
previous reports, we found that a relatively small, but func-
tionally important proportion of activated Jurkat gene reg-
ulation depends on changes in mRNA decay. Importantly,
these post-transcriptional changes included mRNAs that
encode crucial aspects of cellular signaling, replication, pro-
tein production, growth and migration. Furthermore, by
integrating global RNA stability data with RBP target-
ing data, we showed that HuR stabilizes condition-specific
mRNA targets after activation.

MATERIALS AND METHODS
Cell culture and antibodies

Jurkat cells were cultured in RPMI 1640 supplemented with
10% FBS at 37°C. For activation experiments, Jurkat cells
were cultured overnight at a concentration of 10° cells per
ml, then activated through addition of 0.5 wg/ml PMA and
2 pg/ml PHA to culture media. Anti-SLBP antibodies were
generously provided by Dr. Bill Marzluff for standard west-
ern blotting.

4-thiouridine (4sU) labeling

4sU metabolic labeling was performed as outlined in (11)
with minor modifications. Brieftly, 200 pg/ml 4-thiouridine
was added to the culture 1 h prior to each harvest time
point. Cells were lysed in Trizol (Life Technologies) and
RNA was extracted using manufacturers recommenda-
tions. 4sU labeled and unlabeled RNAs were separated as
described in (11,17). Streptavidin MyOne C1 conjugated
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dynabeads (Invitrogen) were used to bind and select biotiny-
lated RNA. Isolated RNA was prepared for either real time
polymerase chain reaction (PCR) using iScript cDNA syn-
thesis kit (Bio-Rad) or prepared for deep sequencing using
ScriptSeq RNAseq kit (Illumina).

Deep sequencing & data analysis

Sample libraries were sequenced using an Illumina Hi-Seq
2000 using 50 bp single end settings. Data were mapped us-
ing TopHat2 (26), raw counts calculated with HTSeq (27)
then counts per million were calculated and normalized
for total mRNA and labeled mRNA independently using
edgeR (28). From three biological replicates, genes with <1
read per million or >50% standard error at any time point
or condition were removed. Subsequently, levels of 4sU in-
corporation were determined as previously reported (13),
observed to be approximately | in every 125 uridine bases
(data not shown), and accounted for in net transcription
levels. Changes in mRNA abundance and net transcrip-
tion at each time point were calculated relative to unac-
tivated Jurkat cells using edgeR based on a false discov-
ery rate (FDR) of .01. Additionally, a T score continuous
metric was calculated for both net transcription and total
mRNA abundance. Subsequently, iterative transcription-
based modeling calculations were optimized using a linear
regression model to maximize absolute correlation between
predicted and observed values. This calculation concluded
that a coefficient of 0.266 optimally related net transcrip-
tion abundances to total mRNA abundances. Decay rates
were determined using the iterative formula outlined in Fig-
ure 2A using observed mRNA abundances and net tran-
scription. For the unactivated time point, because of steady
state mRNA levels at rest, this equation simplified to In(1-
.266*(net txn/total)). Significantly different decay rates at
any time point were calculated in R using one-way ANOVA
and an FDR of 0.1. Subsequently, T scores comparing de-
cay rate at each time point to unactivated decay rates were
calculated. These T scores were used as a continuous metric
as inputs into Short Time-series Expression Miner (STEM)
(29) and for integration with binding data.

Actinomycin D labeling and real time PCR

Cells were labeled with 5 pwg/ml actinomycin D for a fixed
period of time as described in (30). RNA was isolated and
cDNA generated using iScript (Bio-Rad). Platinum SYBR
Green Super Mix (Invitrogen) was used for real time PCR
on a Lightcycler (Roche). Raw Ct values were normalized
to GAPDH Ct values and resting Jurkat cells. These AACt
values were analyzed using GraphPad Prism where half-
lives were calculated based on one phase decay and statisti-
cal significance was determined using one-way ANOVA.

RESULTS

We evaluated gene expression changes in Jurkat T cells by
quantifying mRNA levels following the addition of activat-
ing mitogenic compounds phorbol myristate acetate (PMA)
and phytohemagglutinin (PHA). In order to simultaneously
measure changes in RNA abundance, transcription and sta-
bility across the transcriptome in this activation model, we
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used 4sU metabolic labeling (11). Prior to activation, and
during each of 4 h after activation, we pulsed 4sU into cells
for 1 h. The 4sU was incorporated into nascent RNAs (Fig-
ure 1A), then the RNA was extracted and labeled RNA was
separated from unlabeled RNA (Figure 1B). Total mRNA
and 4sU labeled mRNA from each 1 h interval were se-
quenced for three biological replicates. After mapping the
RNA-seq data to the genome, the mapped RNA-seq reads
were characterized according to their genomic origin. 4sU
labeled mRNA contained substantially more intronic reads
than total mRNA (Figure 1C), indicating an enrichment
of pre-mRNA that demonstrated that the approach cap-
tured recently transcribed mRNAs. Having validated the
methodology, we measured mRNA levels of each sample
using HTSeq-count (27) followed by edgeR normalization
(28) and removed genes with low expression or high vari-
ation between replicates. We observed significant changes
in mRNA abundance and/or 4sU labeled mRNA in 1747
genes across the first 4 h after stimulation. These changes
clustered into similar functional groups in both the mRNA
abundance and 4sU labeled mRNA (Figure 1D). The ear-
liest responding messages, during the first hour, encoded
apoptotic and transcriptional factors. In the second hour,
the list grew to include additional transcription-related fac-
tors. Finally, in the last 2 h, many mRNAs encoding cell
maturation and immune response factors were regulated.
Interestingly, several of these same functional groups were
enriched in the 4sU labeled mRNA population earlier than
in total mMRNA, reflecting the greater sensitivity obtained by
measuring net transcription rather than total mRNA abun-
dance (Figure 1D).

The advantage of a metabolic labeling approach is the
ability to assign proportional changes in mRNA abundance
to transcription and decay. To investigate this relationship,
we started with the simple equation that mRNA abundance
equals previous abundance, plus net transcription, minus
the amount of decay (Figure 2A). Utilizing a model based
off of ‘Dynamic Transcriptome Analysis’ (13), we calcu-
lated the unactivated decay rate and assumed it remained
constant throughout the time course. Assuming constant
decay, we could estimate the abundance at 4 h using only the
unactivated mRNA abundance and the 4sU labeled mRNA
abundance for each hour (Figure 2A). This transcription-
only model estimated the abundances of regulated mRNAs
well; genes that changed more than 2-fold in abundance at
any point in the experiment correlated well (R = 0.945) with
the observed abundances relative to the baseline of unacti-
vated abundances (R = 0.691) (Figure 2B,C). The increase
in predictive power using net transcription demonstrates
that transcription accounts for approximately 80-85% of
the changes in mRNA abundance observed (Figure 2C).
This calculation agreed reasonably well with a simple cor-
relation of mMRNA abundance and net transcription at each
hourly interval (R = ~0.75-0.8 across all time points, data
not shown). Overall, this suggested transcription was the
major driver of changes in mRNA abundance.

On the other hand, the remaining ~15-20% of genes
were poorly explained by this model that assumed con-
stant mRNA decay. Two clear examples were RNF145
(Figure 3A) and DDX3X (Figure 3B). When the time
course of observed mRNA abundance (blue line) was plot-

ted against the estimated mRNA abundance (dashed line),
the mRNA abundance changed more dramatically than the
transcriptional changes (red line) would predict in many
cases. This finding suggests that these genes are regulated
post-transcriptionally, with RNF145 mRNA less stable and
DDX3X mRNA more stable after activation. We confirmed
these predictions using real time PCR measurements of
both 4sU metabolic labeling (data not shown) and tran-
scriptional inhibition at different times after activation.
When Actinomycin D was added at any point after activa-
tion, RNF145 mRNA decayed more rapidly and DDX3X
mRNA decayed less rapidly than prior to activation (Figure
3C, D).

Therefore, to identify all the genes that undergo quanti-
tative changes in mRNA decay, we used the observed val-
ues of mRNA abundance and net transcription to solve the
model relating transcription and decay for the decay rate.
These values represent the decay rate necessary to balance
the observed net transcription and mRNA abundance at
each time point. Using the variance between replicates, we
then calculated T scores for changes in decay rate relative
to unactivated cells over the first 4 h of activation. Of the
1747 mRNAs that were regulated after activation, 425 of
them had significantly altered decay rates at some point af-
ter activation based on a false discovery rate of 0.1. We con-
firmed decay rates changes using independent methods in
several genes that represented a spectrum of direction and
magnitude of decay rate regulation observed. These mR-
NAs measured by global 4sU RNA-seq and real time PCR
after transcriptional inhibition were largely consistent (data
not shown).

To explore the role of mRNA decay in Jurkat T cell acti-
vation, we used the decay rate T scores to evaluate the tem-
poral dynamics of post-transcriptional regulation. Decay
rate T scores were clustered into regulatory patterns using
Short Time-series Expression Miner (STEM) (29). Three
of the clusters were particularly striking in their functional
relationships, suggesting coordinated post-transcriptional
regulation (31,32) (Figure 4A). The first cluster consisted
of a set of mRNAs stabilized in the first hour after activa-
tion. This subset of mRNAs was enriched for RNA regula-
tory factors, namely for the production of ribosomes (Fig-
ure 4B). Increased ribosome production would be a sensible
early step to prepare for the additional translation required
for growth. The third cluster was enriched for a set of mR-
NAs encoding factors related to cell migration and motility
(Figure 4D). The migration of T cells is a crucial step after
activation in order to spread the immune response out of
the lymphatic tissue and into the areas of primary infection
(33). Therefore, these cell migration and motility mRNAs
appear to have been stabilized during the later wave of T
cell activation to promote and support this increase in cel-
lular movement.

The most enriched cluster of mRNAs, however, was
strongly destabilized at 1 h, then rapidly stabilized at 2 h
post-activation. This cluster was highly enriched for histone
mRNAs; 28 replication dependent histones were contained
in this cluster. A compilation of the decay rate T scores of
all expressed replication dependent histones demonstrated
that nearly all followed a similar pattern of regulation (Fig-
ure 5A). We evaluated this observation by real time PCR.
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Because the dynamics of this regulation occurred so rapidly,
we assessed post-transcriptional events in 15 min inter-
vals after activation by both 4sU metabolic labeling (data
not shown) and Actinomycin D transcriptional inhibition.
With higher temporal resolution, we observed a decrease
in the stability of HISTIH2AB, HISTIH2BG, HIST1HIB
and HIST1H4D immediately upon activation (Figure 5C—
F). This destabilization recovered starting at 30 min and
was not dependent on transcription. Histone mRNAs are
a highly unique class as they are the only mRNAs that are
not polyadenylated (34,35). Their expression is tightly con-
trolled and they are only upregulated, through both tran-
scriptional and post-transcriptional mechanisms, in S phase
(36). Their coordinated regulation is one of the clearest ex-
amples of a post-transcriptional regulon discovered to date
(31,37). The major protein that coordinates histone mRNA
stability is the stem loop binding protein (SLBP), via bind-
ing to a stem loop that is only found in the 3" UTR of hi-
stone mRNAs (34,35). Therefore, we examined SLBP pro-
tein levels after T cell activation and observed that after 1
h of activation, SLBP protein was significantly decreased
(Figure 5B), consistent with the decrease in stability of hi-
stone mRNAs. Interestingly, however, while SLBP protein

abundance recovered somewhat in the second hour, it did
not increase above baseline as histone mRNA stability did.
Overall, the coordinated responses of several different cru-
cial groups of mRNAs at the post-transcriptional level in-
dicate that changes in decay rate play an important role in
regulating mRNAs following the activation of Jurkat cells.

Having calculated both changes in transcription and
changes in decay, we explored the relationship between the
two processes in Jurkat T cell dynamics. Selecting mRNAs
with significantly altered abundance at each time point, we
plotted the change in transcription against the change in
mRNA stability (Figure 6A-D). Across the time course,
we observed that transcription and stability cooperate to
maximize regulatory potential. Relatively few genes were
transcriptionally increased and destabilized, or vice versa,
as shown by the relative lack of mRNAs in the upper left
or lower right quadrants of each time point. This suggests
that transcription and stability cooperate to minimize coun-
terproductive regulatory changes, thereby maximizing the
speed and efficiency of T cell responses.

Finally, previous studies have not integrated global
mRNA stability data with RBP target data to examine the
relationship between binding and regulation. However, we
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previously demonstrated that mRNA targets of HuR, a
well-characterized promoter of mRINA stability, change sig-
nificantly after Jurkat activation (19). Therefore, we ana-
lyzed the changes in mRNA stability after 4 h of activation
in three different categories of mRNAs: targets of HuR at 4
h of Jurkat activation, targets of HuR in Jurkat cells but not
at 4 h after activation, and non-HuR targets. We observed
a significant stabilization of mRNAs bound by HuR at 4 h
after activation that was not true of non-targets or non-four
hour HuR targets (Figure 7, left of dashed line). The inte-
gration of HuR binding data suggests that binding of HuR
to mRNAs after activation strongly influences the stability
of those messages.

Given that we saw a significant difference in stabilization
based on the HuR-binding state of mRNAs, we wondered
how experiments that previously defined HuR targets using
different cell types would relate to mRNA stability in Ju-
rkat activation. Thus, we identified HuR mRNA targets de-
fined in previous studies encompassing several different cell
lines and techniques, including RIP-chip, PAR-CLIP and
iCLIP (19,24,38). We assessed the changes in the stability
of these mRNA targets at 4 h after activation (Figure 7).
The mRNA targets of HuR identified in each of the pub-
lished mapping experiments was significantly stabilized rel-
ative to non-targets, but nonetheless were significantly less
stabilized than the targets identified in Jurkat cells at 4 h.
Therefore, while targets identified using HuR RIP or CLIP
experiments in different cell types indicated a relationship

between HuR binding targets and regulation of stability, the
strongest relationships were apparent when both the HuR
RNA targets and the global stability changes were deter-
mined under identical conditions.

DISCUSSION

Our data indicate that Jurkat cells undergo substantial tran-
scriptional and post-transcriptional regulatory dynamics
following activation that coordinately influences the abun-
dance of important functional groups of mRNAs. Using
this dynamic model system, we found that both mRNA
transcription and stability cooperate to maximize the effi-
ciency of regulation. Moreover, the responses to HuR bind-
ing under identical conditions in these cells suggests a po-
tential cause and effect relationship leading to the stabiliza-
tion of specific mRNAs encoding proteins important to Ju-
rkat cell activation.

We found that the regulation of mRNA stability occurs
among functionally related groups, the core of the post-
transcriptional regulon hypothesis previously proposed
from our group (37). Interestingly, this regulation occurred
in functional groups that are crucial to major cellular pro-
cesses such as cell replication, protein translation and cellu-
lar movement. This expands greatly on the previously estab-
lished immune regulatory factors studied in the context of T
cell activation. Post-transcriptional events are important for
tuning or ‘fine tuning’ the expression of these genes to meet
cell requirements, an observation previously noted (16).
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One of these vital functional groups found to be quite ro-
bust is the histone mRNAs, a classical post-transcriptional
regulon (34) (Figure 5). Histone mRNAs require coordi-
nated regulation to promote cell replication, and therefore
contain similar sequences and structural characteristics to
engage binding by a common Stem-Loop Binding Protein,
SLBP, that controls its export, stabilization and translation
(35). The stability of histone mRNAs is tightly coupled to
DNA replication and S phase (36), thus, a pause in Jurkat
cellular replication may occur through a signaling cascade
immediately upon mitogenic stimulation. Since activation is

to some extent a proliferative process, the response could be
rapidly reversed in the second hour to drive the production
of histones. The decrease in SLBP protein during the first
hour, as shown in Figure 5, supports this model. During
the second hour, however, histone mRNAs are more stabi-
lized than the recovering abundance of SLBP appears to in-
dicate. This potentially hints that another mechanism may
contribute to histone stabilization. This mechanism may in-
clude SLBP phosphorylation, localization or binding by an-
other RBP factor. Overall, however, these histone mRNAs
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Figure 6. Changes in stability and transcription cooperate to maximize changes in mRNA abundance during Jurkat T cell activation. (A-D) Among genes
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the log fold change in mRNA stability. Overall, changes in mRNA stability and net transcription appear to cooperate as indicated by the lack of genes

with opposing changes (top left and bottom right quadrants).

exemplify the coordinated regulation of mRNA stability by
RBPs in this system.

Similar published examples of tight coupling between
RBP binding and functional RNA regulation have been rel-
atively sparse in this era of global targeting studies of RBPs.
However, we demonstrate another example of tight cou-
pling in this study. We integrated our direct calculations of
mRNA stability with the targeting of HuR from replicated
RIP experiments under the identical conditions (19). We ob-
served strong functional correlations with targets bound to
HuR at the same time point. In fact, the data suggest bind-
ing by HuR imparts ~25% greater stability, on average, for
these specific targets (Figure 7). Importantly, we did not find
that HuR mRNA targets identified in Jurkat cells at time
points other than 4 h were significantly stabilized. These
regulatory dynamics in HuR occurred despite no change in
protein abundance (unpublished observations) or localiza-
tion (19). It is likely post-translational modifications such
as phosphorylation play a role in these regulatory dynam-
ics, as has been shown for HuR in other cell models (39,40).

Additionally, we were able to integrate other published
HuR target data sets from other cell types using a variety
of methods, including RIP, iCLIP and PAR-CLIP studies,
none of which involved T cell activation. Each technique
defined a set of targets that, while U-rich, varied in num-
ber and composition of their genes of origin. For example,
previous studies using HEK293 cells have shown that genes
that overlap between multiple technical approaches have the
strongest functional relationship under HuR knockdown
(24). However, data in this study further show that cellu-
lar context is very important in interpreting the relation-
ship between binding and function. In other words, the best
correlation between global binding and regulation occurred
when using identical temporal and biological conditions.

Previous studies have emphasized a larger and wide-
spread role of post-transcriptional regulation in T cell ac-
tivation systems than we observed (2,5,10). One major fac-
tor may be the T cell type used; indeed, other reports have
indicated differences in global RNA stability between pri-
mary T cells and malignant T cell lines (41). It is unclear,



434 Nucleic Acids Research, 2016, Vol. 44, No. 1

*kk
*kk
*%k

*kk
%%

0.4+

0.3+

*kk
*kk
*kk

0.2+

Log, Fold Change Decay Rate 0 vs 4h Act
o
1
|
1

0.0 —} _}_

L] L] L] L] T L] L]
< N o L 4 4 >
> o\.v ‘Qe 'bqs °\> °\> é&
< g "l? 'b\ <& /b&
ooo Q@\’ Qv. &
o K\
—_— R
HuR RIP targets
Jurkat Activation

Figure 7. Changes in regulation are most closely correlated with effects of
HuR mRNA binding when RNA binding is defined under identical condi-
tions. (Left of Dashed Line) HuR mRNA binding correlates with increases
in stability. HuR targets were previously identified at different stages of Ju-
rkat activation (19). Targets that were bound by HuR at 4 h after activation
(HuR Jkt target 4h) were significantly more stabilized in than HuR targets
identified only at other time points (HuR Jkt target, not 4h) or non-HuR
targets (non-target HuR Jkt). This suggests that HuR plays an important
role in dynamically stabilizing groups of mRNAs after Jurkat activation.
(Right of Dashed Line) Comparisons of HuR targets identified through a
number of different approaches suggest cellular conditions are important
for identifying functional regulation. HuR targets identified using 293 RIP
and PAR-CLIP (11,24), and HeLa iCLIP (28,38)) were additionally com-
pared to changes in mRNA stability between unactivated Jurkat cells and
4 h activated Jurkat cells. Though targets from all experiments were sig-
nificantly more stabilized than non-targets, by far the strongest stabiliza-
tion was seen in HuR targets identified in Jurkat cells 4 h after activation.
This indicates the closest relationship between binding and function can be
observed when both are measured in equivalent cellular conditions. Error
bars represent 95% confidence interval. Significant differences calculated
by one-way ANOVA, (***) P-value < 0.001.

however, whether the discrepancies between this study and
other is primarily because of differences in cell type (Ju-
rkat T cells versus primary T cells), time course studied or
methodological approaches. One previous study utilizing
the same Jurkat T cells with chemical activation reported
a much broader influence of post-transcriptional regula-
tion than we observe even though a shorter time frame was
used (2). In this case, methodological differences seem to
underlic much of this discrepancy. First, the array tech-
nology used did not include genes we found important
such histones. Second, ‘newly transcribed” RNA was iso-
lated using a nuclear run-on assay, a cell invasive method
that strips the cell of its native context. Furthermore, post-
transcriptional changes were defined as varying between nu-
clear run-on and total mRNA. The 4sU metabolic labeling

approach is advantageous in that cells remain unperturbed
until RNA harvest and modeling of the interaction between
transcribed and total mRNA discerns post-transcriptional
differences with high sensitivity. Additional studies have
measured decay of mRNA with inhibition of transcription
(5). One major difference in analyzing transcriptional inhi-
bition and metabolic labeling-based approaches as we have
done here is that metabolic labeling is retrospective while
transcriptional inhibition is prospective. For example, a 1
h time point in 4sU metabolic labeling measures transcrip-
tion during the first hour of activation, while inhibiting
transcription at 1 h measures the decay of mRNAs present
over the following 24 h. This can lead to major differ-
ences among mRNAs in which decay rate varies over these
intervals. For these reasons, clear switches in decay rate,
such as we observed for RNF145 and DDX3X, represent
the most consistent examples of post-transcriptional reg-
ulation (Figure 3, Supplementary Table S1). We observed
several other examples of transient changes in RNA decay
rate using 4sU metabolic labeling that were more difficult
to replicate through inhibition of transcription, including
the rapid transitions observed in histone mRNAs (Figure 5,
Supplementary Table S1 and data not shown). These dis-
crepancies may also result from the possibility that post-
transcriptional events depend on the transcriptional induc-
tion of post-transcriptional factors such as RBPs or miR-
NAs (42).

There are several important caveats to consider when in-
terpreting data using the 4sU metabolic labeling that are
consistent with our study being conservative in defining
post-transcriptional regulation. First, it is important to rec-
ognize that some labeled RNA decays over the 1 h period
of labeling. As such, the true transcription rate requires a
correction for decay, which is the reason labeled mRNA is
carefully termed ‘net transcription’. This fact can bias re-
sults slightly toward favoring changes in transcription rate
over RNA stability changes, and is overall conservative for
attribution of gene expression changes to mRNA stabil-
ity. For example, the moderate decline in net transcription
in RNF145 (Figure 3) may be, in part, a result of the in-
creased decay rate. However, this is not likely to be a large
factor in our global analysis demonstrating cooperation be-
tween transcription and decay for two reasons: first, the ef-
fect is modest, and second, previous studies in yeast using
the same 4sU metabolic labeling approach identified the op-
posite phenomenon in osmotic shock (13). One biological
rationale for these contrasting relationships between tran-
scription and decay, other than a major species difference,
may be that osmotic shock is a transient cellular stress while
mitogenic stimulation of Jurkat cells causes a permanent de-
velopmental change in cellular growth, behavior and mor-
phology.

Additionally, analysis of 4sU metabolic labeling requires
accurate measurement of gene expression, and therefore, we
have omitted genes that varied substantially between repli-
cates. The major reason for this variation was low expres-
sion at any of the time points. As expected, this included
many highly induced genes and immunoreactive genes with
low baseline expression that have been the focus of many
prior candidate studies of post-transcriptional regulation
(6-10). Indeed, highly inducible mRNAs have been iden-



tified as a class that are subject to dynamic regulation of
mRNA stability (15). Furthermore, differences in decay
rates between genes have long been understood to affect
regulatory dynamics, because the rate with which gene ex-
pression can change depends on how rapidly the mRNA
is turned over (43). Thus, we would expect that the most
highly inducible genes are the most likely to undergo post-
transcriptional regulation. However, because of low expres-
sion prior to their induction, we were unable to draw con-
clusions about their post-transcriptional regulation during
Jurkat activation. A candidate approach is likely the best
way to characterize these genes, as has already been done in
many cases (6-10).

This study focused on describing one aspect of the post-
transcriptional regulatory code, the regulation of mRNA
stability by RBPs or combinations of RBPs. We observed
the coordinated post-transcriptional regulation of func-
tional groups crucial to the activation process. The post-
transcriptional regulon model hypothesizes different com-
binations of RBPs and noncoding RNAs regulate these dis-
tinct functional groups. In this study, we highlighted one
RBP, HuR, that significantly correlated with stabilization of
mRNA. Undoubtedly, activation of Jurkat cells is a highly
complex process that involves regulation by many differ-
ent RBPs. Indeed, our evidence suggests that a number of
other RBPs must be involved in mRNA stabilization in ac-
tivated Jurkat cells, as HuR interacted with a minority of
mRNAs that were significantly stabilized (31 of 143 compa-
rable genes). Extrapolating more broadly, most other post-
transcriptional processes such as destabilization, splicing,
export and translation are likewise regulated by combina-
tions of multiple RBPs.

Our experimental design in this study is an appealing
approach with which to discover the novel involvement of
RBPs in a given system, i.e. correlation of the RBP’s tar-
gets with measurement of global post-transcriptional re-
sponses of mRNAs. By cross-referencing a database of
RBPs and their targets to post-transcriptional regulatory
changes such as RNA stability, one could imagine iden-
tifying RBP candidates with strong correlations to spe-
cific regulatory processes. We showed in this study that in
the case of HuR, RBP binding significantly correlates with
mRNA stabilization across a variety of techniques to iden-
tify bound mRNAs. Importantly, and not unexpectedly,
we also showed that by a significant margin, the strongest
correlation occurs with targets identified at identical time
points. When we attempted to predict novel stability regu-
lation by RBPs using published RIP, CLIP and PAR-CLIP
data that were obtained under differing biological cell types
or conditions, we obtained inconclusive results (data not
shown). One observation from this effort was that the inabil-
ity to meaningfully stratify RBP target data using CLIP and
PAR-CLIP hindered the approach, suggesting that quan-
titative measurements that stratify binding sites may im-
prove these comparisons. Ultimately, however, it is not at all
surprising that the relationship between binding and func-
tional regulation was strongest under identical cellular con-
ditions. Therefore, with current techniques, it is difficult
to reach meaningful biological conclusions by integrating
post-transcriptional data from different cellular conditions.
While this potentially limits the application of the exper-

Nucleic Acids Research, 2016, Vol. 44, No. 1 435

imental design demonstrated in this study as a discovery
tool, on the contrary, this approach is highly advantageous
for quantifying the impact of specific candidate RBPs in dy-
namic systems.
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