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Abstract

Protein kinases catalyse the phosphorylation of target proteins, controlling most cellular pro-

cesses. The specificity of serine/threonine kinases is partly determined by interactions with

a few residues near the phospho-acceptor residue, forming the so-called kinase-substrate

motif. Kinases have been extensively duplicated throughout evolution, but little is known

about when in time new target motifs have arisen. Here, we show that sequence variation

occurring early in the evolution of kinases is dominated by changes in specificity-determin-

ing residues. We then analysed kinase specificity models, based on known target sites,

observing that specificity has remained mostly unchanged for recent kinase duplications.

Finally, analysis of phosphorylation data from a taxonomically broad set of 48 eukaryotic

species indicates that most phosphorylation motifs are broadly distributed in eukaryotes but

are not present in prokaryotes. Overall, our results suggest that the set of eukaryotes kinase

motifs present today was acquired around the time of the eukaryotic last common ancestor

and that early expansions of the protein kinase fold rapidly explored the space of possible

target motifs.

Introduction

Protein kinases are essential for signal transduction and have been found in every eukaryotic

species so far examined. They are required for almost all cellular processes [1], and mutations

in protein kinases are often associated with diseases such as cancer and diabetes [2–4]. Kinases

are often described in terms of their ‘specificity’, which refers to the set of substrates that the

kinase is able to phosphorylate in vivo. Multiple factors define the specificity of the kinase [5].

The kinase and substrate must be coexpressed and colocalised, for example, and their interac-

tion may be mediated by adaptor or scaffold proteins [6,7]. Docking sites on the substrate may

also be employed to recruit the kinase and the substrate directly [8,9]. Fundamentally, selectiv-

ity is often defined by the structural interface between the kinase active site and the residues

flanking the target serine, threonine, or tyrosine—the so-called peptide specificity of the

kinase.

The kinase peptide specificity is usually described in terms of a short linear motif [10,11].

The substrate motif of PKA (protein kinase A), for example, is R-R-x-S/T, meaning that an
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arginine is preferred 2 and 3 positions N terminal to the target serine/threonine in the PKA

active site. Conceptually, different substrate motifs can be thought of as different channels of

communication within the cell, allowing for kinases that are simultaneously active to regulate

a specific set of substrates. Mitotic kinases with overlapping localisations, for example, tend to

have mutually exclusive substrate motifs, presumably to prevent the aberrant phosphorylation

of nontargets during cell-cycle progression [12].

It is possible that the range of selectivities at the active site is restricted by the structure of

the kinase domain itself. In turn, the capacity of the kinase fold to create novel specificity pref-

erences through mutations may determine the maximum effective number of kinases possible

for a genome, because it has been suggested for transcription factors [13]. In this analogy to a

communication channel, the full set of possible substrate motifs can be thought of as the full

bandwidth or ‘communication potential’ of the kinase fold. Understanding how this commu-

nication potential was explored over evolutionary time can reveal insights into the evolution of

cell pathways and cell signalling. However, although the proliferation of the kinase domain

itself has been well documented, much less is known about the evolution of new kinase speci-

ficities at the active site [14]. One study found that the frequency of tyrosine kinases (TKs) in

the proteome correlates negatively with the frequency of tyrosine residues in the proteome,

implying some extent of coevolution between kinases and substrates [15]. Another study

found that the evolution of a new specificity in the CMGC (cyclin-dependent kinases (CDKs),

mitogen-activated protein kinases (MAP kinases), glycogen synthase kinases (GSK) and CDK-

like kinases (CLKs)) group proceeded through an intermediate of broad specificity (P + 1/R

+ 1) before later specialisation into distinct target preferences (P + 1 and R + 1) [16].

Currently, the scarcity of kinase-substrate interaction data outside of a few model organ-

isms (human, mouse, and budding yeast) is limiting for further research. However, other

sources of data can yield insights more indirectly. An evolutionary analysis of the kinase

domain can be informative provided that the specificity-determining positions (SDPs) are

known [17]. This applies to phosphoproteome data also, provided that motifs can be extracted

and linked to the known specificities of kinase families or subfamilies. Here, we collect kinase

sequence data, kinase specificity data, and phosphorylation data from several species to per-

form an evolutionary analysis of kinase specificity. Collectively, the results suggest that most

specificities arose early in the evolution of protein kinases, followed by a long period of relative

stasis.

Results

Global kinase phylogeny for 9 different species

The eukaryotic protein kinase superfamily by convention is divided hierarchically at the level

of ’groups’, ’families’, and ’subfamilies’ [18,19]. The most up-to-date classification is based pri-

marily upon sequence similarity between kinase domains but also takes into account the

kinase sequence outside of the kinase domain, the known function(s) of the kinase, and previ-

ous manual classifications of known orthologs [19,20].

The 8 canonical kinase groups (AGC [PKA, PKG, PKC], CAMK [Calcium- and Calmodu-

lin-regulated kinases], CK1 [Casein Kinase 1], CMGC [cyclin-dependent kinases (CDKs),

mitogen-activated protein kinases (MAP kinases), glycogen synthase kinases (GSK) and CDK-

like kinases (CLKs)], RGC [Receptor Guanylate Cyclases], STE [sterile mutant], TKL [Tyro-

sine Kinase-Like], and TK) evolved the earliest and, with the exception of TKs and the RGC

group, are thought to have arisen in an early eukaryotic ancestor [21]. Kinase families, and

then subfamilies, generally emerged later during evolution and reflect more distinct features of

the kinase’s function (specificity, regulation, localisation, etc.) [18]. In order to study the
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evolution of kinase specificity, we first performed a systematic phylogenetic analysis to predict

kinase functionally divergent residues for every kinase family and subfamily where possible.

To this end, a global kinase domain phylogeny was constructed for the 9 manually curated

opisthokont kinomes (Homo sapiens, Mus musculus, Strongylocentrotus purpuratus, Drosoph-
ila melanogaster, Caenorhabditis elegans, Amphimedon queenslandica, Monosiga brevicollis,
Saccharomyces cerevisiae, and Coprinopsis cinerea) present in the kinase database KinBase

(http://kinase.com/web/current/kinbase/).

The resulting phylogeny contains 2,094 kinase sequences spanning 8 different groups (Fig

1A). Although based just on the kinase domain sequence, the grouping of kinase sequences

accords well with the group/family/subfamily classifications provided by KinBase. For exam-

ple, out of 102 families tested, 70 show exact correspondence to the KinBase classifications in

that all family members group together to the exclusion of kinase sequences from any other

family (i.e., the family is monophyletic). This was found to be the case also for 69 out of 105

subfamily kinases tested. For the remaining families and subfamilies tested (32 and 36, respec-

tively), we consider for further analysis (described below) only the largest clade containing the

family/subfamily sequences of interest. These contain relatively few ‘spurious’ sequences on

average from other families and subfamilies (median clade purity 91.5% and 66.7%, respec-

tively) and tend to cover a large proportion of all kinases annotated by KinBase to a particular

family or subfamily (median family coverage: 95.1%, median subfamily coverage: 100%).

Residues implicated in the differentiation of duplicated kinases

For 99 kinase families and 83 kinase subfamilies, we identified residues that are conserved

within a clade but differ from the sister clade in the phylogeny. These residues are implicated

as functionally divergent residues and are expected to underlie functional differences between

kinase sister clades. This was achieved by calculating divergence scores (s) for each alignment

position and each family and subfamily using an adaptation of the phylogenetic BADASP

(Burst After Duplication with Ancestral Sequence Predictions) method [22]. Among other

methods [23–26], we selected BADASP given that it enables ancestral family sequences to be

compared directly (Fig 1B; Materials and methods), allowing determinant positions arising at

a specific point in time to be captured using user-defined protein family definitions [22].

Functionally divergent residues were first predicted across all kinase families. A detailed

analysis of the results suggests multiple ways in which novel kinase functions have evolved at

the family level via changes to functionally relevant residues. In the SRPK (SR-rich protein

kinase) family (CMGC), for example, 2 substitutions to negatively charged amino acids (D

and/or E) map to parts of the kinase structure (αF-αG region) that have been shown previously

to bind to a positively charged docking peptide (Fig 1C; [27]). In the CDC7 (Cell Division

Cycle 7-related protein kinase) family (CMGC) also, 2 of the identified functionally divergent

residues bind to the CDC7 activator protein named Dbf4 (Dumbbell former 4 protein) (Fig

1D; [28]) and are therefore important for kinase regulation. In other examples, the functionally

divergent residues identified can help to account for the specificity of the kinase. Two substitu-

tions in the CAMK2 family (CAMK), for example, bind to a preferred D/E residue at the sub-

strate +2 position (PDB [Protein Data Bank]: 5H9B). A glycine substitution in the activation

loop has also been shown to be important for kinase function [29] and may explain why

CAMK2 kinases do not require activation loop phosphorylation for activity ([30], Fig 1E).

Finally, many substitutions for the acidophilic PLK (Polo-like kinase) family map to SDRs

(specificity-determining residues)and are convergent with those identified for the unrelated

GRK(G-protein-coupled Receptor Kinase) family (AGC), which contains some acidophilic

kinases ([17,31], Fig 1F). These examples illustrate how the predicted functionally divergent
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sites between families or subfamilies of kinases can map to functionally relevant residues. We

next studied whether this would be a general feature of these residues across many families

and subfamilies.

Functionally important residues are often divergent across kinase families

and subfamilies

Across all kinase families, we aggregated the total number of predicted functionally divergent

residues or ‘switches’ at each position in the kinase domain. This allows us to predict positions

that often determine the functional differences between kinase families. These were mapped

across the kinase catalytic domain sequence and fold (Fig 2, left). The distribution of residues

Fig 1. Family and subfamily divergent residues. (A) Kinase domain phylogeny for 2,094 different kinase domains, spanning 9 species. Each sequence has been

coloured according to its group membership. (B) Explanation of the score used to identify divergent residues. RC: conservation of the residue within the family of

interest. AC: extent to which the ancestral residues are conserved between sister clades in the phylogeny. p(AC): a measure of confidence in the ancestral sequence

prediction. A full explanation is given in the Materials and methods section. (C–F) Examples of residues predicted to be functionally divergent in the SRPK (PDB:

1WBP), CDC7 (PDB: 4F9A), CAMK2 (PDB: 5H9B), and PLK (PDB: 4B6L with peptide binding modelled) families. In these 4 examples, kinase residues have been

numbered according to their position in the protein kinase domain (Pfam: PF00069). The peptides and/or proteins that physically interact with the kinase have been

coloured in yellow. AC, ancestral conservation; AGC, (PKA, PKG, PKC); AUR, Aurora Kinase; CAMK, Calcium- and Calmodulin-regulated kinases; CAMK2, Calcium/

calmodulin-dependent protein kinase type 2; CDC7, Cell Division Cycle 7-related protein kinase; CK1, Casein Kinase 1; CK 2, Casein Kinase 2; CLK, CDK-Like Kinase;

CMGC, (cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAP kinases), glycogen synthase kinases (GSK) and CDK-like kinases (CLKs)); PDB,

Protein Data Bank; PHK, Phosphorylase Kinase; Pfam, Protein families; PLK,; Polo-like kinase RC, recent conservation; SRPK, SR-rich protein kinase; STE, sterile

mutant; TK, tyrosine kinase; TKL, Tyrosine Kinase-Like.

https://doi.org/10.1371/journal.pbio.3000341.g001
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that are often implicated in kinase family functional differences is not uniform and strongly

enriched within or close to the kinase activation segment, the αC helix, the β5-αD region, and

the αF-αG regions (Fig 2, left). For further analysis, we divided kinase residues into functional

categories: ‘catalytic’ (catalytic residues and the catalytic spine), ‘proximal’ (within 4 Ang-

stroms of the peptide substrate but excluding ‘catalytic’ positions), ‘distal SDRs’ (distal SDRs

Fig 2. Aggregated analysis of sequence divergence across kinase families (left) and subfamilies (right). For each kinase domain position, the total number of

‘switches’ (score> 95th percentile of scores) was counted across all families or subfamilies considered (see Materials and methods). (Top) Results mapped to kinase

structures (mouse protein kinase A: PDB 1ATP). The kinases are represented in complex with an ATP molecule (green, orange, blue, red) and a substrate-mimicking

inhibitor (PKIA, yellow). Darker shades of red or blue represent a higher number of switches (see colour bar, right). (Middle) Total number of switches mapped to the

kinase primary sequence, with secondary structure elements represented above the bar plot. A domain position is considered to be ‘frequently switching’ if the number

of switches lies above a 90th percentile threshold for the kinase domain. The threshold is 8 for families and 7 for subfamilies. (Bottom) The values for each domain

position have been grouped according to the functional category (‘catalytic’, ‘regulatory’, ‘proximal’, etc.) and the distribution plotted separately at the family and

subfamily level. The numbers in brackets represent the number of residues in each category. PDB, Protein Data Bank; PKIA, cAMP-dependent protein kinase inhibitor

alpha; SDR, specificity-determining residue.

https://doi.org/10.1371/journal.pbio.3000341.g002
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implicated in [17]), ‘regulatory’ (regulatory spine residues and those within and surrounding

the activation loop), ‘interaction’ residues (those most frequently in contact with other protein

domains), and ‘other’ (residues not belonging to any of the previous categories). All residues

belonging to these categories are defined in S1 Table, using mappings to a PKA reference

(PDB: 1ATP) and the Pfam (Protein families) protein kinase domain (Pfam: PF00069). We

defined as frequently switching residues those above the 90th percentile of residues with most

changes. The majority (14/21) of frequently switching residues can be assigned to a functional

category (catalysis, specificity, regulation, etc.), which is more than would be expected by

chance (p = 0.0048; Fisher’s exact test, one-sided). This suggests that this approach can success-

fully identify residues that are of relevance for the functional divergence of kinases. Of these

residues, 8 have been implicated in determining differences in kinase specificity: domain posi-

tion 84 [32–34], 86 [35], 144 [16,36,37], 157 [37,38], 158 [35,37], 162 [35], 164 [39,40], and 205

[35]. The number of substitutions for ‘proximal’ residues is generally higher than that for resi-

dues without an assigned function (Mann-Whitney, one-tailed, p = 3.2 × 10−6). These residues

lie at the kinase-substrate interface and are likely to perturb kinase specificity when mutated.

We find similar results when using SDR annotations from a global analysis of kinase specificity

[41] (Mann-Whitney, one-tailed, p = 9.0 × 10−3) and when using a literature-curated set of

SDRs provided by the same study [41] (Mann-Whitney, one-tailed, p = 3.6 × 10−5).

A similar analysis was performed for kinase subfamily comparisons (Fig 2, right). Similar to

kinase family evolution, a large fraction (73%, 11 out of 15) of residues frequently implicated

in the functional differences between kinase subfamilies were also annotated to a functional

category (p = 0.0043; Fisher’s exact test, one-sided). All 15 frequently switching residues have

been mapped to the protein kinase fold in S1 Fig, alongside the 21 frequently switching resi-

dues at the family level. We also observed a higher than expected number of switches for ‘prox-

imal’ residues at the subfamily level when compared with residues not annotated with a

function (Mann-Whitney, one-tailed, p = 2.2 × 10−5). This was found to be the case also when

using the SDR annotations in [41] (Mann-Whitney, one-tailed, p = 2.2 × 10−4) and a set of lit-

erature-curated SDRs from the same study (Mann-Whitney, one-tailed, p = 1.7 × 10−3).

All switch events within the ‘proximal’ category at the family and subfamily levels have

been mapped to the kinase phylogeny in S2 Fig. Taken together, these results suggest that sub-

strate-determining residues often undergo substitutions as new kinase families and subfamilies

emerge. We note, however, that the probability that any given residue in the ‘proximal’ cate-

gory will diverge between sister families is relatively low; the most frequently substituted resi-

due was found to have switched in only 17.6% of families analysed, for example (S3 Fig). The

relationship between kinase sequence divergence and kinase specificity divergence is discussed

further below.

Evolution of experimentally determined kinase target preferences

The above results suggest that residues important for kinase specificity differ often across

kinase families and subfamilies. We then studied the extent to which these changes in kinase

residues impact upon their target specificity. To study this, we derived specificity models for

101 S/T kinases from human and mouse, using experimentally determined target sites listed in

the literature-curated databases HPRD (Human Protein Reference Database), Phospho.ELM,

and PhosphoSitePlus [42–44]. This approach tends to produce PWMs (position weight matri-

ces) that are similar to those generated using a peptide-screening approach [35].

We then tested the extent to which kinase specificities differ within and between groups,

families, and subfamilies for kinases of known specificity. In line with expectation, the differ-

ences in specificity are larger across groups than across families and also larger across families
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than across subfamilies (Fig 3A). For subfamilies, the differences are not statistically different

from the distances measured within subfamilies (p = 0.19, Kolmogorov-Smirnov test, two-

sided). These results suggest that kinase specificity often diverges at the level of the group, less

Fig 3. Evolution of kinase specificity at the group, family, and subfamily level. (A) Differences in S/T kinase specificity models at the group, family, and subfamily

levels. The Frobenius distance was calculated for all possible pairwise comparisons within and between groups, families, and subfamilies. (B) Representative kinase pairs

belonging to different groups (left), families (centre), and subfamilies (right). Frobenius distances for each of the 3 pairs are given beneath the logos. (C) A simplified tree

of life with 3 important divergence times (plant-opisthokont, fungi-metazoa, chordate-nonchordate) marked. (D) Phylogenetic estimation of kinase ages at the group,

family, and subfamily level for S/T kinases. AGC, (PKA, PKG, PKC); CMGC, cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAP kinases),

glycogen synthase kinases (GSK) and CDK-like kinases (CLKs); mya, million years ago; PRKCG, Protein Kinase C gamma; RSK, Ribosomal S6 Kinases; RSKp70,

Ribosomal S6 Kinases p70; RSKp90, Ribosomal S6 Kinases p90; S/T, serine/threonine.

https://doi.org/10.1371/journal.pbio.3000341.g003
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so at the family level, and rarely when new subfamilies emerge. We show in Fig 3B some exam-

ples of typical differences in kinase specificity for the 3 classifications. Although the differences

in specificity across families is statistically different from expectation (p� 0.01, Kolmogorov-

Smirnov test, two-sided), the ‘typical’ differences observed are smaller than at the group level.

This is illustrated by the RSK (Ribosomal S6 Kinases) and PKC (Protein Kinase C) families

(Fig 3B, centre), which both have a preference for arginine at the −3 position, but PKC addi-

tionally has a preference for R at position +2 whereas RSK has a modest preference for the

same residue at position −5.

We next considered the relationship between the divergence in kinase sequence and diver-

gence in kinase specificity. Even for kinase sequences of unknown function (‘other’ category,

n = 152), the sequence identity between kinase pairs was found to correlate with the distances

between their PWMs (r = −0.39, p� 0.01). The correlation between the two was even greater

for residues of the ‘proximal’ category (n = 21, r = −0.48, p� 0.01) and for a ‘high-confidence’

set of residues (n = 10, r = −0.48, p� 0.01; S5 Fig) close to the substrate that covary strongly

with specificity [17]. We then considered the extent of sequence change required before diver-

gence in specificity could be observed, which we define here using a PWM Frobenius distance

of 1.06 (see Materials and methods). Generally, for the ‘other’, ‘proximal’, and ‘high-confi-

dence SDR’ categories, new specificities emerge as sequence identities fall below approximately

55%, approximately 70%, and approximately 80%, respectively (S5 Fig), corresponding to 68,

6, and 2 required switches, respectively. These data suggest that specificity changes at the fam-

ily and subfamily level should be relatively rare, because only 9 kinase families and 4 kinase

subfamilies were found with at least 6 ‘proximal’ switch residues. However, we note that the

impact of residue mutation will likely depend upon the nature of the substitution (‘conserva-

tive’ or ‘nonconservative’), the substrate position affected (e.g., +1 and −3 tend to be much

more important for specificity than −1), and the existence of compensatory mutations in the

kinase domain that might buffer the effect of SDR mutations, because other studies have dem-

onstrated experimentally that a single SDR mutation can be sufficient to radically alter speci-

ficity [36,38,40].

To put the previous results into the context of evolutionary time scales, we sought to date

the emergence of many kinase groups, families, and subfamilies. To this end, the presence or

absence of every S/T kinase group, family, and subfamily was predicted for several species

across the tree of life (Fig 3C). The phylogenetic origin of kinase groups, families, and/or sub-

families was then predicted using ancestral state reconstructions, which allowed their emer-

gence to be dated based on the known divergence times between species [45]. Overall, we

estimated that most kinase groups arose in a universal eukaryotic ancestor, in line with a previ-

ous study [21]. For kinase families, around 55% are estimated to have arisen in a universal

ancestor, and up to 65% have arisen before the split between chordates and nonchordates

(approximately 800 million years ago [mya]). Around 60% of subfamilies were similarly esti-

mated to have arisen before the split between chordates and nonchordates (Fig 3D). Together

with the analysis of kinase specificity differences, this result suggests that relatively few kinase

specificities are likely to have arisen in the past 800 million years of kinase evolution.

Kinase motif enrichment across 48 eukaryotic species

The analysis of kinase specificity differences described above can only be performed for

kinases with many experimentally determined targets. For most kinases, this information is

not available [17,46]. As an alternative way to study the evolution of kinase specificity, we ana-

lysed MS (mass spectrometry)-derived phosphorylation sites from a broad range of species.

The phosphoproteome of any given species represents an ensemble of kinase activities. Many
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of these kinases will have preferred target site sequence motifs that are required for optimal

substrate phosphorylation. The signature of several different kinases may therefore be encoded

in each phosphoproteome.

For this study, we were interested in determining the extent to which different kinase-sub-

strate motifs have been exploited during the evolution of the eukaryotes. To this end, phospho-

proteome data were collected from 48 eukaryotic species, including species from the alveolates

(4), amoebozoa (1), excavates (3), fungi (19), heterokonts (1), metazoa (12), and plants (8). We

first measured the enrichment of 3 well-established substrate signatures (R-x-x-S/T, S/T-P,

and S/T-x-x-D/E) and found them to be strongly enriched in nearly all of the 48 species (Fig 4,

top). This suggests that these 3 common preferences are likely to have been present very early

on during the evolution of the eukaryotes. To extend this to other kinase preferences, target

site S/T sequence motifs were extracted from each species phosphoproteome using the motif-x

tool [47]. Motifs without consistent enrichment across related species were filtered from any

further analysis (see Materials and methods). In total, 29 motifs were (Fig 4) identified, which

account for approximately 54% of all phosphosites analysed (S6A Fig).

Among the 29 motifs identified, 11 have been characterised previously in the literature and

have been assigned to at least 1 kinase family or subfamily. This includes well-known motifs

such as the CDK (Cyclin-Dependent Kinase) family motif (S/T-P-X-K) and the CK2 family

motif (S/T-D/E-x-D/E). Eight of the motifs feature either a proline at position +1 or an argi-

nine at position −3. Other motifs were identified in addition to those that are well character-

ised (Fig 4, motifs in black). Here, multiple constraints were imposed to ensure that the

selected motifs were likely to represent bona fide kinase target motifs. For example, motifs

with simple S/T additions to a classical motif were filtered from the analysis, because they

could result from phosphosite misassignment within phosphopeptides from the mass spec-

trometry analysis or potential clustering of phosphorylation sites in the substrate primary

sequences [48,49]. Overall, 18 uncharacterised motifs were selected using the protocol

described in the Materials and methods section. Some of these motifs feature ‘new’ substrate

specificity determinants such as asparagine (N) and glycine (G).

In Fig 4, enrichment p-values for each motif were calculated for each species relative to a

background set of shuffled phosphorylation site sequences, with the S/T retained at the centre.

This analysis suggests that the majority of motifs (Fig 4) are pervasive across the eukaryotic

tree of life. This finding is even more evident when phosphorylation data are pooled from each

of the major taxonomic clades (animals, fungi, plants, etc.) and the enrichment p-values are

recalculated (S6B Fig and S6C Fig). Most of the motifs analysed are distributed across clades

that diverged early during the evolution of the eukaryotes. For example, 18 out of 29 motifs

(62%) are highly enriched (p< 1 × 10−6) in animals, fungi, and plants, indicating that they are

likely to be of ancient origin.

The distribution of motif enrichments between related species is nonrandom, as supported

by tests for the phylogenetic signal of phosphorylation motifs (S2 Table). We tested whether

kinase motif enrichments correlate with the frequency of their expected effector kinases in the

kinome, including, for example, the frequency of CDKs with the frequency of S/T-P-x-K

motifs. However, our analysis suggests that kinase family or subfamily frequencies are not gen-

erally correlated with motif enrichment values when the phylogenetic interdependence of data

points is taken into account [50] (S7 Fig). In spite of this, there is local evidence of kinase-sub-

strate coevolution for some clades and motifs. In the plants, for example, the lack of enrich-

ment of the basophilic R-R-x-S/T motifs can likely be explained by the depletion of its cognate

effector kinase (PKA/PKG (Protein Kinase G)) (S8 Fig), as has been suggested previously

[51,52]. For the CDK family also, the pattern of S/T-P-x-K evolution and CDK evolution is

similar across many species (S9 Fig). However, many other patterns cannot be similarly

Evolution of protein kinase substrate recognition at the active site

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000341 June 24, 2019 9 / 25

https://doi.org/10.1371/journal.pbio.3000341


accounted for, which suggests that there are multiple factors that can affect the fold enrichment

values calculated.

Kinase motif enrichment in prokaryotes

Some kinases encoded in the genome of prokaryotes are homologous to eukaryotic protein

kinases and are currently referred to as ePK-like kinases (ELKs) [53,54]. Current genomic data

now suggest that these eukaryotic-like kinases are as prevalent as histidine kinases in the pro-

karyotes [55]. Until recently however, the S/T phosphoproteomes of archaean and bacterial

species had remained poorly characterised [56]. We repeated the motif analysis on the species

Escherichia coli (bacteria) and Sulfolobus spp. (archaea), which are currently the only 2 organ-

isms with more than 1,000 determined S/T phosphosites [56–58]. This analysis suggests that a

large majority of the eukaryotic phosphorylation motifs discussed previously are not

Fig 4. Enrichment of S/T phosphorylation motifs across several species. Binomial p-values were calculated for each motif and each species considered. The heat map

cells are coloured according to the extent of enrichment for that particular motif and species (see legend, bottom right). The numbers in the column labels correspond to

the sample size of unique S/T phosphorylation sites (15-mer). Prokaryotic phosphosite samples are coloured in purple. (Top) Enrichment of 3 common phosphorylation

signatures (S/T-P, R-x-x-S/T, and S/T-x-x-D/E). (Bottom) Enrichment of 29 motifs discovered using the motif-x tool. Motifs in which the effector kinase has already

been described in the literature are coloured in red. S/T, serine/threonine.

https://doi.org/10.1371/journal.pbio.3000341.g004
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significantly enriched in these 2 species (Fig 4). For E. coli, there is a moderate enrichment for

some single-site motifs, which could have evolved convergently with those motifs found in

eukaryotes. For Sulfolobus, we observe only weak enrichment for 5 eukaryotic motifs (S/T-L/I/

V, S/T-P-x-x-x-K, S/T-P-R/K, R/K-R-x-x-S/T, and R-x-x-S/T-L/I/V). We note also that the S/

T-P and R-x-x-S/T motifs that are highly prevalent in the eukaryotes show no evidence of

enrichment across the prokaryotic species tested (Fig 4). Although it could be argued that the

low phosphosite sample sizes (2,287 and 1,655 for E. coli and Sulfolobus, respectively) pre-

cludes the reliable detection of weaker motifs, we note that both of these signatures (S/T-P and

R-x-x-S/T) were found to be strongly enriched in eukaryotic species with small sample sizes

(Dictyostelium discoideum: 1,389, Leishmania infantum: 1,266). A similar lack of enrichment

was found for a pooled sample of prokaryotic phosphorylation sites (n = 1,440) from several

species [57] (Fig 4).

Prokaryotic motifs were then identified de novo using the motif-x tool for E. coli and the

Sulfolobus genus. None of the motifs identified overlap with the motifs recovered previously

for eukaryotic species (S3 Table and S4 Table). For Sulfolobus, in particular, we also found that

5 out of the 7 motifs identified contain a positively charged residue (R/K), implying the exis-

tence of basophilic Sulfolobus kinases.

Discussion

Here, we have explored the evolution of protein kinase specificity at the active site, using a

combination of kinase sequence data, phosphorylation data, and kinase specificity models.

Using the sequence of protein kinases across several species, we have shown that the evolution

of new kinase families is dominated by sequence changes that are likely to impact upon kinase

function, including kinase peptide specificity. This is in line with our observation that kinases

belonging to different groups and families typically show significant differences in their speci-

ficity. In contrast, kinases belonging to sister subfamilies do not show significant differences in

their specificity. A phylogenetic analysis revealed that most kinase groups and families (89%

and 54%, respectively) are of ancient origin among the eukaryotes, whereas subfamilies gener-

ally emerged later during evolution (only 32% are of ancient origin). Finally, phosphorylation

motifs determined for 48 eukaryotic species were found to be broadly distributed across diver-

gent species and likely emerged soon before or after the last eukaryotic common ancestor. Tak-

ing these different observations together, we suggest that the majority of the kinase active site

specificities present today in eukaryotic species have emerged early on during the evolution of

eukaryotes.

The analysis here of divergent residues across kinase families follows a similar analysis

employing a BLAST-based approach [59]. This study is focused on the kinase catalytic domain,

and we did not take into account the evolution of kinase domain composition or sequence

changes outside the catalytic domain, which may have a significant impact on catalytic func-

tion [60]. Kinase docking interfaces also are not amenable to the aggregated analysis attempted

here because their location in the kinase domain tends to differ significantly between families

[8]. In general, the approach used here assumes that a given kinase domain position will adopt

a given function (catalytic, regulatory, proximal, etc.) across all kinase families. However,

examples are known already of modes of regulation or specificity that are particular to a given

family or subfamily [61,62]. The important residues may be functionally misannotated in such

cases, which would underestimate the extent of divergence in regulatory or substrate-specific

functions. Such kinase-specific examples of residue function may account for many of the

switching events currently placed in the ‘other’ category.
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From the analysis of kinase specificity models, it is apparent that new specificities are often

generated following the emergence of a new kinase group or family, but not following the

emergence of a new kinase subfamily. This is not a surprising result given that kinase groups

and families tend to be older than kinase subfamilies (Fig 3D). We note, however, that the sam-

ple size of PWMs for this analysis was relatively low (n = 101) and that many of the kinase tar-

gets gathered from in vitro studies tend to lack strong in vivo support [44]. The approach used

for PWM construction relies on literature-curated targets sites and therefore tends to be biased

towards medically relevant and/or well-studied kinases [63,64]. However, more systematic

approaches have recently been developed [40,65,66], which may in the future enable the char-

acterisation of many kinases in parallel, in a similar vein to a 2010 specificity-based study of 61

S. cerevisiae kinases [35].

The observation that subfamilies from the same family tend to have the same specificity is,

however, in conflict with the finding that SDR substitutions are also present throughout the

evolution of subfamilies (Fig 2, subfamilies). There are 2 known cases in the literature (PLK

and GRK) in which moderate differences in specificity are observed between sister subfamilies

[31,67–69]. We suggest that differences in peptide specificity can exist between subfamilies,

but on average and based on the current small sample size of specificity models, these tend to

be modest at the subfamily level.

Finally, the analysis of phosphorylation motifs across 48 different eukaryotic species sug-

gests that most arose either in an early eukaryotic ancestor or shortly before the emergence of

the last eukaryotic common ancestor. The phosphorylation data set spans the tree of life but is

unsurprisingly biased towards animal, fungal, and plant species. Ongoing projects for

increased representation of the protist superkingdoms could help to address this problem in

the future [70]. From this analysis, we also conclude that most eukaryotic phosphomotifs post-

date the divergence of eukaryotes and prokaryotes. The acquisition of phosphoproteome data

from several more prokaryotic species will be required, however, to strengthen this conclusion.

In general, the increase in statistical power enabled by larger data sets will enable the reliable

identification of weakly enriched motifs (‘false negatives’), many of which are likely missing

from this analysis. However, this would not eliminate the possibility that the phosphomotifs

observed may reflect the specificities of phospho-binding domains such as the WW domain,

Polo-box domain, and 14-3-3 domains [71,72]. A more definitive analysis would require the

acquisition of direct kinase-substrate relationship data across several species.

Collectively, the results suggest that the evolution of new kinase specificities was character-

ised by a ‘burst’ around the time of the last eukaryotic common ancestor, followed by a period

of relative stasis. Most gene duplicates will be quickly silenced [73], and diversification of func-

tion is often considered a primary means for the ‘survival’ of newly duplicated genes in the

genome. The capacity of the kinase fold to generate diverse target preferences at the active site

interface through mutations may have been an important factor underlying the success of this

fold. Our analysis suggests that, over the past 800 million years, there have been relatively few

novel motifs emerging in eukaryotic kinases. It is interesting to speculate why this is the case.

It is possible that no new distinct mode of interaction can be accommodated at the active site

or that such novel motifs are not easily reached via mutations of existing kinases. As men-

tioned above, kinase specificity is determined via multiple mechanisms, including docking

interactions, expression differences, localisation differences, activation modes, etc. Duplicated

kinases can, therefore, be made nonredundant by diversifying the way by which they regulate

their substrates to avoid misregulation in multiple different ways [12]. Additional research will

be needed to study how the different kinase specificity mechanisms have evolved in kinases.

Protein kinases are just one of many peptide-binding domain types that can recognize

diverse sets of peptide motifs. Other such domains include, for example, the PDZ (Post-
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synaptic density protein 95 (PSD-95), Drosophila disc large tumor suppressor (Dlg1), Zona

occludens 1 (ZO-1)), SH2 (Src Homology 2), SH3 (Src Homology 3), and WW, among many

other families. It remains to be seen whether the findings described here relating to the evolu-

tion of different target motifs will apply to other such important peptide-binding domains.

Materials and methods

Kinase phylogenetic analysis

Kinase domain sequences were collected for all 9 opisthokont species in KinBase with an

annotated kinome (H. sapiens, M. musculus, S. purpuratus, D. melanogaster, C. elegans, A.

queenslandica, M. brevicollis, S. cerevisiae, and C. cinerea) [19]. Kinases of the ‘atypical’ group

were excluded from the analysis. The kinase domain sequences were then aligned using

MAFFT [74], were filtered to remove pseudokinases (kinases without expected residues at

domain positions 30, 48, 123, 128, and 141), and then were realigned using MAFFT L-INS-i

[74]. Manual corrections were then made to the multiple sequence alignment (MSA), and the

trimAl tool was employed to remove positions with 20% or more of ’gap’ characters among

the sequences [75]. Finally, a further filter was applied to remove truncated sequences with

fewer than 190 kinase domain positions.

The resulting MSA (2,094 sequences) was used to generate a maximum-likelihood kinase

domain phylogeny with the RaxML tool [76]. Amino acid substitutions were modelled using

the LG matrix, and a gamma model was employed to account for the heterogeneity of rates

between sites. A neighbour-joining phylogeny generated with the R ape package was used as

the starting tree [77].

Ancestral sequence reconstructions were performed with the CodeML program (part of the

PAML package) using an LG substitution matrix [78]. No molecular clock was assumed

(clock = 0), and a gamma model was employed again to account for rate heterogeneity between

sites. The alpha parameter of the gamma distribution was estimated (fix_alpha = 0) with a star-

ing value of 0.5 (alpha = 0.5), and 4 categories of the gamma distribution were specified

(ncatG = 4). The physicochemical properties of the amino acids were not taken into account

when performing the ancestral sequence reconstructions (aaDist = 0).

For the analysis of kinase evolution, each family and subfamily was assessed iteratively, and

a divergence score (s) was assigned to each position of the MSA. The divergence scores are cal-

culated by comparing the family/subfamily of interest (clade A) with the closest sister clade

(clade B) in the phylogeny. The score calculated is adapted from the BADX score of a previous

publication by Edwards and colleagues [22], specifically:

S ¼ RCA � ACx: pðACÞ:

Recent conservation (RC) represents the sequence conservation for the clade of interest

(clade A) and is calculated here on the basis of substitution matrix similarity in the R package

bio3d [79]. ACX represents the conservation of ancestral nodes for the clade of interest (clade

A) and the ancestral node for the nearest sister clade (clade B); this is given as a 1 if the pre-

dicted residues are identical to each other and a −1 otherwise. Finally, the score is weighted by

the value p(AC), which represents the probability that the AC value was correctly assigned.

For matching residues (AC = 1), this is the posterior probability of the predicted residue for

clade B; for differing residues (AC = −1), this is the summed posterior probability of all resi-

dues in clade B besides from the predicted residue for clade A. Therefore, scores for suspected

divergence would be down-weighted if there is ambiguity concerning the nature (matching or

mismatching) of the clade B ancestor.
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Where the sequences of interest were divided into 2 or more clades in the phylogeny, only

the largest clade was considered for further analysis. In some cases, also, the clade of interest

contained spurious sequences from the wrong family or subfamily. Spurious sequences were

tolerated only if they comprised less than 15% of the clade sequences; otherwise, the largest

’pure’ subclade (with the sequences of interest only) was selected for further analysis. For the

calculation of divergence scores, the nearest sister clade to the clade of interest was selected.

However, scores were only calculated if both clades contained 5 or more sequences and

belonged to the correct category (e.g., 2 subfamilies that are being compared must belong to

the same family). All searching and/or manipulation of the phylogeny was performed using a

custom script in R with the aid of the ape package.

Aggregated analysis across kinase families and subfamilies

For the global analysis represented in Fig 2, the total number of switches for each alignment

position was calculated at the family and subfamily levels. For this aggregated analysis, ‘dupli-

cate comparisons’ (i.e., in which the same 2 ancestral nodes were compared) were filtered out

to ensure that the same switch event was only counted once. A substitution is considered a

switch if it is above the 95th percentile for all subfamily (ssubfamily(95) = 1.904) or family (sfamily

(95) = 1.793) scores. For the one-sided Fisher test described in the Results section, a site is con-

sidered to be ‘frequently switching’ if the number of switches is above the 90th percentile of

switch frequencies for the 246 alignment positions. This was calculated separately at the family

(90th percentile = 8) and subfamily (90th percentile = 7) level.

In Fig 2, the aggregated number of switches have been grouped according to the functional

categories ‘catalytic’, ‘proximal’, ‘distal’, ‘regulatory’, ‘interactions’, and ‘other’. The ‘catalytic’

residues refer to those that are needed for catalysis or form the catalytic spine [80]. The ‘proxi-

mal’ category refers to noncatalytic residues within 4 Angstroms of the substrate peptide of

PKA (PDB: 1ATP), excluding substrate positions N terminal to the −6 position. The ’distal

SDRs’ are the predicted SDRs in Bradley and colleagues [17] more than 4 Angstroms from the

substrate (in PDB:1ATP). The ’regulatory’ category refers to regulatory spine residues and

those within and surrounding the activation loop [81]. The ‘interaction’ category refers to resi-

dues often found to be in contact with other protein domains (at least 10) in cocrystal struc-

tures, as determined using the 3DID database of protein–protein interactions [82]. Finally,

‘other’ represents any residue not belonging to any of the categories described above. The resi-

dues belonging to each category are defined in S1 Table.

When using the SDR annotations from the Creixell and colleagues [41] study, SDRs with a

score >0.8 and within 5 Angstroms of the substrate peptide were used for this definition.

When using the literature-curated SDRs from the same study, the ‘proximal’ and ‘distal’ cate-

gories were merged because only 5 of the literature-curated SDRs were distal from the

substrate.

Analysis of kinases with known specificity

For the analysis of kinase specificity, 101 high-confidence specificity models of human and

mouse S/T kinases were collected as described in Bradley and colleagues (2018). These models

are derived from the literature-curated kinase targets given in the databases HPRD, Phospho.

ELM, and PhosphoSitePlus [42–44]. Each kinase was annotated at the group, family, and sub-

family level (as required) using the manual annotations given in the kinase.com website [19].

The analysis of specificity divergence was performed separately at each of the 3 levels. For each

level, all pairwise distances within a grouping are computed, and then all possible pairwise dis-

tances are calculated between groupings. Importantly, the higher-level categorisation is
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retained for all pairwise comparisons. For example, at the family level, all between-family dis-

tance comparisons would occur for kinases belonging to the same ’group’. For each pairwise

comparison, the Frobenius distance between specificity models was calculated using the ’norm

(,type = ‘F’) function in R after subtracting one PWM from the other. The Frobenius distance

represents the sum of squared differences between matrix values, followed by square rooting

[83].

For the comparison of kinase sequence divergence with kinase specificity divergence (S5

Fig), a Frobenius distance threshold of 1.06 was used to separate ‘specificity-conserved’

kinase–kinase pairs from ‘specificity-diverged’ kinase–kinase pairs. This threshold was derived

by taking the maximum distance between PWMs generated for the same kinase, which were

constructed by subsampling known targets (n = 25) from kinases with 50 or more annotated

targets.

Dating the emergence of kinase groups, families, and subfamilies

First, all known kinase groups, families, and subfamilies present in animal and fungal species

were retrieved from the kinase database KinBase [19]. The list was then filtered to remove

atypical kinases and tyrosine protein kinases. The presence or absence of each kinase group,

family, and subfamily across several species of the eukaryotic tree of life was then predicted

using the KinAnnote tool [84]. For this purpose, we used all species from a recently published

tree of life for which a publicly available genome/proteome sequence was available [85]. The

tree of life was then pruned in R using the ape package to retain these species only (55 in total).

The origin of each kinase group, family, and subfamily was then predicted using maximum-

likelihood–based ancestral state reconstruction with the ace function of the ape package [77].

The reported divergence times between species in the literature was then used to estimate ages

for each group, family, and subfamily [45].

Where multiple origins were predicted for a kinase group, family, and subfamily, we traced

the kinase emergence to the most recent common ancestral node between the predicted nodes

of origin. This approach assumes no horizontal gene transfer between species or convergent

evolution of kinase groups, families, and subfamilies.

Kinase motif enrichment across eukaryotic species

The phosphorylation site data were collected from a range of sources. They are as follows: Try-
panosoma brucei [86,87], T. cruzi [88,89], L. infantum [90], Trichoplax adhaerens [91], H. sapi-
ens/M. musculus/Rattus norvegicus [46], S. purpuratus [92], Drosophila spp. [93], C. elegans
[94], Magnaporthe oryzae [95], 18 fungal species [96], D. discoideum [97], Medicago truncatula
[98,99], Glycine max [99,100], Arabidopsis thaliana [99,101], Selaginella moellendorffii [102],

Brachypodium distachyon [103], Oryza sativa [99,104], Zea mays [99,105], Chlamydomonas
reinhardtii [106], Plasmodium falciparum/P. berghei/Toxoplasma gondii [107,108], Tetrahy-
mena thermophila [109], and Phytophthora infestans [51].

For each species, redundant phosphosite 15-mers (centred on S or T) were filtered from the

analysis. Phosphorylation motifs (S/T) for each of the 48 species were obtained by running r-

motif-x using its default parameters (p-value of 1 × 10−6 and a minimum of 20 motif occur-

rences). This tool takes as its input a ’foreground’ set of known target sites and a ’background’

set of sites known not to be target sites [110]. For the background set, we randomly shuffled

the flanking sequences of known phosphorylated target sites (central S/T retained). The amino

acid composition of the foreground and background sets were therefore identical. This

approach is expected to generate fewer spurious motif predictions than simply sampling S/T
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sites randomly from the proteome [111]. To generate the background set, each known target

site was randomly shuffled 10 times.

For further analysis, we selected only those motifs appearing in at least a third of species

within one or more superphyla (i.e., fungi, metazoa, and plants). For the excavates (3 species

represented here), the motif had to be present in at least 2 of the examined species. Motifs exclu-

sive to the amoebozoa or heterokonts were not considered because both superphyla are repre-

sented here by only a single species. Other constraints were imposed to filter out potentially

spurious motifs. Serine or threonine additions to a classical motif were not considered, because

they may result from phosphosite misassignment within phosphopeptides or the clustering of

phosphorylation sites in the substrate primary sequence [48,49]. We also considered R/K, D/E,

and L/I/V/M to be synonymous when identifying new motifs. Finally, D/E additions to the clas-

sic casein kinase 2 motif ‘S/T-D/E-x-D/E’ were not considered because weak D/E preferences

outside the +1 and +3 positions have already been described for this kinase [38]. Motifs detected

here that do not match the list of motifs given in Amanchy and colleagues [112] or Miller and

colleagues [113] are declared to be ‘new’ motifs with an unknown upstream regulator.

The enrichment of kinase motifs was calculated relative to the background set of rando-

mised peptides. The significance of motif enrichments in each species was determined by cal-

culating binomial p-values. Here, the null probability of the motif is taken to be equal to the

total frequency of motif matches (e.g., P-x-S/T-P) to the background set, divided by the total

number of background matches for the superset motif (e.g., S/T-P). The calculation of equiva-

lent frequencies for the foreground set enables an analytical p-value to be calculated using the

binomial distribution. The calculated p-value therefore gives an indication, for each motif, of

the extent of enrichment of the motif against the background set relative to that of the most

frequent superset motif (e.g., the enrichment of P-X-S/T-P relative to S/T-P).

Number of motif matches as a percentage of the phosphoproteome

Each of the motifs previously identified using motif-x was screened against the known target

sites of each species, and the total number of target sites matching at least one motif was

counted and then divided by the total number of known target sites in each species (S6A Fig).

For this analysis, we do not consider motifs with only one constrained flanking position (e.g.,

G-S/T), because matches to the foreground set are likely to arise just by chance. These patterns

may represent incomplete sequence motifs. Exceptions are made for the classic S/T-P and R-x-

x-S/T signatures, which by themselves can be sufficient for kinase targeting [5,114].

Kinase motif enrichment for prokaryotic phosphorylation sites

The prokaryotic phosphorylation data were collected from multiple sources. Phosphorylation

data for E. coli derives from [56–58]. Phosphorylation data for Sulfolobus acidocaldarius and

Sulfolobus solfataricus comes from the dbPSP database [57]. The pooled species in Fig 4 repre-

sents 180 unique phosphorylation sites from 8 prokaryotic species—Halobacterium salinarum,

Bacillus subtilis, Mycobacterium tuberculosis, Streptomyces coelicolor, E. coli, Synechococcus sp.,

S. solfataricus, S. acidocaldarius—all of which derive from the dbPSP database also [57].

Enrichment values and binomial p-values were calculated using the same methods

described in the previous section. The motif-x tool was executed using its default parameters,

as described above.

Coevolution between the kinome and phosphoproteome

A starting phylogeny for the 48 eukaryotic species was assembled using the NCBI taxonomy

tool [115]. Unresolved branches (polytomies) for particular clades were then resolved
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manually after referring to previous phylogenetic studies in the literature [116–120]. Kinome

annotations for each species were generated automatically using the KinAnnote tool [84],

which employs BLAST- and HMM-based searches to identify and classify eukaryotic protein

kinases.

The relationship between kinase motifs and their cognate kinases (e.g., S/T-P-x-K and

CDKs) was modelled with phylogenetic independent contrasts (PICs) in R using the ape pack-

age [50,77]. This method generates phylogenetic contrasts between variables on a tree to

account for the nonindependence of data points [50]. In S7 Fig, contrasts were generated for

motif enrichment values on the y-axis and for relative kinase frequencies (number of kinases

of interest divided by the total number of kinases detected in the proteome) on the x-axis.

Tests for the phylogenetic signal of different motifs were conducted in R using the Phylo-

signal package [121]. The phylogenetic plots in S8 Fig and S9 Fig were also generated using

Phylosignal.

Supporting information

S1 Fig. Frequently switching residues in kinases. Residues coloured in red and blue mark

‘frequently switching’ residues (number of switches above the 90th percentile of switch fre-

quencies across the kinase domain) at the family (A) and subfamily level (B), respectively. The

kinases (mouse protein kinase A: PDB 1ATP) are represented in complex with an ATP mole-

cule (green, orange, blue, red) and a substrate-mimicking inhibitor (PKIA, yellow). Kinase res-

idues have been numbered according to their position in the protein kinase domain (Pfam:

PF00069). PDB, Protein Data Bank; Pfam, Protein families; PKIA, cAMP-dependent protein

kinase inhibitor alpha.

(TIF)

S2 Fig. Global kinase domain phylogeny with 2,094 different sequences represented. Red

and blue circles represent families and subfamilies (respectively) where divergent residues are

found in kinase residues close to the substrate (i.e., the ‘proximal’ category). The size of the cir-

cle is proportional to the number of switches found in the ‘proximal’ category.

(TIF)

S3 Fig. Relative number of switches for each kinase domain position at the family and sub-

family level. Here, the number of switches has been divided (normalised) by the total number

of families (n = 85) and subfamilies (n = 64) considered when aggregating the number of

switches. As in Fig 2, the values for each domain position have been grouped according to the

functional category (‘catalytic’, ‘regulatory’, ‘proximal’, etc.) of the residues.

(TIF)

S4 Fig. Frobenius distances between PWMs generated for the same kinase. On the left

(‘same’), PWMs of the same kinase were generated by subsampling all known kinase target

sites derived from literature-curated databases. The left-hand box plot represents the distribu-

tion of matrix distances between PWMs generated using this same method. The right-hand

box plot (‘different’) represents matrix distances between PWMs generated using 2 different

methods: phosphosite-based and peptide-screening–based [35]. Only 13 kinases characterised

in [35] have sufficient known substrates for PWM construction (therefore, n = 13). As

expected, PWMs generated using different approaches are more different on average than

those generated using the same method. However, in most cases, the inter-PWM distances are

comparable to those found for the ‘same’ category. PWM, position weight matrix.

(TIF)
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S5 Fig. Relation between kinase sequence and specificity differences. (Top) Plot between

the kinase sequence identity (x-axis) and Frobenius distance (y-axis) for all possible kinase-

kinase pairs among the 101 S/T kinases for which specificity models have been constructed.

This has been plotted for residues of the ‘other’ category (left), ‘proximal’ category (centre),

and 10 high-confidence SDRs (right) identified in [17]. (Bottom) For the same residue descrip-

tions, plot of kinase sequence identity (x-axis) against the specificity divergence (y-axis). ‘Spec-

ificity divergence’ represents the proportion of Frobenius distances above the 1.06 threshold

used to separate ‘specificity-conserved’ kinase–kinase pairs from ‘specificity-diverged’ kinase–

kinase pairs (see Materials and methods). SDR, specificity determining residue; S/T, serine/

threonine.

(TIF)

S6 Fig. Motif presence across species. (A) Proportion of phosphorylation sites in each species

that match a phosphorylation motif (see Materials and methods). (B) A simplified version of

the eukaryotic tree of life presented in the [85] study. The numbers in brackets correspond to

the number of different species represented by phosphorylation data in this study. (C) Calcula-

tion of binomial p-values (as in Fig 4) for each motif in each major clade (metazoa, fungi,

plants, etc.) after phosphorylation sites within a clade were pooled across species. The figure

legend (bottom right) is the same as in Fig 4.

(TIF)

S7 Fig. Phylogenetic independence tests. PICs between 5 different kinase clades (AKT/SGK,

CAMK2, CDK, CK2, PKA/PKG) and their corresponding substrate motifs (R-x-x-S/T-F, R-x-

x-S/T-x-D/E, S/T-P-x-K, S/T-D/E-x-D/E, and R-R-x-S/T, respectively). This approach

accounts for the phylogenetic nonindependence between data points when comparing 2 con-

tinuous variables [50]. CAMK2, Calcium/calmodulin-dependent protein kinase type 2; CDK,

Cyclin-Dependent Kinase; CK2, Casein Kinase 2; PIC, phylogenetic independence contrast;

PKA, Protein Kinase A; PKG, Protein Kinase G; SGK, Serum and Glucocorticoid-regulated

Kinase.

(TIF)

S8 Fig. Mapping of PKA/PKG family relative kinase frequencies and substrate motif

enrichments to a phylogeny of 48 eukaryotic species. Relative kinase frequencies across the

48 species were calculated for the PKA/PKG family, and motif enrichments were calculated for

their cognate substrate motif (R-R-x-S/T). The red box highlights species where the absence of

PKA and PKG kinases in the proteome corresponds to a lack of R-R-x-S/T motif enrichment.

PKA, Protein Kinase A; PKG, Protein Kinase G.

(TIF)

S9 Fig. Mapping of CDK family relative kinase frequencies and substrate motif enrich-

ments to a phylogeny of 48 eukaryotic species. Relative kinase frequencies across the 48 spe-

cies were calculated for the CDK family, and motif enrichments were calculated for its cognate

substrate motif (S/T-P-x-K). CDK, Cyclin-Dependent Kinase.

(TIF)

S1 Table. A table mapping the kinase MSA used for all sequence analysis (column 1) to the

sequence of human protein kinase A (column 2), to the PDB numbering (PDB: 1ATP) of

protein kinase A (column 3), and to the kinase domain positions (Pfam: PF00069). MSA,

multiple sequence alignment; PDB, Protein Data Bank; Pfam Protein families.

(XLSX)
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S2 Table. Five tests for the phylogenetic signal (Cmean, I, K, K.star, and Lambda) of 9 dif-

ferent eukaryotic motifs. Numbers in the table represent p-values for each one of the tests.

Low p-values (e.g., p< 0. 01) suggest that the motif in question is nonrandomly distributed

with respect to the species phylogeny of 48 eukaryotic species (as presented in S3 Fig and S4

Fig). All tests were performed using the Phylosignal package in R [121].

(XLSX)

S3 Table. Motifs identified from phosphorylation sites in E. coli (n = 2,287) using the

motif-x tool. In both instances, motif-x was executed using its default parameters

(p< 1 × 10−6 and at least 20 occurrences). The motif-x scores for each of the motifs are dis-

played in the second column.

(XLSX)

S4 Table. Motifs identified from phosphorylation sites in Sulfolobus spp. (n = 1,655) using

the motif-x tool. In both instances, motif-x was executed using its default parameters

(p< 1 × 10−6 and at least 20 occurrences). The motif-x scores for each of the motifs is dis-

played in the second column.

(XLSX)
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