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Abstract: Relative risk (RR) is a preferred measure for investigating associations in clinical and
epidemiological studies with dichotomous outcomes. However, if the outcome of interest is rare, it
frequently occurs that no events are observed in one of the comparison groups. In this case, many of
the standard methods used to obtain confidence intervals (CIs) for the RRs are not feasible, even in
studies with strong statistical evidence of an association. Different strategies for solving this challenge
have been suggested in the literature. This paper, which uses both mathematical arguments and
statistical simulations, aims to present, compare, and discuss the different statistical approaches to
obtain CIs for RRs in the case of no events in one of the comparison groups. Moreover, we compare
these frequentist methods with Bayesian approaches to determine credibility intervals (CrIs) for the
RRs. Our results indicate that most of the suggested approaches can be used to obtain CIs (or CrIs) for
RRs in the case of no events, although one-sided intervals obtained by methods based on deliberate,
probabilistic considerations should be preferred over ad hoc methods. In addition, we demonstrate
that Bayesian approaches can be used to obtain CrIs in these situations. Thus, it is possible to obtain
statistical inference for the RR, even in studies with no events in one of the comparison groups,
and CIs for the RRs should always be provided. However, it is important to note that the obtained
intervals are sensitive to the method chosen in the case of small sample sizes.

Keywords: relative risk; inference; confidence intervals; credibility intervals

1. Introduction

In both observational and experimental studies, the relative risk (RR) is one of the
preferred measures for reporting associations between dichotomous exposures/risk factors
and a dichotomous outcome. For clinicians, the RR is often easier to interpret than an odds
ratio (OR) [1]. The RR is defined as the ratio between outcome probabilities obtained in two
groups and thus has a very direct probabilistic interpretation compared to the more abstract
definition of the OR. Hence, while translating an RR of two to the statement “The risk in
the intervention group is twice as high as in the control group”, a similar interpretation
would be incorrect for an OR.

When estimating an RR, researchers may encounter a challenge if one of the com-
parison groups does not experience any event (or if everyone in a group experiences an
event), as this would result in an RR of zero or ∞, respectively. In these cases, confidence
intervals (CIs) for the RR cannot easily be reported, and in the resulting research papers,
it is often concluded that the sample was not large enough to obtain sufficient inference
about the RR. However, as the RR is a measure of an association, this is not reasonable.
For example, in the case of a randomized clinical trial (RCT) where the outcome is a rare
adverse event, a result of no adverse event in the intervention group, but of a moderate
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number of adverse events in the control group, would give clear evidence of a protective
effect of the intervention [2,3]. Similarly, in an epidemiological study investigating the
efficacy of a vaccine, a result with no observed infections in the group of vaccinated persons,
but with some infected persons among the non-vaccinated, could give clear evidence of a
positive effect of the vaccine [4].

In general, it seems erroneous that a study reporting decreasing incidence of an
adverse outcome from 10% to 1% can (possibly) provide strong evidence of a protective
effect, while a similar sized study reporting decreasing incidence of the adverse outcome
from 10% to 0% is not considered to provide strong evidence, although the effect size
is larger. Hence, it is obvious that the problem with an RR estimate of zero does not
indicate an epidemiological weakness of the study but rather a limitation of the statistical
procedures used to obtain the estimate and corresponding CI.

This problem has been discussed by Fagerland et al. as a special case without much
detail [5] and in a note on how to approach the problem in R [6]. Moreover, research [7,8] has
suggested an approximate rule proposing that an upper limit for a CI could be calculated
as three divided by the total number of observations. However, these suggestions were
made before the development of modern computational possibilities, and they are later
discussed in a more current setting [9].

The aim of this paper is to present, compare, and discuss different statistical ap-
proaches to obtain frequentist CIs as well as Bayesian credibility intervals (CrIs) in cases
where an RR is estimated to be zero due to no outcome events in one of the compari-
son groups.

2. Materials and Methods
2.1. Motivating Examples

To demonstrate the different approaches, we will present three examples, each of
which corresponds to the setting of an RCT with two groups of equal size and an observed
incidence of an (adverse) outcome of 0% in the intervention group and 10% in the control
group. These three examples correspond to total sample sizes of 40, 200, and 400, respec-
tively (Table 1). They are chosen as their ranges correspond to most of the study sizes
used in clinical practice. Furthermore, we include three additional examples (Examples
D, E, and F), corresponding to large (N = 20,000) epidemiological studies with differing
incidences of 10%, 1%, and 0.1%, respectively, in the reference group. We decided not to
include examples in which the group with 0 events is the reference (control) group, as these
result in RR estimates of ∞ and, hence, are best handled by presenting the inverse RR using
the other group as the reference.

For clarity, we will denote the group experiencing 0 events as the intervention group,
and the group experiencing more than 0 events as the control group, even if this nomen-
clature may be considered inappropriate in epidemiological studies. Moreover, we will
denote positive outcomes as events and negative outcomes as non-events.

First, we will present the investigated approaches. We will start with frequentist
approaches to determine CIs for the RR, continue with frequentist approaches utilizing the
OR as an approximation of the RR, and end with Bayesian approaches to obtain CrI for the
RRs. Subsequently, we will demonstrate the results of applying these approaches to the
examples from Table 1. All computations are performed in Stata version 16.1. Stata codes
are available in Supplementary File S1.
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Table 1. Examples.

Examples with Varying Samples Sizes Examples with Varying Outcome Rates
Intervention Control Intervention Control

Example A (N = 40) Example D (N = 20, 000)

Negative
outcome 20 18 10,000 9000

Positive
outcome 0 2 0 1000

Example B (N = 200) Example E (N = 20, 000)

Negative
outcome 100 90 10,000 9900

Positive
outcome 0 10 0 100

Example C (N = 400) Example F (N = 20, 000)

Negative
outcome 200 180 10,000 9990

Positive
outcome 0 20 0 10

2.2. Frequentist Approaches
2.2.1. Normal Approximation Formula for the RR

The classical formula for a CI of the RR using the normal approximation is given by

CIRR N-appr =
(

R̂R · exp
(
−1.96 · SERR N-appr

)
; R̂R · exp

(
1.96 · SERR N-appr

))
with

R̂R =
d1/n1

d0/n0

and

SERR N-appr =
√

1/d1 − 1/n1 + 1/d0 − 1/n0

where d1 and d0 are the number of events in the intervention group and the control group,
respectively, and n1 and n0 are the corresponding total number of observations in each
group. Here, 1.96 is the 0.975 quantile of the normal distribution, corresponding to a 95%
confidence interval. This will fail in the case of d1 = 0, as it would imply division by 0 in
the standard error (SE). In principle, one could try to determine limits for these expressions
for d1 → 0, handling the counts as if they were continuous. For the lower confidence limit,
this will result in a limit of 0, while the (more interesting) upper limit can be shown to
diverge to ∞ by use of l’Hospital’s rule. Furthermore, as the normal approximation for the
CI generally requires counts of at least 5 (or 10) in each cell, this method is discouraged in
case of 0 events observed in the intervention group [10]. Hence, we will not investigate
modifications to the normal-based CI for the RR further.

2.2.2. Adding One to Each Cell or Moving One Non-Event to Event in the
Intervention Group

A simple ad-hoc approach to avoid these challenges is adding 1 to each cell in the cross
table. This will result in an RR estimate slightly higher than 0 and create the possibility of
applying standard methods to obtain a CI. However, because the resulting cross table will
include 1 as the number of events in the intervention group, normal approximation methods
are generally discouraged [10]. Furthermore, this approach will artificially increase the
total sample size by 4, thus suggesting more information than what is obtained in reality,
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resulting in too narrow confidence intervals. In large studies, this effect will be minimal,
but in small studies, the effect should be considered (Approach I in Tables 2 and 3).

Table 2. Results: reported intervals are 95% CIs for frequentist methods and 95% CrI for Bayesian
methods. (Note: 0 indicates an estimate formally forced to be 0, while 0.000 indicates an estimate
numerically within 0.0005 of 0.)

Example A Example B Example C

Approach I
Adding 1 (two-sided) (0.0375; 2.9625) (0.0120; 0.6912) (0.0065; 0.3507)
Adding 1 (one-sided) (0; 2.0851) (0; 0.4989) (0; 0.2544)
Moving 1 (two-sided) (0.0492; 5.0831) (0.0130; 0.7666) (0.0068; 0.3690)
Moving 1 (one-sided) (0; 3.5011) (0; 0.5526) (0; 0.2676)

Approach II
Odds ratio

(approximate
Cornfield)

(0; 1.8912) (0; 0.3513) (0; 0.1738)

Odds ratio (exact
Cornfield) (0; 5.2804) (0; 0.4178) (0; 0.1864)

Odds ratio (mid-p
Cornfield) (0; 3.4316) (0; 0.3256) (0; 0.1483)

Odds ratio (exact
Baptista-Pike) (0; 3.4316) (0; 0.3933) (0; 0.1870)

Odds ratio (mid-p
Baptista-Pike) (0; 2.1267) (0; 0.3140) (0; 0.1597)

Approach III
Bayes B(1, 1) prior

EqT (0.0072; 2.4681) (0.0020; 0.4069) (0.0013; 0.1657)

Bayes B(1, 1) prior
HPD (0.0002; 1.8191) (0.0002; 0.3185) (0.0000; 0.1381)

Bayes B(0.5, 0.5) prior
EqT (0.0002; 2.0744) (0.0005; 0.2621) (0.0001; 0.1213)

Bayes B(0.5, 0.5) prior
HPD (0.0000; 1.4303) (0.0001; 0.1901) (0.0000; 0.0906)

Bayes binreg
β ∼ N(0, 10000) EqT (0.0000; 0.0147) (0.0000; 0.0047) (0.0000; 0.0008)

Bayes binreg
β ∼ N(0, 10000) HPD (0.0000; 0.0005) (0.0000; 0.0002) (0.0000; 0.0000)

In 1966, Gart [11] suggested adding 1/2 instead of 1 to each cell in the table. This
naturally decreases the distortion of the sample size. However, it has been shown [6]
that the resulting CI is quite sensitive to the magnitude of the added term. Furthermore,
due to the resulting counts not being integers, this solution has no clear probabilistic
interpretation, while approximate methods will still be discouraged due to the low count
(0.5) in one cell. Again, a one-sided CI can be considered to increase both power and
interpretability. Because of the unclear probabilistic interpretation and infeasibility of
applying many estimation methods due to non-integer counts, in this paper, we decided
not to investigate the approach of adding 1/2 further.

A less distorting but similar strategy is to move one observation in the intervention
group from no event to event. This results in an event-count of 1 and a non-event-count
decreased by 1, without modifying results in the control group. This method preserves the
total sample size (and the sample size in each group) as well as the integrity of all counts.
One can think of this method as a counterfactual setting, investigating a similar study,
where one of the intervention participants did counterfactually experience the outcome
event, corresponding to an outcome with (slightly) weaker evidence for a protective effect.
However, it should be noted that this will always lead to a more conservative estimate
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of the RR in the sense that it will indicate a weaker association than is actually present
(Approach I in Tables 2 and 3).

Table 3. Results: reported intervals are 95% CIs for frequentist methods and 95% CrI for Bayesian
methods. (Note: 0 indicates an estimate formally forced to be 0, while 0.000 indicates an estimate
numerically within 0.0005 of 0.)

Example D Example E Example F

Approach I
Adding 1 (two-sided) (0.0001; 0.0071) (0.0014; 0.0710) (0.0117; 0.7040)
Adding 1 (one-sided) (0; 0.0052) (0 ; 0.0517) (0; 0.5066)
Moving 1 (two-sided) (0.0001; 0.0071) (0.0014; 0.0717) (0.0128; 0.7810)
Moving 1 (one-sided) (0; 0.0052) (0; 0.0522) (0; 0.5612)

Approach II
Odds ratio

(approximate
Cornfield)

(0; 0.0035) (0; 0.0380) (0; 0.3838)

Approach III
Bayes B(1, 1) prior

EqT (0.0000; 0.0038) (0.0002; 0.0354) (0.0036; 0.3911)

Bayes B(1, 1) prior
HPD (0.0000; 0.0032) (0.0000; 0.0292) (0.0000; 0.3147)

Bayes B(0.5, 0.5) prior
EqT (0.0000; 0.0039) (0.0003; 0.0364) (0.0033; 0.3730)

Bayes B(0.5, 0.5) prior
HPD (0.0000; 0.0031) (0.0000; 0.0295) (0.0001; 0.2984)

Bayes binreg
β ∼ N(0, 10000) EqT (0.0000; 0.00003) (0.0000; 0.0003) (0.0000; 0.0041)

Bayes binreg
β ∼ N(0, 10000) HPD (0.0000; 0.00000) (0.0000; 0.00001) (0.0000; 0.0001)

Moreover, as the true RR is 0, estimating a lower limit of the CI above 0 does not
seem reasonable. Hence, one can obtain additional power and avoid unintuitive results by
instead reporting a one-sided upper CI.

2.2.3. Using the OR as Substitute for the RR

It is well known that the OR can be used as an approximation for the RR when the
outcome is rare [12]. In our examples, this implies that the OR often could be a feasible
approximation, as the 0 event in the intervention group indicates a low probability, while
the probability in most, but not necessarily all studies, will be low in the control group as
well. If necessary, the literature suggests approaches to adjust the resulting OR and its CI
to achieve a closer approximation to the RR [12,13].

The classical normal approximation formula for a CI for the OR, as suggested by [14] is

CIOR N-appr =
(

ÔR · exp
(
−1.96 · SEOR N-appr

)
; ÔR · exp

(
1.96 · SEOR N-appr

))
with

ÔR =
d1/h1

d0/h0

and

SEOR N-appr =
√

1/d1 + 1/h1 + 1/d0 + 1/h0

where h1 and h0 are the number of non-events in the intervention and the control group,
respectively.
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Similarly, as in the case of the approximate formula for RR, if we let d1 → 0 (and
h1 → n1), the lower CI limit will converge to 0, while the upper limit will diverge to ∞.
Instead, one can apply methods for combinatorically determined CIs for the OR, which
typically will be able to handle counts of 0. For instance, the Cornfield approximate CI for
the OR [15] can be estimated in the case of 0 events in the intervention group and will, in
this case, always result in a lower CI limit of 0 (Approach II in Tables 2 and 3).

This approach has been improved further by Baptista and Pike [16] and Fagerland [17]
with exact CIs for the OR including an implementation of the exact CI suggested by
Cornfield [15]. Furthermore, Fagerland [17] also provided a Stata implementation (merci),
which we used to apply these methods. This implementation offers both exact CIs as well as
mid-p intervals obtained by approximating a correction term [17]. As these extensions are
currently computationally infeasible for large samples, we only apply these for Examples
A, B, and C, with sample sizes of 40–400 and not for examples D, E, and F with a sample
size of 20,000 (Approach II in Table 2).

2.2.4. Frequentist Regression Models

In general, inference for the RR is possible by binomial regression (a general linear
model with logarithmic link function) determining maximum likelihood estimates (MLE).
In our examples, this approach will obtain an MLE at a coefficient of −∞ corresponding
to an RR of 0. Hence, binomial regression will not result in meaningful estimates and CIs.
As with the case of binomial regression, logistic regression is infeasible in the case of an
estimated OR of 0, as the MLE will correspond to a coefficient of −∞.

2.2.5. Bootstrapping

As no individuals in the intervention group experienced the outcome event, any
bootstrapping sample will result in RR estimates of 0 (or possibly in non-estimability of the
RR, if no events in the control group are included in the sample). Hence, a bootstrapped
CI will consist of only 0 and thus be inappropriate, although it has, in some cases, been
reported in recent literature [3].

2.3. Bayesian Approaches
2.3.1. Priors for the Proportions

The most natural approach for modeling a dichotomous outcome in two groups is to
assume priors for the proportion of events in both groups. The posterior of these propor-
tions can then be estimated, and from these, the posterior of the RR can be determined.

The most natural choice of priors is a beta distribution, as this is the conjugate prior
for a Bernoulli likelihood [18]. In this case, with a B(α, β) prior for a proportion, the
posterior will be B(α + d, β + h) if d positive and h negative outcomes have been observed.
Applying this to our examples, we have an intervention group prior of B(α1, β1), observing
d1 positive and h1 negative outcomes, and a control group prior of B(α0, β0), observing d0
positive and h0 negative outcomes. In this case, the posterior for the RR will be given by

P(RR = r) =
∫

p/q=r
fB(α0,β0)

(p) fB(α1,β1)
(q)dpdq

where fB(α,β) is the density of a beta distribution with parameters α and β.
While this is challenging to evaluate algebraically, it can easily be estimated numer-

ically, e.g., by Markov Chain Monte Carlo (MCMC) simulation. The two most natural
choices for hyperparameters α and β are either B(1, 1), corresponding to the uniform
distribution on (0, 1), or B(0.5, 0.5), which is the non-informative Jeffrey’s prior for the
Bernoulli model (Approach III in Tables 2 and 3).

Furthermore, one could consider priors with a point mass (an atom) at 0, hence with a
non-zero prior probability of the proportion being precisely 0. We decided not to employ
these priors, as the mass placed at 0 necessarily would be a subjective choice and would
strongly influence the estimated CrIs.
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2.3.2. Bayesian Binomial Regression

A different approach is to assume a prior for the RR itself together with a prior for
the proportion in the control (reference) group, and from these two, obtain a posterior
for the RR. In this case, estimation by Bayesian binomial regression is the most relevant
method to apply, as binomial regression generally is the preferred strategy to obtain RR
estimates from regression models [19]. An important practical point in this approach is
that the Bayesian estimation cannot be initialized by MLE, as we have described above,
since the MLE does not exist in our case.

If it is desired to use weakly informative normal priors, it might be necessary to use
smaller standard deviations than otherwise common to enable fitting of the model in
these circumstances.

3. Results

Results for examples A, B, and C are given in Table 2. When comparing the approaches
of moving and adding one observation, respectively, we find that adding one observation
generally results in narrower CIs than moving one, especially in Example A, which has the
smallest sample size. As expected, the one-sided approaches result in lower upper bounds
for the CI.

Comparing the approaches regarding the ORs, all CIs will automatically have zero
as their lower bound. The approximate Cornfield interval generally obtains the lowest
upper bound, especially for small sample sizes, but as the approximate Cornfield interval
is constructed by using a large sample asymptotic theory, this interval should be inter-
preted carefully in small samples [15]. Among the exact approaches for OR-based CIs,
the midpoint Baptista–Pike method generally results in the narrower CI, while the exact
Cornfield method results in the widest intervals. For moderate sample sizes, the OR-based
approaches result mainly in narrower CIs than moving or adding one.

The Bayesian proportion-based approach results in CrIs of similar magnitude com-
pared to the frequentist OR-based CIs, with highest posterior density (HPD) intervals
being generally narrower than equal-tailed (EqT) CrIs. While these CrIs have a non-zero
lower limit, this estimate is extremely close to zero in all examples. On the other hand, the
Bayesian approach, based on binomial regression, results in much narrower CrIs than is
the case for all the other methods investigated.

Results from examples D, E, and F corresponding to larger epidemiological cohort
studies are presented in Table 3. In general, these results behave similarly to those obtained
from the smaller examples. Furthermore, the proportion-based Bayesian approaches result
in CrIs, which are similar in magnitude to the CIs obtained by frequentist approaches.
On the other hand, the Bayesian binomial regression obtains extremely narrow CrIs with
almost all mass concentrated close to zero.

4. Discussion

In this study, results showed that several different methods are feasible for obtaining
CIs or CrIs even in studies with zero observed events in the intervention group. Overall,
the different frequentist approaches result in comparable CIs as long as the sample size
is moderate or large, and Bayesian methods are able to obtain CrI of similar magnitude,
although Bayesian binomial regression generally results in very narrow CrIs concentrating
much of the mass around zero. This phenomenon is caused by the parametrization implied
by binomial regression, in which an RR of zero corresponds to a regression coefficient
of −∞, hence driving the posterior distribution of the coefficient downwards. Therefore,
the results from Bayesian binomial regression should be interpreted cautiously and the
proportion-based Bayesian approach should be considered the preferred method. Moreover,
while Bayesian approaches have an explicit probabilistic interpretation, as a 95% CrI
indicates an interval, which with 95% probability contains the true population parameter,
conditional on the chosen prior distributions, Bayesian approaches are still not widespread
in epidemiological literature [20], which limits dissemination of their results.
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4.1. Strengths and Limitations

The main strength of this study is that both the frequentist and the Bayesian ap-
proaches, commonly suggested in the literature, are compared in a set of examples repre-
senting many practical applications, thus enabling a direct comparison of the approaches
and their results.

A weakness of this study is that it had to be limited to the most well-known approaches.
Thus, we were not able to compare all the approaches suggested in the literature, such as
the exact approaches to the CI [21] and exact Bayesian inference [22]. Another limitation is
that due to the observation of zero events laying at the border of the parameter space for
all frequentist methods, no formal evaluation of coverage for the obtained CIs was feasible.

4.2. Possible Future Research

This paper focused on the inference for unadjusted RRs, for instance, those typically
estimated in randomized clinical trials. In observational studies, one would most often
have a desire to adjust for possible confounders, which would not be easily achievable with
most of the discussed methods. Hence, future research should investigate how inference
for RR estimates with 0 events can be obtained in models with covariate adjustment.

Furthermore, problems as those seen in the case of an RR estimate of 0 can occur in
time-to-event studies, in which no events are observed in the intervention group. Similarly
to the RR, this challenges the inference obtainable from, for instance, the hazard ratio from
a survival analysis. This issue should be investigated in future studies.

5. Conclusions

This investigation demonstrates that it is possible to obtain CIs and CrIs for the RR in
studies with no observed events in the intervention group. Hence, researchers should also
report CIs or CrIs in these circumstances and refrain from concluding that inference was
impossible due to no observed events, as this often will result in understating the evidence
obtainable from a study. On the other hand, researchers should be aware that the obtained
intervals are sensitive to the method applied for smaller samples while quite robust in
large samples.
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