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Toxic tau: structural origins of tau aggregation in 
Alzheimer’s disease

Introduction
Alzheimer’s disease (AD) is an irreversible progressive dis-
order that is featured by the most remarkable symptoms in-
cluding memory loss and impairment of cognition (Kabir et 
al., 2019b; Uddin et al., 2019c). However, the specific process 
by which those symptoms progress remains abstruse. The 
foremost histopathological features of AD are the atypical 
aggregation of amyloid β (Aβ) and the tau protein (Kabir 
et al., 2019a; Uddin et al., 2019b). A number of researches 
recommend that in AD, the tiny oligomeric forms of both 
tau and Aβ may work synergistically to facilitate synaptic 
dysfunction. Most importantly, tau pathology plays a pivotal 
role in the development of AD than Aβ. In recent times, sev-
eral studies have commenced advocating that the missorting 
of tau protein between the axon and the dendrites is a pre-
requisite to intervene with the harmful effects of Aβ (Guer-
rero-Muñoz et al., 2015; Uddin et al., 2019a).  

The misfolding of protein is the preliminary phase in 
the accumulation process of both tau and Aβ (Uddin et al., 
2020; Uddin and Kabir, 2019). There are two essential factors 
such as post-translational modifications and the formation 
of disulfide bridges raise the capability of both tau and Aβ 
proteins to self-assemble into oligomers (Sahara et al., 2007). 
It is evident that before the fibrils formation tau monomer is 
initially transformed into an oligomeric state. Moreover, ac-
cumulation of tau does not take place spontaneously but the 
fibril formation is induced by the combination of free fatty 
acids and polyanionic compounds (King et al., 2002). These 

different structures vary both in accumulation state and in 
their toxic actions. This review represents the precise point 
at which a healthy protein becomes toxic and shape-shifting 
nature of tau that aggregate and contribute to AD pathogen-
esis.

Toxic Tau and Alzheimer’s Pathogenesis
Experimental data recommend that tau in prefilamentous 
forms, precisely oligomers are considered as the neurotox-
in. Before the commencement of the medical symptoms, 
oligomers of tau have been sequestered at very initial phases 
of the disease. Tau oligomers demonstrate a sphere-shaped 
morphology by using atomic force microscopy which links 
with two or more tau molecules, ranging from 6 to 20 nm 
(Sahara et al., 2008). In fact, these are dynamic structures 
that turn into β-sheet rich. The study of Himmelstein et al. 
(2012) exhibited that in AD brain samples, oligomers of tau 
were found at a 4-fold greater concentration than healthy 
control samples. Tau is aberrantly phosphorylated at various 
positions in AD as shown in Figure 1. Conversely, this may 
not only be a prerequisite for converting tau into oligomers 
as well as become toxic. 

The detrimental accumulation trail inside a cell is assumed 
to initiate with a seed – a template that can prompt the ag-
gregation of a specified protein. These seeds are believed to 
be vital in the disseminate of the disease. The study demon-
strated that highly sulfated heparan sulfate (HS) aggregates 
with neurofibrillary tangles in the affected neurons of the 
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AD brain (Snow et al., 1990). In the tau amyloidogenic pro-
cess, the kinetic constants featuring the development of tau 
fibrils in the existence or deficiency of heparin agrees with 
a significant role of HS. Consequently, heparin can interact 
with two tau molecules yielding a dimer in vitro which is ca-
pable of forming fine tiny fibrils (Ramachandran and Udga-
onkar, 2011). Conversely, a plethora of heparin can linger the 
accumulation of tau lag phase, recommending a regulatory 
role throughout the nucleation phase (Zhu et al., 2010).  

Spreading and Propagating of Tau in 
Alzheimer’s Disease
Some steps such as cellular uptake, templated seeding, secre-
tion and intercellular transfer through synaptic and non-syn-
aptic pathways are anticipated to incorporate for the pro-
liferation of tau pathology by using prion-like mechanisms 
(Mudher et al., 2017). It is unclear that accumulated tau can 
be absorbed by cells via precise mechanisms. Ingestion of tau 
accumulation is done by macropinocytosis (Holmes et al., 
2013; Falcon et al., 2015) as well as needs HS proteoglycans 
(Holmes et al., 2013). After ingestion, tau seeds present in 
endosomes and must allow contacting with the cytosol to 
trigger the accumulation of non-accumulated tau.

Two experiments have claimed that in a transgenic mouse 
line, obvious trans-synaptic movement of tau protein accu-
mulates depend on area-specific gene expression. Tetracy-
cline-controlled gene expression was conducted principally 
in the entorhinal cortex in both studies that project axons 
to the hippocampus. In addition, aggregate pathology that 
was most probably to have derived from the entorhinal 
neurons was found in the hippocampus in older animals 
(de Calignon et al., 2012; Liu et al., 2012). The study of Du-
jardin et al. (2014) using a lentivirus-directed rat model of 
hippocampal tauopathy showed that wild-type tau is shifted 
through axons to faraway second-order neurons. Moreover, 
these investigations powerfully recommended that accumu-
lated tau were passing across synapses, and therefore could 

possibly elucidate the connection of neural systems in neu-
rodegenerative diseases. Ultimately, current study offerings 
irrefutable indication that tau proliferates steadily distinctive 
accumulate conformations, or strains, in cells and mice, as 
well as that human tauopathies are comprised of disease-re-
lated strains (Sanders et al., 2014).

HS can take part both in the tau accumulation processes 
and its aberrant phosphorylation in the AD brain that may 
precede or concurrently takes place with its accumulation 
(Maïza et al., 2018). Apart from this prospective role that HS 
appears to play in the tau phosphorylation processes as well 
as accumulation, these polysaccharides have also played an 
essential role in the proliferation of tau proteopathic parti-
cles/seeds between one cell and another cell, an event called 
as spreading (Holmes et al., 2013). Undeniably, tauopathy is 
identified in specific brain areas in early AD whereas, as the 
disease develops, tauopathy seems in other areas (Goedert 
and Spillantini, 2017). 

Deadly Shape-Shifting Nature of Tau in 
Alzheimer’s Pathology 
The postulate is that seeds can alter the typically folded pro-
tein into an accumulation of the identical protein, prior to 
cells release them into the surroundings for adjoining cells to 
start (Eisenberg and Jucker, 2012). Furthermore, this could 
be exactly how diseases associated with the tau protein, for 
instance, AD proliferate from one cell to another. Then, 
there, the accumulation would travel via the brain using the 
links from neurons to neurons (Sanders et al., 2014). Al-
though, most of the researchers have thought that they are 
an aggregate of a given distinct misfolded protein, the identi-
ty of the seeds remains vague, hitherto. Mirbaha et al. (2018) 
recommended that the presence of a stable form of a distinct 
tau protein that can initiate the accumulation process on its 
individual. 

It is evident that the seed may not only be an aggregate of a 
misfolded protein but instead be a protein monomer – with a 

Figure 1 Stabilization of microtubule-associated tau protein is controlled by kinases. 
Irregular hyperphosphorylation of tau proteins results in increased depolymerization of microtubule that leads to the generation of insoluble cyto-
plasmic tau oligomers, which then accumulate to form protomers. Subsequently, two protomers twisted around each other to generate paired heli-
cal filaments, which then aggregate and ultimately leads to the formation of neurofibrillary tangles.
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diverse structure. The study of Chirita et al. (2005) anticipat-
ed that an alteration in the structure of a tau monomer had 
played a key role in promoting the progression of accumu-
lation. Another study by Kar et al. (2011) postulated that the 
accumulation of the protein of huntingtin is connected with 
a different amyloid disorder called Huntington’s disease, that 
could primarily begin with a single protein. Nevertheless, ac-
cording to these studies, the monomer which could start the 
process of seeding was not separated and studied. Despite 
strong data interpretation, the majority of the researchers 
dismissed the principle of monomeric seeds. Additionally, 
most of the scientific community unwilling to challenge the 
extensively in-built idea that they are instead an aggregate of 
a misfolded protein. 

Hitherto, tau was characterized by an inherently dis-
ordered protein that looked similar to a flexible noodle 
than a precise, stable, and 3-dimensional protein structure 
(Schweers et al., 1994). Alternatively, Mirbaha et al. (2018) 
demonstrated that the tau protein can easily fold into two 
discrete and properly well-defined structures. Furthermore, 
one of these shapes is stable, does not simply aggregate, non-
toxic; while the other acts as a seed that can aid to transform 
another innocuous tau monomer into a misfolded tau which 
will eventually generate toxic accumulations by seeding or 
self-aggregate. Moreover, tau can alter very slowly from an 
inactive to the seed-competent structure. It is well-known 
that tiny molecules can easily bind to an inactive structure of 
proteins that are susceptible to misfolding, and consequently 
stop the conformational change which plays a crucial role in 
the progression of amyloid diseases (Johnson et al., 2012). 
Although, the accumulation of Aβ and the aggregation of 
tau are the two central pathological hallmarks of AD, how-
ever, Lewy bodies composed of α-synuclein protein are also 
observed in above 50% of sporadic AD cases investigated 
(Hamilton, 2000). In a study, Larson et al. (2012) disclosed 
that toxic, non-fibrillar α-synuclein is considerably raised 
in AD cases in the absence of Lewy body pathology. Finally, 
α-synuclein and oligomeric tau interact and co-accumulate 
in disease (Sengupta et al., 2015) recommends that the two 
proteins may work in a toxic synergistic mechanism at the 
synapse in AD brain. 

Kinetic Stabilizers to Combat Alzheimer’s 
Disease
Transthyretin is one of the proteins with two means of 
folding, and whose toxic structure impairs various parts in 
the body especially nervous systems. Conversely, drugs are 
called kinetic stabilizers that can abate the degenerative pro-
cess by rising the correctly folded structure. To be precise, 
three placebo-controlled clinical trials revealed that tiny 
molecules, including the drugs diflunisal and tafamidis, can 
simply bind to the non-pathogenic form of transthyretin 
and stabilize it, thus stops the protein from transforming 
into the structure that starts accumulations and plays an 
essential role in the development of the degenerative pa-
thologies (Rosenblum et al., 2018). The study has detected 

structural factors on disease modified tau protein which 
have played a pivotal controlling role in the development of 
neurofibrillary pathology in AD. The detected tau factors 
that are acknowledged by monoclonal antibody DC8E8, 
considered as a principal for the outline of an active vaccine 
AADvac1 which went into the phase II clinical trial on AD 
patients (Novak et al., 2016). Finally, this recommends that 
it should be likely to approach alike kinetic stabilizers for 
the tau protein, as well as provide a better treatment option 
for Alzheimer’s.

Conclusions
It is well-known that the hyperphosphorylated tau is closely 
connected with neurodegeneration as well as cognitive dys-
function in AD. It has been admitted that aberrant forms of 
tau protein are directly associated with the commencement 
of neurodegenerative processes of AD. The current study 
recognized the concept of shape-shifting which might con-
nect with other proteins that generate toxic accumulates. 
Therefore, this can support to comprehend clearly the de-
velopment and progression of neurodegenerative events. 
Remarkably, the structures that tau forms could be classified 
as either ‘good’ or ‘bad’ might also aid to advance novel ther-
apies for AD. Medicine can be formulated whether to erad-
icate the bad form of tau from the brain or to stabilize the 
good form of tau. Furthermore, if the shape-shift could be 
diagnosed initially in patients, it might permit therapies for 
AD prior to patients have developed any evident symptoms.
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