
1Scientific RepoRts | 6:22023 | DOI: 10.1038/srep22023

www.nature.com/scientificreports

Using Multi-objective Optimization 
to Identify Dynamical Network 
Biomarkers as Early-warning 
Signals of Complex Diseases
Fatemeh Vafaee1,2

Biomarkers have gained immense scientific interest and clinical value in the practice of medicine. With 
unprecedented advances in high-throughput technologies, research interest in identifying novel and 
customized disease biomarkers for early detection, diagnosis, or drug responses is rapidly growing. 
Biomarkers can be identified in different levels of molecular biomarkers, networks biomarkers and 
dynamical network biomarkers (DNBs). The latter is a recently developed concept which relies on the 
idea that a cell is a complex system whose behavior is emerged from interplay of various molecules, 
and this network of molecules dynamically changes over time. A DNB can serve as an early-warning 
signal of disease progression, or as a leading network that drives the system into the disease state, 
and thus unravels mechanisms of disease initiation and progression. It is therefore of great importance 
to identify DNBs efficiently and reliably. In this work, the problem of DNB identification is defined as 
a multi-objective optimization problem, and a framework to identify DNBs out of time-course high-
throughput data is proposed. Temporal gene expression data of a lung injury with carbonyl chloride 
inhalation exposure has been used as a case study, and the functional role of the discovered biomarker 
in the pathogenesis of lung injury has been thoroughly analyzed.

Recent advances in high-throughput technologies have provided a wealth of genomics, transcriptomics, pro-
teomics, and metabolomics data to decipher disease mechanisms in a holistic and also dynamical manner1. Such 
plethora of -omics data has opened new avenues to the research of translational medicine, and particularly facil-
itated the discovery of novel biomarkers for complex diseases2. Biomarkers are indicators of some biological 
states or conditions, which are often measured and evaluated to examine normal biological processes, pathogenic 
conditions, disease progression, or pharmacologic responses to therapeutic interventions. The classical approach 
in biomarker discovery is to identify candidate molecules (e.g., genes, proteins, etc.) whose expression/abundance 
can classify the disease vs. normal samples, or predict patients’ survival. While molecules are basic components 
of cellular machinery, a complex disease is not usually the result of the malfunction of individual molecules, but 
from an interplay of a group of correlated molecules–i.e., a network. Such a viewpoint has raised the concept of 
network biomarkers which integrates molecular biomarkers with their interactions usually derived from gene 
expression profiles and/or protein-protein interactions. In recent years, network-based approaches have grown 
in popularity for their capacity to explain emergent properties such as modularity, phenotypic variation and 
biological heterogeneity3,4. However, a cell is a complex dynamical system whose molecular networks continu-
ously change over time. We therefore need an additional level of biomarkers–i.e., dynamical network biomark-
ers (DNBs)–to portray time-dependent alterations of network biomarkers monitored and evaluated at different 
stages of disease progression5.

One of the recently proposed applications of DNBs is to detect early-warning signals of complex diseases6. 
Evidence suggests that the progression of many complex diseases is abrupt rather than smooth7–9. In other words, 
there is a sudden drastic shift during the process of gradual health deterioration that results in a catastrophic tran-
sition to the disease state. So, depending on the disease progression level, the process can be divided into three 
stages, i.e., normal state, pre-disease state, and disease state6: the normal state is a relatively healthy stage–e.g., an 
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incubation period or a chronic inflammation period during which the disease is under control. The pre-disease 
stage10 is defined as the limit of the normal state where the system is at the critical threshold, also known as the 
“tipping-point”. The pre-disease state is usually reversible to the normal stage under appropriate therapeutic inter-
ventions. However, the system becomes hardly reversible if it passes this critical point and enters the disease stage. 
Hence, detecting the pre-disease state is central for the early diagnosis and consequently for disease prevention.

By using time-course high-throughput -omics data, and based on the principle of bifurcation in dynamical 
systems, Chen et al.6 have shown that a DNB can serve as a general early-warning signal of such sudden deteri-
oration, prior to the critical transition to the disease state. They have theoretically shown that when the system 
reaches the pre-disease state, there exists a group of molecules (i.e., genes or proteins) whose averaged intra-class 
correlation coefficient drastically increases in absolute value, while its averaged inter-class correlation coefficient 
decreases in absolute value. This group also shows a drastic increase in the averaged standard deviation of concen-
trations of its constituent molecules. If these three properties hold all together, this group is called the dominant 
group of the system whose emergence is an indicator of the pre-disease state reflecting the transition of the system 
to the disease state. These criteria once hold, imply that the concentrations of molecules in the dominant group 
tend to increasingly fluctuate while they behave dynamically in a strongly collective fashion. The dominant group 
can be portrayed as a subnetwork (i.e., nodes are molecules and the weighted edges are their mutual correlations) 
which emerges at a particular time-point during the disease progression, and therefore characterizes dynamical 
features of the underlying system. Hence, it can be considered as a dynamical network biomarker.

Detecting DNBs as disease early-warning signals is a recently proposed topic in the field, and the major effort 
to date has been given to the theoretical derivation of DNB properties and its applications to different diseases. 
Little effort, however, has been devoted to the computational identification of DNB from high-throughput data. 
Identifying a DNB is computationally intractable due to the huge number of variables in high-throughput data, 
and thus, it demands special attention of computer science community to employ effective computational meth-
ods to detect DNBs reliably and efficiently.

Here, DNB detection is defined as a multi-objective optimization problem. The overall workflow for DNB 
identification from high-throughput data is portrayed, and as a case study, DNB and the pre-disease state for the 
lung injury with carbonyl chloride inhalation exposure were identified using time-course microarray data.

Methods
Formal Definition of DNB Criteria. Consider a high-throughput experimental setup where data (e.g., microar-
ray gene expression profiles) is acquired for a set of K samples over T time-points. Let  = , = ,…,x i n{ } 1i  to be 
the set of n molecules under study such that the concentrations of each molecule  over K samples at time-point t 
are represented as
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DNB is a group of molecules  ⊆d  realizing the criteria of the critical transition. d  also represents the 
leading network showing these properties. Therefore, a time-point t is sought when a group of molecules, d , with 
the following properties is first emerged:

1. d  shows a drastic increase in intra-class correlation coefficient as defined by Equation 1 where ρ ,x xi
t

j
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Pearson correlation coefficient between two distinct molecules at time t.
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2. It shows a decrease in the inter-class correlation coefficient as defined by Equation 2.
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3. Its constituent molecules show drastically increased fluctuation as formalized by Equation 3, where σx i
t is 

the standard deviation of molecule xi across different samples at time t.
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These three properties can be combined together to construct a composite index:
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In this formulation, all the mutual correlations are used to derive the composite index for DNB detection, 
which means that DNB as well as the whole interactome (i.e., the whole set of molecular interactions) are thought 
to be complete graphs. It implies that co-expressions among any two genes or proteins are functionally important 
regardless of whether the two genes or proteins are directly linked in the actual cellular interactome. However, 
DNB criteria can be refined for incomplete graphs which may require revisions in the theoretical derivation of 
DNB properties. The re-derivation of DNB criteria for incomplete graphs is the author’s future plan to extend the 
current work.

Multi-objective Optimization. A multi-objective optimization is an optimization problem that involves 
multiple objective functions, formulated as

( ), …, ( ) . . ∈ ,f x f x x Xmin s tk1

where integer ≥k 2 is the number of objectives, →f x: k is the vector-valued objective function, and X is the 
solution space. In non-trivial multi-objective optimization problems where the objective functions are conflicting, 
no feasible solution that simultaneously minimizes all objective functions typically exists. Therefore, attention is 
paid to Pareto optimal solutions, i.e., solutions that cannot be improved in any of the objectives without deterio-
rating at least one of the other objectives. A feasible solution ∈x X1  is said to (Pareto) dominate another solution 
∈x X2 , if

( ) ≤ ( ) ∀ ∈ , ,…,f x f x i k{1 2 }i i1 2

and

( ) < ( ) ∃ ∈ , ,…, .f x f x j k{1 2 }j j1 2

A solution ∈x X1  is called Pareto optimal if it is not dominated by any other solution in the solution space11. 
The set of all feasible non-dominated solutions in X is referred to as the Pareto optimal set, and the corresponding 
objective vectors are called the Pareto front. For many problems, the number of Pareto optimal solutions is enor-
mous and a multi-objective optimizer is usually aimed to identify a representative set of solutions which 1) lie on 
the Pareto front, and 2) are diverse enough to represent the entire range of the Pareto front12.

A popular approach to generate Pareto optimal solutions is to use evolutionary algorithms (EAs). EAs are 
generic meta-heuristic optimization algorithms whose procedure begins with a population of solutions usually 
generated at random. It then iteratively updates the current population to generate a new population by the use of 
four main operators, namely selection, crossover, mutation and elite-preservation. The operation stops when one 
or more pre-specified termination criteria are met. The use of a population of solutions allows an EA to find mul-
tiple optimal solutions, thereby facilitating the solution of multi-objective optimization problems. Furthermore, 
EAs have essential operators to converge towards a set of non-dominated points which are as close as possible to 
the Pareto-optimal front, and yet diverse among the objectives13.

Currently most evolutionary multi-objective optimization algorithms apply Pareto-based ranking schemes. A 
standard example is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II)14. NSGA-II sorts the population 
into various fronts such that the first front is a completely non-dominant set in the current population (rank 1 
individuals), and the second front is only dominated by the individuals in the first front (rank-2 individuals) and 
this process continues until the entire population is ranked. In addition to the individuals’ ranks, another param-
eter called crowding distance is calculated for each individual. Crowding distance is a measure of how close an 
individual is to its neighbors. NSGA-II selects individuals based on the rank and the crowding distance.

NSGA-II as well as other evolutionary multi-objective optimizers are a posteriori methodologies. In a poste-
riori methods, a representative set of Pareto optimal solutions is first found and then the decision maker (DM) 
should choose one of the obtained points using higher-level information. The DM is expected to be an expert 
in the problem domain although several decision making support methods are developed to aid the DM in the 
selection of the preferred solutions15–17.

DNB Identification as a Multi-objective Optimization Problem. A DNB shows an early yet strong 
signal indicating the emergence of the pre-disease state. Hence, a DNB should meet two objectives simultane-
ously: 1) it should show a strong signal, measured in terms of the composite index I, which is ensued from the 
sudden deterioration prior to the critical transition, and 2) it is the leading network of such critical transition. 
These two objectives are conflicting in nature as a leading network showing a significantly high signal, is not 
necessarily the one with the strongest signal throughout the whole spectrum of the disease progression. Hence, 
DNB identification can be thought of as a bi-objective optimization problem to find a group of molecules whose 
composite index is maximized in the current time-point while minimized over the prior time-points. In mathe-
matical terms, a multi-objective optimization problem which finds a dominant group of molecules at time t, can 
be formulated as

( )
, ( ) . . ∈ ( ),
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where   is the set of all molecules and ( )P X  is the power set of   representing the solution space. It is assumed 
that the disease progression is not therapeutically intervened which implies that a pre-disease stage usually 
precedes an irreversible disease stage. In other words, the pre-disease stage is not repeated during the disease 
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progression. Therefore, in practice, one should only check time −t 1 to identify whether a DNB is first emerged 
at time t. If this assumption is voided, Equation 5 should be revised to consider DNB behaviors across all prior 
time-points (e.g., the second objective can be the average of composite indices for times ,…, −t1 1.

DNB Identification: Workflow. Figure 1 shows the workflow of using an evolutionary multi-objective 
optimization, e.g., NSGA-II, to identify the pre-disease time and the corresponding DNB. The proposed scheme 
runs NSGA-II for time-points which are feasible candidates of the pre-disease state, usually from the commence-
ment of the experimentation to the time when the system enters the disease state as diagnosed based on samples’ 
phenotypes or the patients’ symptoms. If no such knowledge is available a priori, T is the latest sampling time of 
the experiment.

Prior to using any evolutionary algorithm, an appropriate representation of individual solutions should be 
sought. Here, each solution  i which encodes a group of molecules is represented by a binary string of length 
=l   whose bit i corresponds to molecule xi. Value 1 indicates that molecule xi is in the group while 0 indicates 

that it is not. NSGA-II also requires a number of parameters, θ, being set initially such as the crossover and muta-
tion rates, the population size, and the maximum number of iterations.

At each time-point t, NSGA-II returns a Pareto set and the corresponding frontiers. The Pareto set then under-
goes statistical significance analysis to assess how likely it is to have occurred by sampling error alone. Details of 
the significance assessment is discussed in the next section.

The pre-disease stage is considered to be the time whose Pareto set p-value is the smallest. This generic rule 
is based on the idea that the lower the p-value is, the more significant the Pareto signals are, and thus, the corre-
sponding time-point is more likely to be the pre-disease state. In practice, however, Pareto sets should be more 
deliberately investigated, particularly when there exists multiple time-points with very close p-values. In such 
cases, some higher-level analyses (e.g., pathway/functional analysis) of Pareto molecules facilitate the discovery 
of context-specific DNBs.

Once the pre-disease state is identified, the final task is to select one of the non-dominated solutions of the 
corresponding Pareto set as an early-warning biomarker of the disease under study. Here, it is assumed that DM 
looks for the solution closest to the ideal solution which optimizes all the objectives simultaneously, i.e., both 
objectives are 0.0:

← ( ( ), 〈 , 〉) ,
( )∈ ‑ ⁎

⁎fDNB arg min {d 0 0 }
6t i

Pareto Seti t




where . .d( , ) is the point-wise Euclidean distance. Nevertheless, in real problems, the DM who is an expert in the 
field, should select one of the Pareto solutions using higher-level and context-specific information.

Significance assessment of a Pareto set. To estimate the statistical significance of Pareto-Sett, one first needs to 
generate a “null” sample which preserves the structure of the observed sample. Accordingly, for each individual 
in Pareto-Sett, an equivalent random individual was generated which has equal number of molecules (i.e., equal 
number of 1 bits), but randomly chosen from the pool of molecules under study. Then, for Pareto-Sett and its 
equivalent random set, the distances of the objective vectors of constituent individuals with the optimum ,0 0  
were computed to generate observed and null distributions, respectively. In order to choose an appropriate statis-
tical hypothesis test, the Anderson-Darling goodness-of-fit test for normality18 was first run. As none of the 
observed and random samples followed a normal distribution, a nonparametric statistical hypothesis test, i.e., 
Wilcoxon-Mann-Whitney test19 was chosen which returned a p-value indicating how likely it is that the two 
samples come from the same population.

Figure 1. Workflow of identifying the pre-disease state and DNB, using an evolutionary multi-objective 
optimizer. 



www.nature.com/scientificreports/

5Scientific RepoRts | 6:22023 | DOI: 10.1038/srep22023

Results and Discussion
As a case study, the time-course gene expression data of lung injury with carbonyl chloride inhalation exposure 
(i.e., acute lung injury) was chosen, primarily due to the high temporal resolution of the corresponding dataset. 
The dataset was obtained from an experiment of a toxic-gas-induced lung injury such as pulmonary edema20. 
Sciuto et al. conducted microarray experiments to investigate the molecular mechanism of phosgene-induced 
lung injury. To acquire control and case samples, two groups of CD-1 male mice were exposed to air and phos-
gene, respectively. Lung tissue was collected from air or phosgene-exposed mice 0.5, 1, 4, 8, 12, 24, 48, and 72 h 
after exposure. The details of the experiment are available in the original paper20. The dataset was downloaded 
from NCBI GEO, an open-access repository of high throughput gene expression data21. The dataset’s GEO acces-
sion number is GSE2565.

Data Preprocessing. The adopted microarray has 22,690 probe sets originally. The probe sets were mapped 
to the corresponding NCBI Entrez gene symbols using the GEO annotation file. All probes with no correct corre-
sponding gene symbols were screened out, and multiple probes corresponding to the same gene were aggregated 
by averaging. 13,214 genes were left for the consequent analysis.

An array usually contains tens of thousands of probes. Many of the corresponding genes, however, do not play 
any significant role in the context of interest. Therefore, it is important to reduce the dimensionality by filtering 
out uninformative genes prior to the subsequent learning steps.

Differential expression (DE) analysis (e.g., t-test) is typically used to identify informatory genes whose expres-
sion levels significantly change between two sample groups (e.g., case vs. control). Here, at each time-point, a 
modified version of t-test22 was run on the case and control samples, and the p-values were obtained. Due to the 
multiple hypothesis testing, p-values were corrected by using the false discovery rate (FDR) estimation23. Genes 
whose q-values (i.e., maximal FDR level) were more than 0.01 were filtered out.

Although DE analysis can screen out many genes whose expressions do not significantly change across condi-
tions, it does not assure that the statistically significant differences are also large enough to be biologically mean-
ingful24. Hence, fold-change filtering was also performed to choose those differentially expressed genes whose 
averaged expression in case samples is at least doubled or halved as compared to the controls. This resulted in 304 
genes whose expressions significantly and meaningfully changed at least in one time-point.

The last preprocessing step was to normalize case samples with the corresponding control samples in order to 
make expressions of genes comparable over different time-points. Accordingly, at each time t, the expression of 
each gene xi is subtracted from the mean of xi′s expressions across control samples at time t, and then divided by 
the standard deviation of xi′s expressions over the same set of controls.

Identification of DNB. DNB identification was conducted following the workflow described in Fig. 1, where 
  contained 304 genes obtained from the pre-processing step. T was considered to be 12 h as disease was well 
progressed afterwards given that 50–60% mortality was routinely observed after 12 h20. NSGA-II parameters were 
set as follows: population size was set to 500, crossover and (uniform) mutation rates were set to 0.8 and 0.01, 
respectively. Maximum number of generations was set to 100, and Pareto front population fraction was chosen to 
be 20%. The workflow was coded in MATLAB R2014b. MATLAB optimization toolbox was used to implement 
NSGA-II.

Pareto sets were generated for times 1 h–12 h, and the behaviors of the solutions’ composite indices over the 
whole spectrum of the disease progression were plotted in Fig. 2. According to the p-values, t =  4 h is the 
highest-ranked candidate for the pre-disease state. 4 h is the earliest time-point whose Pareto solutions show 
strong and yet unique signals. Times 8 h and 12 h show strong signals, but their higher p-values indicate less sig-
nificant shifts from the null distributions. This hypothesizes that the whole system in these time-points is rela-
tively highly-disrupted. The averaged standard deviation of all molecules at time 8 h, δ8h, is 3.26, which when 
compared with δ = .1 964h , supports the hypothesis of system being holistically inclined in variability. Variability 
in gene expressions can be generally viewed as having detrimental effects on cellular function with potential 
implications for disease25. Therefore, time-points 8 h and 12 h are potential of being disease states as predicted by 
DNB identification workflow.

Figure 2. Dynamical behaviors of Pareto solutions (grey lines) identified for different time-points. Black 
lines represent the averaged trends. The p-values of the significance assessment of Pareto sets are provided below 
the corresponding graphs.
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The p-value at time 1 h is the second lowest. However, the Pareto solutions at time 1 h have a recurrent pattern 
with a higher pick at 8 h. This implies that the corresponding molecules are possibly disease genes rather than 
being the pre-disease biomarkers.

Moreover, historically, the most severe phosgene-induced acute lung injury in this mice model ranges from 
4 h to 12 h after exposure20 indicating that the system may turn into the disease state after the 4th time period. The 
prediction here is therefore consistent with the observed disease development.

After identifying 4 h as the pre-disease state, its DNB was chosen to be a Pareto solution whose objective vec-
tor was closest to the ideal objectives. The identified DNB contained 16 genes as listed in Table 2.

In order to visualize how the identified DNB emerged at 4 h, DNB dynamics over the two consecutive 
time-points of 1 h and 4 h were depicted in Fig. 3. To compare dynamical changes of DNB members vs. other 
genes, DNB should be shown within the entire co-expression network. However, to avoid too many links obscur-
ing the network visualization, for each DNB molecules, 3% of its neighbors (~10 genes) were randomly chosen. 
Links are colored from red to blue relative to the expression correlations, where the pure blue (red) corresponds 
to the highest (lowest) correlation coefficient in the network. Figure 3 clearly shows that DNB forms a strongly 
correlated observable subnetwork providing a significant signal as the system approaches the critical point.

Comparison with the Existing Relevant DNB Works. DNBs incorporate temporal alterations with 
structural information to provide a holistic view of the biological systems and to give a deeper insight into the 
physiological and pathological mechanisms at the molecular level. DNBs have great significance in disease 
classification and monitoring, therapeutic response evaluation, early diagnosis and understanding of molecu-
lar pathogenesis5. As a few examples, a Bayesian network model has been developed to classify subjects with 
Alzheimer’s disease using longitudinal magnetic resonance data26, Yang et al.27 proposed a dynamic network 

Figure 3. DNB dynamical evolution. Members of DNB are placed in the center surrounded by randomly 
chosen neighbors; links are colored from red to blue proportional to the correlation values. This Figure 
clearly shows the emergence of the identified DNB at time 4 h.

Method tpre−disease

DNB 
size It − It−1 (p-value) DNB genes

Method 1 (Chen et al.)6 8 h 220 3.1 (0.015) See Supplementary file 1 of the original paper

Method 2 (Yu et al.)31 8 h 27 2.89 (0.115) Anln, Asns, Atf3, Bag3, Ccnb1, Cdc20, Cdk1, Cenpa, Cep55, Cks1b, Dnaja1, Dnaja4, Dnajb1, Dnajb4, 
Gsta2, Hspa1b, Hspd1, Maff, Pbk, Prc1, Spag5, Spp1, Tuba4a, Txnrd1, Ube2c, Uhrf1, Birc5

Method 3 (Zeng et al.)32 8 h 3 35.82 (0.002) Hspa8, Hspb1, Hsph1

Method 4 (Li et al.)34 8 h 25 0.24 (0.909) Aldoa, Arhgef12, Bnip3, Esd, Gtf2f2, Hk2, Ldha, Papolg, Pard6b, Pcf11, Pgd, pgk1, Pkm2, Pkp3, Ppl, 
Prkci, Ptbp1, Rhoj, Rhou, Scel, Taldo1, Thoc4, Tkt, Tpi1, U2af1

Current Method 4 h 16 5.063 (0.0) See Table 2

Table 1.  Comparison of DNBs of acute lung injury (ALI) and the corresponding pre-disease times 
predicted by different methodologies (GSE2565 dataset). Information for Method 1 and Method 4 were 
extracted from the original papers. Method 3 has provided the java source code of the proposed algorithm. The 
code was run on ALI data, and the identified modules were extracted for consequent analyses. Method 2 was 
reproduced for ALI database. Methods are chronologically sorted.
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approach to identify a prognostic signature for acute myeloid leukemia, and a dynamic protein pathway activation 
of adipose-derived stem cell differentiation identified novel biomarkers of adipocyte differentiation28.

The focus of this paper, however, is on one of the key applications of DNBs that is to detect early-warning 
signals of complex diseases, and to identify the pre-disease state. Dynamical characteristics of the molecular 
system prior to the critical transition, or the so-called DNB criteria, were theoretically derived by Chen et al.6 
To identify a group of genes best fulfilling DNB criteria, they first clustered genes at each sampling time using a 
correlation-based agglomerative hierarchical cluster tree. Then, a cluster with the highest change in the composite 
index between the two consecutive periods was chosen as a DNB, and the corresponding period is regarded as 
a candidate period of the pre-disease stage. Liu et al.29 then employed similar methodology to identify DNBs of 
type 1 diabetes mellitus (T1DM) using temporal gene expression profiles obtained from pancreatic lymph nodes 
of non-obese diabetic mice samples. Likewise, Li et al.30 followed a similar approach to identify tissue-specific 
DNBs associated with type 2 diabetes mellitus (T2DM) progression using gene expression data obtained from 
multiple tissues of diabetic rat models.

Inspired by DNB core theoretical idea, Yu et al.31 proposed an edge network to exploit higher-order statistics 
information among molecules. In an edge network, a node is not a molecule but a pair of molecules (i.e. an edge 
in conventional node networks), and a link represents the relationship between two molecule pairs (i.e. between 
two edges) rather than between two molecules. By assuming Gaussian distribution on the expression levels of 
each molecule, an edge network reflects the second-order statistical information of a dynamical system, and 
thus captures the stochastic dynamics of the original biological system as well as the node network. The compu-
tational approach for DNB identification was to first construct an edge network for each sample/subject using 
fourth-order correlation coefficient estimation. Then, those edges (i.e. molecule pairs) appeared in majority of 
the subjects’ edge-networks (> 75%) were thought to be closely related to the disease development, and their cor-
responding genes were extracted as DNB genes. The pre-disease time is the time with significant increase in the 
composite index value of the identified DNB.

Later on, Zeng et al.32 developed a framework to investigate dynamical organization of molecular modules 
during early disease development. The proposed workflow was applied on gene expression data of T1DM pro-
gression in a mouse model. They identified T1DM pre-disease modules based on DNB criteria as well as modules 
observed at T1DM advanced stages by cross-tissue gene expression analysis. To identify the DNB and the corre-
sponding pre-disease time, the tissue-specific and time-specific networks are first constructed from the available 
gene expression data and biological interactions. Then, each context-based network is divided into sub-networks 
(i.e. modules) using Markov clustering algorithm (MCL)33. For each tissue, the pre-disease module was set to be 
a module with the largest composite index value and the time when the pre-disease module has the largest score 
was thought to be the pre-disease time.

Recently, Li et al.34 proposed a model-based framework for DNB identification and analysis of deteriora-
tion mechanisms of complex diseases. The workflow began with a network construction by integrating pro-
tein interactions with gene expression data, and then using an ODE-based dynamic optimization method to 
infer the underlying dynamic networks. The network modules were identified using ClusterONE algorithm35. 
“High-influence” modules were then detected based on their average degrees in the whole network. A DNB was 
identified from high-influence modules when the composite index achieves its largest value.

To investigate the advantage of multi-objective optimization workflow proposed in this work, the identified 
DNB of acute lung injury (GSE2565 dataset) was compared with those achieved by the existing relevant meth-
odologies as mentioned above. Table 1 lists for each of the compared methods, the predicted DNB size, the cor-
responding pre-disease time, the intensity of DNB signals at the pre-disease time, and the genes contained in the 
predicted DNBs.

According to the experimental results, by using the multi-objective optimization approach, the disease ini-
tiation signal was detected one step earlier. This is a noteworthy achievement in “predictive medicine” which 
facilitates earlier therapeutic interventions, and thus improves the chance of disease prevention. Also, accord-
ing to the biological experiments, the most severe physiological effects occurred within the first 8 hours after 
exposure, resulting in the increase of the pulmonary edema and decrease of the survival rate (the mortality rate 
of 50–60% was observed after 12 h). Therefore, the system has potentially entered into the disease stage after 
8 hours, and predicting 8 h as the pre-disease state is not well-compatible with the experimental observations. 

Gene 
symbol Gene description

Gene 
symbol Gene description

Aldh3a1 aldehyde dehydrogenase 3 family member A1 Rtp3 receptor transporter protein 3

Aplnr apelin receptor S100A9 S100 calcium binding protein A9

Cdk1 cyclin-dependent kinase 1 Shisa2 shisa homolog 2 (Xenopus laevis)

Chst15 carbohydrate (N-acetylgalactosamine 4-sulfate 
6-O) sulfotransferase 15 Tk1 thymidine kinase 1

Clec2d C-type lectin domain family 2, member d Tnxb tenascin XB

Ercc6l excision repair cross-complementing rodent 
repair deficiency complementation group 6 - like Ttn titin

Lgals1 lectin, galactose binding, soluble 1 Xdh xanthine dehydrogenase

Melk maternal embryonic leucine zipper kinase Zbtb16 zinc finger & BTB domain containing 16

Table 2.  List of 16 genes included in the identified DNB.
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Moreover, the distribution of differentially expressed genes at different time-points (Supplementary Figure S2) 
demonstrates that the most severe fluctuations in gene expressions commenced at time 4 h verifying the criticality 
of this time-point. Hence, 4 h cannot be considered a stable healthy state (i.e., a state prior to the pre-disease time) 
as predicted by other methodologies.

Table 1 also shows sizes of the identified DNBs. Previous studies have shown that very large biomarkers are 
highly redundant and thus less potential to receive clinical utilities36. Also, very small biomarkers do not usually 
show functional diversity expected in complex diseases. Method 1 identified a DNB containing 220 genes, which 
is huge as compared to the subsequent methodologies. This method used a hierarchical clustering algorithm with 
pre-defined number of clusters. Such an approach is prone to produce false-positive biomarkers as all data-points 
are forced to place in a cluster. Therefore, many of the molecules in the identified DNB might be placed in that 
group merely because there was no better cluster to fit them in. Method 3, on the other hand, produced a sig-
nature containing only three genes all from the same family (heat shock proteins). Although this DNB shows a 
strong signal at the pre-disease time, it lacks the required functional diversity. Other methods identified DNBs of 
reasonable sizes.

Lastly, the DNB signal intensity was measured as the escalation of the composite index at the pre-disease time 
as compared to the previous time-point, i.e., − −I It t 1, where t is the pre-disease time as predicted by the corre-
sponding method. In addition to this, Supplementary Figure S1 shows the temporal behaviors of DNBs predicted 
by different methods in terms of the change of the corresponding composite indices over time. Theoretically, the 
composite index of a DNB significantly increases at the pre-disease time as compared to the previous healthy 
states. The statistical significance of this increase has been assessed using a permutation test as explained in 
Supplementary Materials. The corresponding p-values displayed in Table 1 elucidate the significance of the 
pre-disease signal of the DNB identified by the proposed optimization approach as compared to those predicted 
by the former methodologies.

In conclusion, the multi-objective optimization workflow detected a reasonably-sized DNB which predicts the 
disease initiation earlier in time yet with a strong signal. Together, all these pieces of evidence verify the effective-
ness of the proposed methodology as compared to the previous DNB works.

DNB Functional Role the Pathogenesis of Acute Lung Injury (ALI)
The identified DNB triggers the regulation of ALI associated genes. DNB is the leading net-
work of the critical transition which drives the system into the disease state, and thus is strongly linked 
with casual genes or genes involved in the pathogenesis37. A three-step procedure as detailed be-
low was followed to show that the identified DNB could trigger the regulation of genes known to be as-
sociated with acute lung injury, and thus corroborates the validity of the DNB’s expected functions.

1. Extending the Core DNB: The core DNB (i.e., 16-gene network) was first extended with protein-protein 
interactions (PPIs). The idea is that DNB proteins may bind to and thus trigger other proteins although 
mRNAs of interacting partners are not significantly expressed according to the microarray data—possi-
bly due to the fact that the degradation rate of mRNAs is usually much faster than those of proteins7.

 Experimentally validated PPIs were obtained from MppDB38 and FpClass training set39. FpClass is a da-
ta-mining based tool whose training set comprises PPIs detected in at least two experiments. MppDB 
is a mouse PPI database which provides a referent set of mouse PPIs collected from a variety of online 
databases. Experimentally validated PPIs were combined with FpClass highly-ranked predicted PPIs 
(i.e., interactions whose estimated false discovery rates is above 60%) to form a comprehensive PPI da-
tabase. This database was then queried to retrieve proteins whose interacting partners are in the core 
DNB, resulting in an extended DNB (EDNB) of 89 molecules as listed in Supplementary Table S1.

2. Extracting Context-specific Targets of the Extended DNB: Now the question is that whether the EDNB 
can drive the regulation of genes relevant to the underlying pathogenesis. The target-genes (TGs) of the 
EDNB were retrieved from ORTI database, a rich and publicly-available database of experimentally-validat-
ed mammalian transcriptional interactions (http://orti.sydney.edu.au/). However, ORTI is a generic database 
compiling regulatory interactions from different experiments. Therefore, all the retrieved TGs are not neces-
sarily regulated in this particular context/disease. To extract context-specific targets, a subset of retrieved TGs 
which are significantly deregulated (i.e., FDR q-value <  0.05) during the disease periods (i.e., ≥ )t h8  was 
e x t r a c t e d  ( 2 9 3  g e n e s  w e r e  s e l e c t e d  a s  l i s t e d  i n  S u p p l e m e n t a r y  Ta b l e  S 2 ) .

3. Disease Enrichment Analysis: The last step was to investigate whether the set of EDNB’s deregulated TGs 
enriches the disease of acute lung injury. In other words, whether the set of EDNB’s deregulated targets 
statistically over-represents genes known to be associated with ALI. First, ALI associated genes were re-
trieved from DisGeNet database, an expert-curated gene-disease association database40. Then, the num-
ber of EDNB’s deregulated TGs and ALI associated genes were compared using the right-sided Fisher’s 
exact test where the p-value for the null hypothesis is computed based the hypergeometric distribution:

( )( ) ( )
∑= −
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Hypergeometric distribution calculates the statistical significance of having drawn a specific k successes (out 
of n total draws) from a population of size N that contains exactly K successes. Here, N is the total number of 
curated gene-disease associations in DisGeNET (26,522 genes), n is the number of EDNB’s deregulated TGs 

http://orti.sydney.edu.au/
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(293 genes), K is the total number of genes associated with ALI in DisGeNet (61 genes), and k is the number 
of EDNB’s deregulated TGs associated with ALI in DisGeNet (10 genes). ALI associated TGs were listed in 
Supplementary Table S3.

The extended-DNB enriches ALI associated cellular mechanisms. According to the above-mentioned analysis, 
DNB genes and their interacting partners (i.e., EDNB) are potential regulators of ALI associated genes, and there-
fore, are likely to play a role in the pathogenesis of acute lung injury. In order to better understand the underlying 
cellular mechanisms, EDNB was functionally profiled using Gene Ontology (GO). GO project41 provides a system 
for hierarchically attributing genes or gene products to terms organized in a graph structure (i.e., ontology). The 
terms are classified into three categories of biological processes, molecular functions and cellular components. 
In order to determine GO terms statistically overrepresented by EDNB genes, BiNGO tool42 was used. BiNGO 
maps the prevalent functional themes of the queried gene set on the GO hierarchy, and outputs this mapping as a 
graph in Cytoscape43, an open-source software platform for molecular network visualization. BiNGO parameters 
were set as follows: hypergeometric test was used for the enrichment statistical test and the p-values were adjusted 
based on Benjamini & Hochberg FDR correction44. The significance level was set to 0.01 and the organism was 
chosen to be Mus musculus.

Figure 4 shows the hierarchy of biological processes enriched by EDNB genes. Different regions of the 
enriched ontology were highlighted and functionally annotated based on the underlying biological processes. ALI 
is the manifestations of a widespread inflammatory response of the lung to direct/indirect insults that may further 
lead to multiple organ dysfunctions and multiple system failures45. Many of the enriched GO terms (e.g., regu-
lation of immune response, response to stimulus, organ development, tissue remodeling) are therefore directly 
related to ALI initiation and progression processes. In addition, increasing evidence confirms the key role of 
tumor necrosis factor receptors in the pathogenesis of toxin-induced lung injury46, and thus supports the enrich-
ment of tumor necrosis factor-mediated signaling pathway. Evidence also suggests that dysregulation of apoptosis 
plays a crucial role in the development of ALI and related disorders47,48, which corroborates the enrichment of 
GO terms associated with the regulation of cell death and apoptosis. Interestingly, Fig. 4 also demonstrates the 
significance of regulation of heart growth (e.g., cardiac muscle development). As discussed by Julian49, heart 
muscle reacts to hypoxia by thickening of the muscular wall and hypertrophy (abnormal enlargement) of cardiac 
myocytes. Hence, the heart response to ALI-induced hypoxia can be the pathological reason for the enrichment 
of the heart growth regulation.

Overall, the enriched GO terms fairly support cellular processes underlying ALI. Further investigations of 
genes annotated with these GO terms (as provided by Supplementary Table S4) elucidate early responders/medi-
ators of ALI pathogenesis.

Figure 4. The hierarchy of biological processes enriched by EDNB genes. Nodes are GO terms (i.e., biological 
processes) and edges shows to the relationships between the terms. Overrepresented biological processes are 
colored from orange to yellow as the p-value increases. White nodes are not significantly overrepresented; they 
are included to show the colored nodes in the context of the GO hierarchy. The size of a node is proportional 
to the number of the EDNB genes annotated to the corresponding GO category. Different regions of the 
enriched ontology were highlighted and functionally annotated based on the underlying biological processes.
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Literature supports functional roles of DNB genes in the ALI pathogenesis. The GO term enrichment analysis 
verifies the functional relevance of DNB genes and their interacting partners as a set. In order to further support 
the biological implications of the individual DNB genes, the scientific literature has been manually searched for 
corroborating information. Table 2 lists 16 genes of the predicted DNB. The existing literature supports the func-
tional role of many of these genes or their family members in the pathogenesis of ALI or relevant disorders. Some 
of the existing evidence is listed below which elucidates the biological implications of the individual DNB genes 
and directs subsequent experimental verification:

•	 Aldehyde dehydrogenases are a group of enzymes participating in a wide variety of biological processes 
including the detoxification of exogenously and endogenously generated aldehydes50. Class-2 aldehyde dehy-
drogenase (mitochondrial) is known to play a role in hyperoxic lung injury by reducing cell death in lung 
epithelial cells51.

•	 Apelin is a group of small peptides which are binding to a G-protein-coupled APJ receptor expressed at the 
surface of some cells. The apelin and APJ receptor are upregulated during tissue injury52. A recent report 
showed that apelin-APJ signaling pathway is an endogenous anti-injury and organ-protective mechanism 
activated during acute lung injury53.

•	 Cyclin-dependent kinase 1 (Cdk1) is a highly conserved protein that functions as a key player in cell cycle 
regulation. Cdk1 inhibition was shown to reduce lung damage in a mouse model of ventilator-induced lung 
injury54.

•	 Carbohydrate sulfotransferases (Chst family) are sulfotransferase enzymes that are functioning in a wide 
range of cellular processes, from structural purposes to extracellular communications. The role of small inter-
fering RNA (siRNA) targeting Chst3 has been studied in mouse model with pulmonary emphysema (i.e., lung 
injury caused by cigarette smoke). It has been shown that Chst3 siRNA diminishes accumulation of excessive 
macrophages and the mediators, and thus accelerates the functional recovery from the injury55.

•	 C-type lectin (Clec) is a type of carbohydrate-binding protein domain known as lectin. Proteins with C-type 
lectin domains have functional roles in immune response to pathogens and apoptosis56. A recent study 
employed an expression-based genome-wide association approach and identified C-type lectin domain fam-
ily 4, member D (Clec4d) gene and C-type lectin domain family 4, member E (Clec4e) gene as new biomark-
ers of acute lung injury57.

•	 Tenascins are extracellular matrix glycoproteins. Tenascins have anti-adhesive effects. They are abundant in 
the extracellular matrix of developing vertebrate embryos and reappear around healing wounds. Tenascin-C 
is the most intensely studied member of the family and has been shown to be an important mediator of 
TGF-β-mediated fibrosis in the pathogenesis of acute lung injury58.

•	 Xanthine dehydrogenase (Xdh) is a protein involved in the oxidative metabolism of purines. A number 
of studies have supported the role of XDH in the pathogenesis of acute lung injury, hypoxia and relevant 
diseases59,60.

In summary, the statistical analyses of the functional role of the identified DNB together with the manual 
literature search for relevant information strongly support the effectiveness of the proposed methodology from 
the biological perspective.
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