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A B S T R A C T

Repeat asymptomatic testing in order to identify and quarantine infectious individuals has become a widely-
used intervention to control SARS-CoV-2 transmission. In some workplaces, and in particular health and
social care settings with vulnerable patients, regular asymptomatic testing has been deployed to staff to
reduce the likelihood of workplace outbreaks. We have developed a model based on data available in the
literature to predict the potential impact of repeat asymptomatic testing on SARS-CoV-2 transmission. The
results highlight features that are important to consider when modelling testing interventions, including
population heterogeneity of infectiousness and correlation with test-positive probability, as well as adherence
behaviours in response to policy. Furthermore, the model based on the reduction in transmission potential
presented here can be used to parameterise existing epidemiological models without them having to explicitly
simulate the testing process. Overall, we find that even with different model paramterisations, in theory, regular
asymptomatic testing is likely to be a highly effective measure to reduce transmission in workplaces, subject to
adherence. This manuscript was submitted as part of a theme issue on ‘‘Modelling COVID-19 and Preparedness
for Future Pandemics’’.
1. Introduction

In the early stages of the COVID-19 pandemic, many countries had
limited capacity for SARS-CoV-2 diagnostic testing, and so a large pro-
portion of asymptomatic or ‘mild’ infections were not being detected. At
this stage in the UK, testing was primarily being used in hospitals for
patient triage and quarantine measures. By late 2020, many western
countries had greatly increased their capacity to perform polymerase
chain reaction (PCR) tests, which sensitively detect SARS-CoV-2 RNA
from swab samples taken of the nose and/or throat. Importantly,
several types of antigen test in the form of lateral flow devices (LFDs)
came to market, promising to detect infection rapidly (within 30 mins
of the swab) and inexpensively in comparison to PCR. In the UK, many
of these devices underwent extensive evaluation of their sensitivity and
specificity in lab and real-world settings (Peto, 2021), and several were
made freely available to the general public.

Nonetheless, there was significant concern surrounding the sensitiv-
ity of LFD tests (Deeks and Raffle, 2020; Wise, 2020), their sensitivity
was observed to be low relative to PCR in early pilot studies (Dinnes
et al., 2020; Ferguson et al., 2021; García-Fiñana et al., 2021; Mina
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et al., 2021) and so they were more likely to miss true positives.
Furthermore, in some cases, extremely low values for their specificity
were reported (Armstrong, 2020; Kanji et al., 2021; Gans et al., 2022),
suggesting that false positives may be common, although this later
appeared not to be the case for the devices that were systematically
tested and rolled out to the wider public in the UK (Peto, 2021; Wolf
et al., 2021). Models of SARS-CoV-2 testing and observational studies
predicted that regular asymptomatic testing and contact-tracing could
significantly reduce transmission rates in the population (Hellewell
et al., 2021; Ferretti et al., 2021; Fyles et al., 2021; Lee et al., 2021).
Furthermore, specific studies on hospitals (Evans et al., 2021), care-
homes (Rosello et al., 2022), and schools (Asgary et al., 2021; Leng
et al., 2022) have demonstrated the impact that regular LFD testing
can have and has had on reducing transmission in these vital settings.
However, studies have also highlighted the potential pitfalls and ineffi-
ciencies of such policies (Tulloch et al., 2021), in particular around the
factors affecting adherence to these policies. Testing can only reduce
transmission if it results in some contact reduction or mitigation be-
haviour in those who are infectious. Therefore, studies have shown the
vailable online 2 November 2022
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importance of ensuring that isolation policies in workplaces are coupled
with measures to support isolation, such as paid sick-leave (Ahmed
et al., 2020; Patel et al., 2021; Daniels et al., 2021).

The focus of this paper is modelling the potential impact of testing in
workplaces and in particular its effect on reducing the transmission of
SARS-CoV-2 in these settings. We consider several of the confounding
factors already discussed, including test sensitivity and adherence to
policy, as well as highlighting some other important features including
the impact of population heterogeneity. These questions are addressed
using data on the within-host dynamics of SARS-CoV-2 viral load as
well as data on test sensitivity and infectiousness that is available in the
literature. The model we present is generic, and similar to those used
in Hellewell et al. (2021), Quilty et al. (2021), Ferretti et al. (2021) and
Fyles et al. (2021), in order to be applicable to a wide range of settings
and scenarios. However, we also extend some of these findings to the
care home setting, to understand its implications for evaluating and
comparing potential testing policies in care homes. To give context, the
results presented in Section 3.3, were used to inform policy advice for
staff testing in social care from the Social Care Working Group (a sub-
committee of the Scientific Advisory Group for Emergencies — SAGE)
which was reported to Department for Health and Social Care (DHSC)
and SAGE in the UK (Social Care Working Group, 2021). This paper
takes a more detailed look into the predictions of this model and its
implications for implementing testing policies in workplaces in general.

2. Methods

We focus on quantifying the effects of testing and isolation on a
single individual, for which we use the concept of an infected person’s
‘‘infectious potential’’. This is then extended to investigate the impact
of testing in a generic workplace setting on transmission of SARS-CoV-2
making some basic assumptions regarding contact and shift patterns.

Table 1 provides a list of all the symbols we use to represent the
parameters and variables in this section, alongside a description of
each.

2.1. Infectious and transmission potential

Without loss of generality, we define the time an individual 𝑘 gets
infected as 𝑡 = 0. Assuming non-repeating contacts at rate 𝑐𝑘(𝑡) then the
expected number of transmission events from that infected individual
(or their Transmission potential Quilty et al., 2021) is

𝑅(𝑘)
ind = ∫

∞

0
𝑐𝑘(𝑡)𝑝𝑘(𝑡)d𝑡. (1)

Initially, we aim to gain generic insights into how testing can impact
on transmission, and so we consider one other simplifying assumption,
that the contact rate 𝑐𝑘(𝑡) can be described by a simple step function,
such that the contact rate is reduced by a factor 𝑋 when an individual
self-isolates

𝑐𝑘(𝑡) =

{

𝑐0 if 𝑡 < 𝑡(𝑘)isol or 𝑡 ≥ 𝑡(𝑘)isol + 𝜏isol
(1 −𝑋)𝑐0 if 𝑡(𝑘)isol ≤ 𝑡 < 𝑡(𝑘)isol + 𝜏isol,

(2)

where the parameters are as defined in Table 1(a).
Finally, we suppose that the probability of transmission per contact

event is 𝑝𝑘(𝑡) = 𝛽0𝐽𝑘(𝑡) where 𝛽0 is a constant. We define the (arbi-
trary) scaling of the infectiousness 𝐽 (𝑡) by setting ⟨∫ ∞

0 𝐽 (𝑡)d𝑡⟩ = ⟨𝜏inf ⟩,
where ⟨⋅⟩ denotes a population average such that ⟨𝑥⟩ ≡

∑𝑁
𝑘=1 𝑥𝑘∕𝑁 .

The parameter ⟨𝜏inf ⟩ is the average period for which a person can
test positive via PCR (i.e. how long they have a detectable COVID
infection). Therefore, ignoring isolation, if the contact rate 𝑐0 is the
same for all individuals (note that this is not a necessary assumption,
variations in contact rate between individuals can be absorbed into the
infectiousness by a simple scaling factor) then the population baseline
reproduction number without any isolation will be 𝑅 = 𝛽 𝑐 ⟨𝜏 ⟩.
2

0 0 0 inf d
Then we can rewrite Eq. (1), the individual reproduction number for
individual 𝑘, as

𝑅(𝑘)
ind =

𝑅0
⟨𝜏inf ⟩ ∫

∞

0
𝐽𝑘(𝑡)

[

1 −𝑋𝐼(𝑡; 𝑡(𝑘)isol, 𝑡
(𝑘)
isol + 𝜏(𝑘)isol)

]

d𝑡 ≡ 𝑅0IP𝑘 (3)

here 𝐼(𝑥; 𝑎, 𝑏) = 𝐻(𝑥 − 𝑥1) − 𝐻(𝑥 − 𝑥2) is an indicator function for
he range 𝑥1 < 𝑥 < 𝑥2 such that 𝐻(𝑥) is the Heaviside step function.
he quantity IP𝑘 we define as the individual’s infectious potential and
nder these simplifying assumptions is proportional to the individual’s
eproduction number in a fully susceptible population. More generally
P is the relative infectiousness of an individual (omitting any isolation)
ntegrated over the infectious period, and so still has epidemiological
elevance beyond the case of a fully susceptible population.

Throughout this paper, we will use the relative reduction in IP
s. some baseline scenario (generally a scenario with no testing), to
easure the impact of testing regimes, such that

IP = 1 −
⟨IP⟩
⟨IP0⟩

, (4)

where ⟨IP0⟩ is the population average IP for the baseline scenario.

2.2. Model of viral-load, infectiousness and test positive probability

We use a RNA viral-load based model of infectiousness and test
positive probability, similar to those used in Quilty et al. (2021) and
Ferretti et al. (2021) to calculate the reduction in IP for different
testing and isolation behaviour. Individual viral-load trajectories 𝑉𝑘(𝑡)
re generated to represent the concentration of RNA (in copies/ml) that
hould be measured in PCR testing of a swab of the nasal cavity. In
urn these are used to calculate an infected individual’s infectiousness
(𝑉 (𝑡)) and probability of testing positive 𝑃 (𝑉 (𝑡)) over time.

We assume, as in Kissler et al. (2021), that the viral load trajectory
an be described by the following piecewise exponential (PE) model

𝑘(𝑡) =

{

𝑉𝑝 exp[𝑟(𝑡𝑝 − 𝑡)] if 𝑡 ≤ 𝑡𝑝
𝑉𝑝 exp[−𝑑(𝑡 − 𝑡𝑝)] if 𝑡 > 𝑡𝑝,

(5)

here the parameters are as defined in Table 1(b). We use two different
atasets to parameterise the PE model, which are laid out in the
ollowing sections.

.2.1. Parameterisation of RNA viral-load model
Ke et al. (2022) data:
The PCR-measured viral-load trajectories (in RNA copies/ml) are

enerated at random based on the mechanistic model fits in Ke et al.
2022). That dataset consists of the results of daily PCR and virus
ulture tests to quantify RNA viral-load (in RNA copies/ml) and infec-
ious viral load, in arbitrary units akin to plaque-forming units (PFUs)
espectively. There were 56 participants who had been infected by
ifferent variants of SARS-CoV-2 (up to the delta strain, as this dataset
recedes the emergence of omicron). In order to use this data, we first
imulated the ‘‘refractory cell model’’ (RCM) described in Ke et al.
2022) for all 56 individual parameter sets given in the supplementary
nformation of that article. Note that in Ke et al. (2022) these were
ased on nasal swabs, we did not use the data from throat swabs.

We found that, at long times, the RCM would show an (unrealistic)
econd growth stage of the virus. To remove this spurious behaviour
rom these trajectories, we fitted the parameters of the PE model
described by equation Eq. (5)) to the data around the peak viral load.
o do this, we truncated the data to only consist of only viral load
alues around the first peak that was above a threshold of 𝑉thresh =
ax𝑉 0.5 (i.e. half of the maximum viral load on a log-scale, measured
mpirically from the generated trajectory). The data for each trajectory
as then truncated between two points to avoid fitting this spurious
ehaviour. The first point was when the viral load first surpassed 𝑉thresh.
he second point was either when viral load fell below 𝑉thresh, or the

ata reached a second turning point (a minimum) – whichever occurred



Journal of Theoretical Biology 557 (2023) 111335C.A. Whitfield et al.
Table 1
Symbols used in this paper to represent various mathematical variables and parameters and their interpretation, broken down by category.
Symbol Description

(a) Transmission modelling

𝑅0, 𝑅𝑘
ind Basic reproduction number and expected reproduction number of individual 𝑘 respectively.

𝑐0, 𝑐𝑘(𝑡) Basic contact rate and contact rate of individual 𝑘 respectively.
𝑝𝑘(𝑡) Probability of a contact between infectious individual 𝑘 and a susceptible individual at time 𝑡

resulting in an infection.
𝛽0, 𝐽𝑘(𝑡) Baseline probability of a contact resulting in an infection and relative infectiousness of individual 𝑘 at

time 𝑡.
𝑋 Fractional reduction in contact rate due to isolation (𝑋 = 1 used throughout).
𝑡(𝑘)isol, 𝜏isol The time since infection when the individual begins isolation and the duration of the isolation period

respectively.
𝜏 (𝑘)inf Duration of infection of individual 𝑘, defined as infectious when nasal viral load is detectable by PCR.

(b) Viral load models

𝑉𝑘(𝑡) Nasal viral load of individual 𝑘 at time 𝑡 since infection.
𝑉 (𝑘)
𝑝 , 𝑡(𝑘)𝑝 Peak viral load value of individual 𝑘 and the time since infection it occurs respectively.

𝑟𝑘, 𝑑𝑘 Exponential rate of viral growth and decay respectively in individual 𝑘.
𝑉lod, 𝛥Ct, 𝜔𝑝 𝜔𝑟 Viral load parameters in Kissler et al. (2021)

(c) Infectiousness model

𝐽 (𝑘)
𝑝 , ℎ𝑘 Theoretical maximum infectiousness (at high viral load) and steepness of Hill function relating

infectiousness to viral load respectively for individual 𝑘.
𝐾𝑚 Threshold parameter for Hill function of viral load vs. infectiousness (same for all individuals).
IP𝑘 Infectious potential of individual 𝑘, a values of 1 indicates the same overall infectiousness as the

population mean without any isolation.
𝛥IP Relative reduction in IP compared to some baseline case.

(d) Testing models

𝑃PCR(𝑉 ), 𝑃LFDh(𝑉 ), 𝑃LFDl(𝑉 ) Probability of positive test result given a viral load of 𝑉 for PCR, high-sensitivity LFD, or
low-sensitivity LFD respectively.

𝑃max, 𝑠𝑝, 𝑉
(𝑝)
50 PCR sensitivity parameters: maximum sensitivity, slope of logistic function, and threshold viral load

for logistic function respectively.
𝜆, 𝑠𝑙 , 𝑉

(𝑙)
50 LFD ‘‘high sensitivity’’ parameters (relative to PCR sensitivity): maximum sensitivity, slope of logistic

function, and threshold viral load for logistic function respectively.
𝑃not 𝑃miss Parameters of adherence: the proportion of people who do no tests and the proportion of tests missed

by those who do test respectively.
𝐴 Composite adherence parameter (i.e. the proportion of tests that get performed,

𝐴 = (1 − 𝑃not )(1 − 𝑃miss)).
𝑍, 𝑝, 𝜏pos Parameters of simple testing model: fractional impact of isolation on infectiousness, test sensitivity in

window of opportunity, and duration of window of opportunity respectively.
𝜏 Time between tests for a given regular mass testing policy.

(e) Workplace models

𝑊𝑘(𝑡) Shift pattern indicator (= 1 when individual 𝑘 is at work, and = 0 otherwise).
𝑁𝑠, 𝑁𝑟 Number of employees in a model workplace and the number of residents in the care-home model

respectively.
𝑓𝑠, 𝑝𝑐 Fraction of days staff spend on-shift (9/14 used here) and probability of them making a contact

during a shift with a particular co-worker who is also in work that day respectively.
𝑎, 𝑏 Fractional contact probabilities (relative to 𝑝𝑐 ) in model care-home between staff and between

residents respectively.
first. We then used a simple least-squares fit on the log-scale to fit the
PE model to this truncated data. In order to set realistic initial values for
the non-linear least-squares fitting method, we estimated the peak viral
load and time by taking the first maximum of the viral load trajectory
and the time it occurred. Then estimated the growth and decay rates
by simply taking the slope of straight lines connecting the viral load at
the start and end of the truncated data to this peak value.

Fig. 1 shows all of the PE fits against the original RCM model
fits. We can see that the PE model captures the dynamics around the
peak well (which, for our purposes, is the most important part of the
trajectory as it is when individuals are most likely to be infectious
and test positive). However, this fitting comes at the expense of losing
information about the changing decay rate at longer times (which has
a much smaller effect on predicting testing efficacy).

Supplementary Table S1 summarises the mean and covariance of
the maximum likelihood multivariate lognormal distribution of the
PE model parameters. We use this distribution to generate random
parameter sets for the PE model which are used to simulate different
individuals.

Kissler et al. (2021) data:
3

e

The data from Kissler et al. (2021) consists of 46 individuals iden-
tified to have ‘‘acute’’ SARS-CoV-2 infections while partaking in reg-
ular PCR tests. To simulate the data from this paper, we sample the
individual-level posteriors (available at Kissler, 2021) directly. First,
we converted the parameters contained in that dataset (𝛥𝐶𝑡, difference
between minimum Ct and the limit of detection (LoD); 𝜔𝑝, length of
growth period from LoD to peak viral-load; and 𝜔𝑟 length of decay
period from peak viral-load to LoD) as follows

log10(𝑉𝑝) = log10(𝑉lod) +
𝛥𝐶𝑡

3.60971
, (6)

𝑟 = log(10)
[ log10(𝑉𝑝) − log10(𝑉lod)

𝜔𝑝

]

, (7)

𝑑 = log(10)
[ log10(𝑉𝑝) − log10(𝑉lod)

𝜔𝑟

]

. (8)

The parameter 𝑉lod = 102.65761copies/ml is the viral load corresponding
to a Ct-value of 40 and 3.60971 is the fitted slope between Ct-value
and RNA viral-load in log10(copies/ml) in that study. Finally, in order
to determine the final parameter 𝑡𝑝, we used the result from Ferretti

t al. (2021) based on the same dataset that the viral load at time of
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Fig. 1. Left: Spaghetti plot of the 56 RCM model paramterisations given in Ke et al. (2022). Right: the same plot but showing the PE model parameterisations fitted in this paper.
Note that the point-wise median and mean profiles shown here were computed on the scale of log10copies/ml.
Fig. 2. Spaghetti plot of trajectories generated using random samples of the posterior distribution of PE parameters in Kissler et al. (2021). The point-wise mean and median lines
are computed using 10,000 samples. Note that, for the purposes of this plot, the trajectories are truncated so that any values below 𝑉lod are set to 𝑉lod (so that spuriously small
alues on the log-scale do not affect the averages. The left graph shows samples from the symptomatic population in that study and right the asymptomatic.
nfection is 𝑉0 = 100.5255copies/ml, such that

𝑝 =
log𝑉𝑝 − log𝑉0

𝑟
. (9)

We separated the converted datasets into those individuals who were
labelled as ‘‘symptomatic’’ and those who were not, as there was shown
to be statistically significant differences in these populations in Kissler
et al. (2021). Then, to generate a new viral load trajectory a single
parameter set is sampled from one of these two datasets, depending
on whether the trajectory corresponds to a simulated individual who
would develop symptoms or not. Example trajectories for the two cases
are shown in Fig. 2.

2.2.2. Parameterisation of infectiousness as a function of RNA viral load
In order to model infectiousness, we use ‘‘infectious virus shed’’ as

fitted in Ke et al. (2022) as a proxy. In Ke et al. (2022) infectious virus
shed is a Hill function of viral load

𝐽𝑘(𝑉𝑘) =
𝐽𝑝𝑉 ℎ

𝑘

𝑉 ℎ
𝑘 +𝐾ℎ

𝑚
. (10)

We found that neither of the random parameters 𝐽𝑝 nor ℎ (as given in
e et al., 2022) were significantly correlated to any of the PE model
arameters fitted for the same individuals. Therefore, we used the
aximum likelihood bivariate lognormal distribution of the random
arameters of this model {𝐽𝑝, ℎ}, given in Supplementary Table S1.

These infectiousness parameters are generated independently of the
individual’s RNA viral-load parameters {𝑉𝑝, 𝑡𝑝, 𝑟, 𝑑}. Examples of 𝐽𝑘(𝑥)
are shown in Fig. 3(a) as well as the mean relationship.

Note that, in Ke et al. (2022), the magnitude of 𝐽𝑝 is given in
arbitrary units and so we normalise IP as shown in Eq. (3). Thus, we
present results in terms of a relative reduction in IP (𝛥IP), which is
independent of the choice of infectiousness units.
4

2.2.3. Parameterisation of test sensitivity as a function of RNA viral load
The probability of testing positive is also assumed to be determin-

istically linked to RNA viral load. Note that we assume this because
of the data available on LFD test sensitivity as a function of RNA
viral load measured by PCR, however several studies have suggested
that LFD test sensitivity is actually more closely linked to infectious
viral load or culture positive probability (Kirby et al., 2022; Pekosz
et al., 2021; Pickering et al., 2021; Killingley et al., 2022). Furthermore,
the sensitivity relationships used here imply that the outcomes of
subsequent tests are independent. This is likely to be an unrealistic
assumption in practice since factors other than viral load may also
influence test outcome, and these may vary between individuals.

To model PCR testing, we use a logistic function with a hard-cutoff
to account for the cycle-threshold (Ct) cutoff

𝑃PCR(𝑉𝑘) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑉𝑘 < 𝑉cut

𝑃max

[

1 + 𝑒−𝑠𝑝(log10 𝑉𝑘−log10 𝑉
(𝑝)
50 )

]−1
if 𝑉𝑘 ≥ 𝑉cut

. (11)

The parameters 𝑃max, 𝑉50 and 𝑠𝑡 are extracted by a maximum-likelihood
fit of the data on the ‘‘BioFire defense’’ PCR test given in Smith
et al. (2020), and are given in Supplementary Table S1. Note that we
fitted to logistic, normal cumulative distribution function (CDF), and
log–logistic functions and chose maximum likelihood fit.

To model LFD testing, we use two data sources to establish a ‘low’
and ‘high’ sensitivity scenario. In the ‘high’ sensitivity case we use the
phase 3b data collected in Peto (2021). We fitted logistic, normal CDF
and log–logistic models to the data using a maximum likelihood method
and chose the most likely fit (which was the logistic model). The
phase 3b results in this study came from community testing in people

who simultaneously tested positive by PCR. Therefore, the overall LFD
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Fig. 3. (a) The deterministic relationship between infectiousness and RNA viral load used here. Grey lines show individual samples as each individual is assumed to have a
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sensitivity is given by the logistic function multiplied by the fraction
who would test positive by PCR, i.e.

𝑃LFDh(𝑉𝑘) = 𝜆𝑃PCR(𝑉𝑘)
[

1 + 𝑒−𝑠𝑙(log10 𝑉𝑘−log10 𝑉
(𝑙)
50 )

]−1
. (12)

he parameters 𝑠𝑙 and 𝑉 (𝑙)
50 are determined by maximum likelihood fit,

hich the relative sensitivity 𝜆 is included to account the difference
n sensitivity between self-testing and testing performed by lab-trained
taff (Peto, 2021).

In the ‘low’ sensitivity LFD case, we use data from regular LFD and
CR testing in the social care sector in the UK (NHS Test and Trace,
021). Since this data is based on positive PCR results, we assume again
LFDl(𝑉𝑘) = 𝜃(𝑉𝑘)𝑃PCR(𝑉𝑘). The function 𝜃(𝑉𝑘) is a stepwise function,
nd is parameterised in Supplementary Table S1. All of the test-positive
robability relationships are shown in Fig. 3(b).

.3. Adherence to policy

In this paper we consider a number of testing policies which take
he form of instructions to employees in the workplace regarding the
umber of tests to carry out per week. In general, we assume that PCR
ests were typically carried out with 100% adherence, as these are as-
umed to be ‘enforced’ (our reference example is PCR testing of hospital
nd care home staff in the UK, which are carried out at the workplace
y trained staff). LFD tests on the other hand are assumed voluntary,
s these are carried out at home and reported online. We consider
wo behavioural parameters to model how individuals may choose to
dhere with LFD testing policies, 𝑃not and 𝑃miss (see Table 1(d)). In
ection 3.2 we explicitly model two behavioural extremes,

• ‘‘All-or-nothing’’: 𝑃not = 1 − 𝐴 and 𝑃miss = 0, i.e. a fixed fraction
of people complete all tests, while the rest complete none.

• ‘‘Leaky’’: 𝑃miss = 1 − 𝐴 and 𝑃not = 0, i.e. all people miss tests at
random with the same probability.

hese cases demonstrate how the same overall adherence to testing (0 ≤
≤ 1) can lead to different testing outcomes, depending on behaviour.

he difference between these two behaviours can be captured by a
imple model of 𝛥IP (relative to the case with no isolation) by making
he following assumptions. Suppose each individual is supposed to test
very 𝜏 days and there is some window 𝜏pos when they can test positive
ith probability 𝑝. If they do test positive, it will reduce their overall

nfectiousness by a factor 𝑍. Then, for the average individual, the
elative reduction in IP will be

𝛥IPAoN ≈ 𝐴𝑍
(

1 − (1 − 𝑝)𝜏pos∕𝜏
)

, (13)

IPleaky ≈ 𝑍
(

1 − (1 − 𝑝)𝐴𝜏pos∕𝜏
)

. (14)
5

hus, 𝛥IP is expected to scale linearly with adherence for the ‘all-or-
othing’ case, since testing will only impact a fixed fraction of the
opulation, while in the ‘leaky’ case 𝛥IP will scale non-linearly with 𝐴
s it will change the expected number of tests a person will take during
he period when they can test positive (𝐴𝜏pos∕𝜏).

.4. Workplace contact, shift and testing patterns

To simulate the impact of testing in a workplace setting we model
ome simplified examples of contact and work patterns.

.4.1. Modification of infectious potential to account for shift patterns
Eq. (2) supposes that the contact rate is constant over time unless

he individual is isolating. When modelling a workplace intervention,
e are generally interested in the effect on workplace transmission.
herefore, to generate the results in Section 3.3, we consider a modified
ontact pattern that is proportional to work hours 𝑐(𝑤)(𝑡) = 𝑊 (𝑡)𝑐(𝑡)
here 𝑊 (𝑡) = 1 during scheduled work hours and 0 otherwise. Note, we
lso take 𝑋 = 1, as we assume work contacts are completely removed
y isolation. This parameterisation therefore ignores potential contacts
ith colleagues outside of work hours, which may also be relevant.

For simplicity, we assume that all workers do the same fortnightly
hift pattern, shown in Table 2, so that all employees work, on average,
.5 days per week, based on average working hours in the UK social
are sector.

.4.2. Definition of testing regimes simulated
Table 2 defines the shift and testing patterns that we consider. Note

hat tests are assumed to take place only on work days. The numerical
mplementation of calculations of 𝛥IP is detailed in Appendix A.2.

.5. Models of transmission in a closed workplace

To demonstrate the impact of testing interventions in a closed pop-
lation, we consider two simple model workplaces. The algorithm to
imulate transmission in these workplaces is detailed in Appendix A.3.

For ease of comparison, we measure the impact of testing in these
orkplaces by the final outbreak size resulting from a single index

ase in a fully susceptible population. However in reality, mass asymp-
omatic testing is more useful when there is high community preva-
ence, and so we would expect repeated introductions over any pro-
onged period. We do not consider the case of repeated introductions
ere, nor immunity in the population, but these methods can readily
e extended to that case.
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Table 2
Visual representation of the shift and test-
ing patterns considered in Sections 3.3, 3.4,
and 3.5. Within each row, squares from left
to right indicate days of the week, upper
squares indicate the first week of the pattern,
and the lower squares indicate the second
week. A red square means there is a shift/test
scheduled for that day, while a white square
indicates there is not.
Name Pattern
Shift
pattern
Daily
testing
3 LFDs
per week
2 LFDs
per week
1 PCR
per week
1 PCR per
fortnight

2.5.1. A single-component workplace model
We consider a workplace of 𝑁𝑠 fixed staff, all of whom work the

same shift pattern given by Table 2. Each individual’s shift pattern
starts on a random day (from 1 to 14) so it is assumed that approx-
imately the same number of workers are working each day. Contacts
for each infectious individual on shift each day are drawn at random
from the rest of the population on shift that day with fixed probability
𝑝𝑐 . Each contact is assumed to have probability of infection

𝑝𝑘,𝑘′ (𝑡) = 1 − exp
[

−𝛽0𝐽𝑘(𝑡)𝑠𝑘′ (𝑡)
]

(15)

where 𝛽0 is the (average) transmission rate for the contact, 𝐽𝑘(𝑡) is the
infectiousness of the infectious individual (𝑘 ∈ {1,… , 𝑁𝑠}), 𝑠𝑘 ∈ {0, 1}
is the susceptibility of the contact (𝑘′ ∈ {1,… , 𝑁𝑠} ≠ 𝑘).

An upper bound for the approximate reproduction number in this
workplace can be calculated as follows

𝑅wp ≲ 𝑓 2
𝑠 𝛽0𝑝𝑐 (𝑁𝑠 − 1)⟨𝜏inf ⟩(1 − 𝛥IP) (16)

where 𝑓𝑠 is the fraction of days on-shift (9/14 here) and 1 − 𝛥IP is the
relative infectious potential after taking into account any testing and
isolation measures.

2.5.2. A two-component model to represent transmission in a care-home
We also extend the model in the previous section to a basic model

of contacts in a care home consisting of two populations: staff and
residents. We assume the same shift patterns apply for the staff as in
the previous section, but that residents are present in the care home
on all days. As in the previous section, we assume that contacts are
drawn at random each day for infectious individuals from the pool of
other individuals at work that day. However, the contact probability
is different for resident–resident, staff–resident, and staff–staff contacts
such that it can be expressed by the following matrix

𝐏𝑐 = 𝑝𝑐

(

𝑎 1
1 𝑏

)

, (17)

such that 𝑝𝑐 , 𝑎𝑝𝑐 , and 𝑏𝑝𝑐 are the staff–resident, staff–staff, and resident–
resident contact probabilities respectively. We assume that transmission
dynamics are the same for all groups but that testing and isolation
measures can be applied separately. It is important to note that here
we only consider the case of a closed population with a single (staff)
index case, which is most similar to the early pandemic (i.e. a fully
susceptible population, low incidence, and staff ingress is more likely
than patient ingress due to limits on visitors). The situation becomes
complex in more realistic scenarios (e.g. Rosello et al., 2022) however
many of the lessons we can learn from this simple case are transferable
(at least qualitatively).
6
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In Section 3.5 we consider two cases to measure the impact of
mass asymptomatic testing of staff. First, to mimic the impact of social
distancing policies for staff we vary 𝑎 while keeping 𝑝𝑐 and 𝑏 constant
(i.e. minimising disruption for residents) and compare the absolute and
relative impacts of testing interventions. Second, to show the effect of
the relative contact rates, which may vary widely between individual
care-homes, we vary 𝑎 and 𝑏 such that the average number of contacts
an infectious person will make is fixed, meaning that we impose the
following constraint

𝑏 = 1 −
𝑁𝑠𝑓𝑠(𝑁𝑠𝑓𝑠 − 1)
𝑁𝑟(𝑁𝑟 − 1)

(𝑎 − 1) (18)

where 𝑁𝑟 is the size of the fixed resident population, and 𝑁𝑠 is the size
of the fixed staff population. We will use this to investigate how testing
policies can have different impacts in different care-homes even if they
have similar overall transmission rates or numbers of cases.

3. Results

3.1. Role of population heterogeneity in testing efficacy

The individual viral-load based model introduced here accounts
for correlations between infectiousness and the probability of testing
positive both between individuals and over time. For example, people
with a higher peak viral load are more likely to be positive and more
likely to be (more) infectious. In this section we demonstrate how the
model assumptions around heterogeneity in, and correlations between,
peak viral load and peak infectiousness affect predictions of testing
efficacy. To do this, we first calculate a population average model,
which uses the time-point average of the population of 𝑁 individuals
for the infectiousness and test-positive probability

⟨𝐽 (𝑡)⟩ = 1
𝑁

𝑁
∑

𝑘=1
𝐽 (𝑉𝑘(𝑡)), (19)

⟨𝑃LFD(𝑡)⟩ =
1
𝑁

𝑁
∑

𝑘=1
𝑃LFD(𝑉𝑘(𝑡)). (20)

These profiles are then assigned to all individuals in a parallel popu-
lation of 𝑁 individuals so that the impact of population heterogeneity
an be compared directly.

Fig. 4 compares the relative overall change in infectious poten-
ial (𝛥IP) for a population of infected individuals performing LFDs at
arying frequency for the heterogeneous models vs their homogeneous
population average) counterparts. This is shown for several cases; in
ig. 4(a) the Ke et al. based model is used, which has low population
eterogeneity in the PE parameters. Therefore, we see little difference
etween the full model prediction and the population average case.
he ‘high’ sensitivity testing model outperforms the ‘low’ sensitivity
odel, as expected. However, the difference is proportionally smaller

or high testing frequencies because frequent testing can compensate
or low sensitivity to some extent. Furthermore, in the ‘high’ sensitivity
odel subjects are likely to test positive for longer periods of time and

o retain efficacy better at longer periods between tests.
Comparing this to Fig. 4(b) we see that there is a much larger

iscrepancy between the Kissler et al. model and its population average.
his is because there is much more significant population heterogeneity

n this model, and the correlation between infectiousness and test
ositive probability means that individuals who are more infectious are
ore likely to test positive and isolate. Therefore the effect of testing is

ignificantly larger than is predicted by the population average model.
his effect is also much larger in the ‘low’ sensitivity model, because

n this model the test-positive probability has a very similar RNA
iral load dependence to the infectiousness (with approximately 106

opies/ml being the threshold between low/high test-positive probabil-
ty and infectiousness). This means there is greater correlation between
hese two properties and so this effect is amplified.
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Fig. 4. Plots of 𝛥IP, the relative change in IP due to regular asymptomatic testing with LFDs vs. the time between tests. (a) Results using the Ke et al. based model of RNA viral
load and (b) using the Kissler et al. based model. Blue lines show the results using the ‘high’ sensitivity model for LFD testing and orange the ‘low sensitivity model’. Dashed lines
show the results using a population average model, based on using the population mean infectiousness and test-positive probability for all individuals. In all cases the reduction is
calculated as in Eq. (4) relative to the baseline case with no testing and no isolation at symptom onset (𝑃isol = 0). Total adherence to all testing regimes is assumed in this case,
and each point is calculated using the same population of 10,000 generated individuals. The shaded areas show the 95% confidence intervals in the mean of 𝛥IP, approximated
by 1000 bootstrapping samples.
The between-individual relationship of infectiousness and viral load
for SARS-CoV-2 is still largely unknown. While studies have shown a
correlation between viral load and secondary cases (Marks et al., 2021;
Lee et al., 2021), this could also be affected by the timing of tests
(which may also be correlated to symptom onset) and therefore the
within-individual variability in viral load over time. We found in this
section that even though the two models of RNA viral load we use
predict very similar testing efficacy, they highlight important factors
to consider when modelling repeat asymptomatic testing:

1. Population heterogeneity: greater heterogeneity means poorer
agreement between the individual-level and population-average
model predictions.

2. Between individual correlation of infectiousness and
test-positive probability: the greater this correlation is the more
important the heterogeneity is to predictions of test efficacy.

Thus, quantifying population heterogeneity in infectiousness (i.e. super-
spreading) and likelihood of testing positive while infectious and the
correlation between the two can significantly affect predictions of
efficacy of repeat asymptomatic testing.

3.2. Modelling the impact of non-adherence

In Fig. 5 we calculate the two extremes of adherence behaviour
considered here, comparing the ‘‘all-or-nothing’’ and ‘‘leaky’’ adherence
models. We see that these different ways of achieving the same overall
adherence only differ noticeably when testing at high frequency (as
shown by the results for daily testing in Fig. 5). At high frequency,
‘leaky’ adherence results in a greater reduction in IP, because even
though tests are being missed at the same rate, all individuals are still
testing at a high-rate and so have a high chance of recording a positive
test. Conversely, in the ‘all-or-nothing’ case, obstinate non-testers can
never isolate, so the changing test frequency can only impact that
sub-population who do test.

We also see from Fig. 5 that the relative reduction in IP (𝛥IP) is
well approximated by fitting the reduced model of testing in Eqs. (13)
and (14) to the data for 𝛥IP. The fitted parameters for the two viral load
models are given in table. We fit the models for the ‘all-or-nothing’ and
‘leaky’ cases separately to the 𝛥IP data using a least-squares method.
Table 3 shows that the two cases give very similar testing parameters,
suggesting that the simple model captures the behaviour well. The solid
lines in Fig. 5 show the simple model results (Eqs. (13) and (14)) using
the mean fitted parameters from the final column of Table 3.

To summarise, a single adherence parameter may be sufficient to
capture how adherence affects the impact that regular testing has on
7

infectious potential, but only when the testing is not very frequent
(e.g. every 3 or more days). When testing is frequent, the very simple
model of Eqs. (13) and (14) can be used to estimate the potential
impact of testing at different frequencies on infectious potential for two
extreme models of behaviour. Namely, when adherence is ‘leaky’ or
‘all-or-nothing’.

3.3. Comparison of staff testing policies for high-risk settings

In the previous sections we have considered simple testing strategies
consisting of repeated LFDs at a fixed frequency. In this section we
consider scenarios more relevant to workplaces, outlined in Table 2.
Due to the mix of test types, it is less clear a priori how the regimes will
compare in efficacy. A key question we consider is whether substituting
a weekly PCR test with an extra LFD test results in the better, worse,
or similar 𝛥IP, depending on the underlying assumptions.

Fig. 6 shows the main results comparing the various regimes. At
100% adherence and high LFD sensitivity (Fig. 6(a)), we find some
interesting results, primarily that ‘‘2 LFDs + 1 PCR’’ and ‘‘3 LFDs’’
perform similarly, as do ‘‘3 LFDs + 1 PCR’’ and ‘‘Daily LFDs’’, suggesting
that, in theory, substituting PCR tests for LFD tests does not have a large
impact on transmission reduction. This is because, even though PCR
tests are more sensitive than LFDs, the turnaround time from taking
a PCR test to receiving the result limits the potential reduction in IP
that can be achieved by these tests. This is demonstrated in Fig. 7 by
the change in 𝛥IP as we change the mean PCR turnaround time. In the
low sensitivity case (Fig. 6(b)), there is a larger difference between ‘‘2
LFDs + 1 PCR’’ and ‘‘3 LFDs’’, but again ‘‘Daily LFDs’’ outperform ‘‘3
LFDs + 1 PCR’’ (at 100% adherence) since the high-frequency of testing
counteracts the low sensitivity by providing multiple chances to test
positive.

Another important implication of Fig. 6 is the effect of varying
LFD adherence (in this case assuming ‘leaky’ adherence behaviour).
Naturally, this impacts much more strongly on the LFD-only regimes
demonstrating the usefulness of the PCR tests as a less-frequent but
mandatory and highly sensitive test as a buffer in case LFD adherence
is low or falling. Another factor to consider when changing between
testing regimes is how this will affect adherence levels. For example, if
the workforce is performing 60% of the LFD tests that are set out by
the testing regime, but then the regime is changed from ‘2 LFDs + 1
PCR’ to ‘Daily LFDs only’, the adherence rates are likely to fall. In this
case, the results in Fig. 6 can be used to estimate how much they would
need to fall for 𝛥IP to go down (for this example, only in the region of
approx 5%–10%, assuming high LFD sensitivity and ‘leaky’ adherence).
Note that, if ‘all-or-nothing’ adherence was used instead, the impact of
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Fig. 5. Relative reduction in IP (𝛥IP) vs. adherence calculated for the (a) Ke et al. based model of RNA viral load and (b) Kissler et al. based model. The circles show the results
when adherence is ‘all-or-nothing’ while squares show the case when it is ‘leaky’. Error bars show the 95% confidence intervals of the mean approximated by 1000 bootstrapping
samples. Additionally, the solid lines show Eq. (13) while the dashed lines show Eq. (14) with parameters given by the final column of Table 3. The dot and line colours correspond
to different testing frequencies, as labelled in the captions. In all cases the reduction was calculated as in Eq. (4) relative to the baseline case with no testing and no isolation at
symptom onset (𝑃isol = 0). Each point was calculated using the same population of 10,000 generated individuals and the ‘high’ sensitivity model of LFDs was used.

Fig. 6. Reduction in population infectious potential expressed as a percentage relative to a baseline case with no testing and symptom isolation with probability 𝑃isol = 1.0. Testing
regimes simulated are from left to right in order of their effectiveness at 100% adherence. (a) and (b) only differ in the model of LFD sensitivity used, as labelled. Each bar is
calculated using 10,000 samples, lighter coloured bars are used to show the extra 𝛥IP gained by increasing LFD adherence from a baseline of 40%. A mean PCR turnaround time
of 45 h is assumed. Error bars indicate 95% confidence intervals of the mean, approximated using 1000 bootstrapping samples.

Fig. 7. The same plot as Fig. 6 except the lighter bars show the effect of reducing PCR turnaround time (TaT) from a baseline of 72 h. A ‘leaky’ adherence of 70% is assumed.
Error bars indicate 95% confidence intervals of the mean, approximated using 1000 bootstrapping samples.
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Table 3
Parameters of the simplified models of 𝛥IP given in Eqs. (13) and (14) fitted to the scatter plot data in Fig. 5.
The parameters were fitted separately for each viral load model and each model of adherence behaviour. The final
column shows the mean parameters from the ‘all-or-nothing’ and ‘leaky’ model fits, which were used to generate the
line data in Fig. 5.
RNA viral load
model

Adherence
behaviour

Fitted parameters Mean of fitted parameters

Z p 𝜏pos (days) Z p 𝜏pos (days)

Ke et al. ‘All-or-nothing’ 1.0 0.562 4.47 1.0 0.558 4.37‘Leaky’ 1.0 0.555 4.26

Kissler et al. ‘All-or-nothing’ 0.958 0.561 4.38 0.945 0.562 4.28‘Leaky’ 0.932 0.563 4.19
Fig. 8. Population mean values ⟨𝐽𝑡⟩ under different testing and isolation regimes. The blue line shows the baseline infectiousness, with no isolation, and the orange line shows
he case with symptomatic isolation with perfect adherence 𝑃isol = 1.0. The testing regimes simulated are labelled in the caption and are all simulated assuming ‘leaky’ adherence
t 70%. (a) Shows the results using the Ke et al. model of RNA viral load and (b) the Kissler et al. model. All curves are calculated using 10,000 samples and the 95% confidence
ntervals on the mean is given by the shaded area (when this is thicker than the line).
on-adherence for the ‘LFD only’ regimes would be even greater than
hown in Fig. 6, due to the arguments outlined in Section 3.2.

Finally, Fig. 8 shows what happens to the population average in-
ectiousness under different testing regimes. As testing frequency is
ncreased, the bulk of infectiousness is pushed earlier in the infection
eriod, as individuals are much more likely to be isolated later in the
eriod. This is an example of how testing and isolation interventions
an not only reduce the reproduction number, but also the generation
ime, as any infections that do occur are more likely to occur earlier in
he infectious period.

To summarise, we find that the effect of LFD and PCR tests are
omparable when PCR tests have a ∼ 2-day turnaround time, in
ine with other studies (Hellewell et al., 2021; Quilty et al., 2021;
arremore et al., 2021). However, differential adherence is likely to
e the key determinant of efficacy when switching a PCR for LFD.
bserved rates of adherence to workplace testing programmes will

ikely depend on numerous factors including how the programme is
mplemented, the measures in place to support self-isolation and the
roader epidemiological context (i.e. prevalence and awareness).

There is uncertainty in the parameters used to make these predic-
ions, so to quantify the impacts of parameters uncertainty on 𝛥IP by

performing a sensitivity analysis, which is presented in Appendix B.
This shows that certain parameters are less important, such as the
coupled timing on peak viral load and symptom onset, or the viral load
growth rate. Unsurprisingly, the 𝛥IP predictions for 2 LFDs per week
is most sensitive to LFD sensitivity parameters 𝜆 and 𝜇𝑙. However, the
daily LFDs case is most sensitive to the infectiousness parameter ℎ. This
is because the sensitivity of individual (independent) tests becomes less
important as they are repeated regularly, and a key determinant of IP
then is the proportion of infectiousness that occurs in the early stages
of infection, before isolation can feasibly be triggered, which increases
with smaller ℎ. Interestingly however, the infectiousness threshold
parameter 𝐾𝑚 does not seem to have as large an effect. In part this
is because it has less uncertainty associated with it, but ℎ also has a
more profound effect because not only does decreasing it increase pre-
symptomatic infectiousness (as does decreasing 𝐾 ), it also reduces the
9

𝑚

relative infectiousness around peak viral load, thereby decreasing the
value of LFD-triggered isolation (which is mostly likely to start near to
peak viral load).

PCR tests for SARS-CoV-2 generally come at a much higher financial
cost than LFD tests because of the associated lab costs, and so are
not feasible for sustained deployment by employers or governments.
In this context, the potential impact of regular LFD testing is clear
and sizeable, so long as policy adherence can be maintained. The two
models of LFD test sensitivity change the results, but qualitatively we
see that if all people perform 2 LFDs per week (either ‘2 LFDs’ regime at
100% adherence or ’3 LFDs’ at ∼ 70% adherence), then the reproduction
number can be halved (at least) and potentially reduced by up to 60%–
70%. This is a sizeable effect and so regular asymptomatic testing with
LFDs is potentially a cost-effective option at reducing transmission in
workplaces.

3.4. Infectious potential as a predictor of transmission in a simple workplace
model

It is shown in Eq. (3) how IP is related to the reproduction num-
ber under some simplifying assumptions about transmission. Fig. 9
demonstrates that this relationship is well approximated even in the
stochastic model outline in Section 2.5.1. It compares the probability
distributions of outbreak sizes (resulting from a single index case) in a
closed workplace of 100 employees under the different LFD only testing
regimes. These are presented next to the same results for a model with
no testing, but with a reduced contact rate 𝑝𝑐 → (1 − 𝛥IP)𝑝𝑐 where 𝛥IP
is the reduction in IP predicted for the corresponding testing regime.
In other words, the baseline 𝑅0 value of the workplace is adjusted to
match what would be expected if a particular testing regime was in
place.

We see that the final outbreak sizes are fairly well predicted, even
though temporal information about infectiousness (shown in Fig. 8)
is not captured by the simpler model. The key difference between
explicit simulations of the testing regimes (in blue) and the approxi-

mated versions (in orange) is the heterogeneity in outcomes. Testing
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Fig. 9. Violin plots showing the distribution of the outbreak size in a workplace of 𝑁 = 100 people given a single index case. Blue violins show the cases where testing is modelled
xplicitly (except in the ‘no testing’ case), while orange violins show cases with no testing but where the contact rate 𝑝𝑐 is reduced by a factor 𝛥IP to mimic the testing regime in

question. Each violin consists of 10,000 simulations and the white dot shows the median of the distribution. A ‘leaky’ adherence to testing at 70% was assumed. The case shown
uses the Ke et al. model of RNA viral load and the ‘high’ sensitivity model of LFD testing. The transmission parameters used were 𝑝𝑐 = 0.296 and 𝛽0 = 0.0265 giving an approximate
𝑅𝑤𝑝 value of 3 (with symptom isolation). Note that the ‘no testing’ case still includes symptomatic isolation with 𝑃isol = 1.0, and so the baseline 𝑅0 is not realised.
Fig. 10. Average number of false positives per new infection in the population at different rates of incidence. (a) 99.5% specificity, similar to that reported in Peto (2021). (b)
99.95% specificity, similar to that reported in Wolf et al. (2021).
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is a random process and leads to greater heterogeneity in infectious
potential, by simply scaling transmission by the population level 𝛥IP,
that heterogeneity is lost.

Nonetheless, these results demonstrate the usefulness of 𝛥IP as a
easure. All of the testing regimes simulated in Fig. 9 reduce the
orkplace reproduction number to less than the critical value for this

tochastic model with 𝑁 = 100 employees, and this is matched by
he predictions given by 𝛥IP. Therefore, given some data or model
egarding the baseline transmission rate in the setting of interest,
alculating 𝛥IP is an efficient way of approximating the impact of
otential testing interventions and predicting how frequent testing will
ave to be to reduce the reproduction number below a threshold value
generally ≳ 1 for finite-population models Ball and Nåsell, 1994).

False-positives are also an important factor when considering the
osts of any repeat testing policies as even tests with relatively high
pecificity performed frequently enough will produce false-positive
esults. Fig. 10 shows a direct calculation of the number of false
ositives per actual new infection in the population for the testing
egimes considered here. The figure demonstrates how a small change
n specificity greatly changes the picture. The case in Fig. 10(b) is
lose to more recent estimates of LFD specificity (Wolf et al., 2021),
uggesting that the rate of false-positives will only become comparable
o the number of new infections at very low incidence. Imposing some
hreshold on this quantity is a measure of how many false positives
and impacts thereof) the policy-maker is willing to accept in search of
ach infected person.
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3.5. Testing to protect vulnerable groups in a two-component work-setting

The simple picture of IP ∝ 𝑅wp becomes less straight-forward as
we consider workplaces of increasing complexity. In this section we
consider the reduced model of a care-home outlined in Section 2.5.2.
We model the case where the index case is a staff member (as generally
residents are more isolated from the wider community Rosello et al.,
2022) and testing policy only applies to staff.

Fig. 11 shows the effect of varying the staff–staff contact rate 𝑎. As
xpected, reducing 𝑎 reduces the reproduction number and therefore
he final outbreak size, demonstrating how social distancing of staff
lone would reduce both staff and resident infections, but have a
arger effect on staff infections (Fig. 11(a)). Regular asymptomatic staff
esting is predicted to have a sizeable effect on resident infections,
educing them by 50%–60% across the whole range of 𝑎. Interestingly,
n the presence of this effective staff testing intervention, staff social
istancing is predicted to have a minimal effect on resident infections.
hen 𝑎 is very small (i.e. staff do not interact) most transmission

hains will have to involve residents to be successful, hence we see
imilar infection rates for both groups. At large 𝑎, staff outbreaks
ecome more common than resident outbreaks (Fig. 11(b)), however
y both reducing staff–staff transmission, and screening residents from
nfectious staff, staff testing has a larger relative effect on infections in
oth groups.

In Fig. 12 we focus on the dependence of resident infections on
he underlying contact structure, by varying 𝑎 and 𝑏 simultaneously
o maintain a constant reproduction number in the care-home (see
q. (18)). Interestingly, under these constraints, when staff undergo
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Fig. 11. Summary of staff and resident infections in the two-component model of care-home contacts while varying the relative staff–staff contact rate 𝑎 and fixing the relative
esident–resident contact rate 𝑏 = 1. The index case for the outbreak was assumed to be a staff member. (a) The mean number of residents and staff infected in simulations given
he staff–staff contact rate 𝑎, with and without staff testing of 2 LFDs per week (as labelled). The shaded area indicates the 95% confidence intervals in the mean. (b) Violin plots
f the resident and staff infections in the same scenarios, divided by the total number of residents and staff respectively, for select values of 𝑎. The parameters used to generate
hese plots were: total number of residents 𝑁𝑟 = 30 and staff 𝑁𝑠 = 50, contact probability 𝑝𝑐 = 0.296, and transmission rate 𝛽0 = 0.0265. Also, the Ke et al. model of RNA viral load
nd the ‘high’ sensitivity model of LFD testing. 10,000 simulations were realised for each parameter set to generate these results and a ‘leaky’ adherence to testing at 70% was
ssumed.
Fig. 12. Summary of resident infections in the two-component model of care-home contacts where the staff–staff and resident–resident contact rates (𝑎 and 𝑏 respectively) are
varied simultaneously as shown in Eq. (18). The index case for the outbreak was assumed to be a staff member. (a) The mean number of residents infected in simulations given
the staff–staff contact rate 𝑎, with (blue) and without (orange) staff testing of 2 LFDs per week. The shaded area indicates the 95% confidence intervals in the mean. (b) Violin
plots of the resident infections in the same scenarios, for select values of 𝑎. All parameters other than 𝑎 and 𝑏 are the same as in Fig. 11.
regular testing (in this case the ‘2 LFDs’ regime), there is a much
stronger (negative) dependence of resident infections on 𝑎 observed.
This is because infectious staff are more likely to isolate due to the
testing and so then resident–resident contacts become the key route
for resident infections. Therefore, with staff testing, higher resident–
resident contact rates (decreasing 𝑎) increases resident cases because
outbreaks can occur in this population relatively unchecked.

Therefore, while 𝛥IP is a useful measure for comparing different
testing regimes, in the more complex setting of a care home an un-
derstanding of the underlying transmission rates between and within
staff and resident populations is required to understand how this affects
the probability of an outbreak. Nonetheless, given knowledge of these
underlying contact/transmission rates, 𝛥IP can still be very useful as a
measure of efficacy. In the case presented here, only staff undergo test-
ing and so only staff→staff and staff→resident transmission are reduced
by a factor of approximately 𝛥IP. This means that while staff testing
will reduce the number of resident infections resulting from a new
staff introduction of SARS-CoV-2 into the workplace, the relationship
between 𝛥IP and resident infections is more complex, limiting the scope
of policy advice that can be given for this setting based on 𝛥IP alone.

4. Discussion

This paper presents a simple viral load-based model of the impact of
asymptomatic testing on transmission of SARS-CoV-2, particularly for
workplace settings, by using data from repeat dual-testing data in the
11
literature. The results here highlight several important aspects for both
modelling testing interventions and making policy decisions regarding
such interventions.

In terms of modelling implications, in Section 3.1, we highlighted
that a combination of population heterogeneity and correlation be-
tween test-positive probability and infectiousness will increase the
overall predicted effect of testing interventions. In short, this is because
if people who are more infectious are also more likely to test positive
then testing interventions become more efficient at reducing transmis-
sion. In Section 3.2 we also showed that model predictions can be
affected by assumptions around adherence behaviour. In an analogy to
models of vaccine effectiveness, we consider two extremes of adherence
behaviour, ‘‘all-or-nothing’’ and ‘‘leaky’’ adherence. Testing is always
more effective in a population with leaky adherence (assuming the
same overall adherence rate) but the difference between the two cases
is only predicted to be significant when testing very frequently (every
1–2 days). Real behaviour is more nuanced than these extremes, and
in a population at any one time will likely consist of a continuum of
rates of adherence. Nonetheless, highlighting these extremes is impor-
tant for giving realistic uncertainty bounds for cases when only an
overall adherence rate is reported, and for understanding the impact
of assumptions that are implicit in models of testing.

As for policy implications, in Section 3.3 we demonstrate that
regular testing can be highly effective at reducing transmission as-
suming that adherence rates are high. This work suggests that regular

testing with good adherence could control outbreaks in workplaces
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with a baseline 𝑅𝑤𝑝 ∼ 3 (Sections 3.4 and 3.5). Estimates of the basic
reproduction number for SARS-CoV-2 are in the range 2–4 for the
original strain Du et al. (2022) and up to 10 for Omicron variants (Liu
nd Rocklöv, 2022). Of course the effective reproduction number in
pecific work-settings is likely to be lower, depending on the frequency
nd duration of contacts and symptom isolation behaviour.

This paper also highlights that the level of adherence with testing
nterventions is crucial to their success and also one of the most difficult
actors to predict in advance. Numerous factors determine how people
ngage with testing and self-isolation policies including the cost of
solation (e.g. direct loss of earnings) (Smith et al., 2021) and perceived
ocial costs of a positive test (e.g. testing positive may require co-
abitants to isolate too) (Michie et al., 2020; Blake et al., 2021). In
tudies of mass asymptomatic testing of care-home staff it was found
hat increasing testing frequency reduced adherence (Tulloch et al.,
021), and also added to the burden of stress felt by a workforce
lready overstretched by the pandemic (Kierkegaard et al., 2021).
herefore the results of modelling studies such as this paper need to be
onsidered in the wider context of their application by decision makers,
nd balanced against all costs, even when these are difficult to quantify.

Comparing our results to other literature, we see that estimates of
he effectiveness of LFD testing vary widely, and are context dependent.
n large populations (e.g. whole nations or regions), regular mass
esting for prolonged periods is likely prohibitively expensive and so
est, trace and isolate (TTI) strategies are more feasible. In studies of
TI, timing and fast turnaround of results is key (Fyles et al., 2021;
rassly et al., 2020), overall efficacy is lower than predicted here
ue to the targeted nature of testing (and the inherent ‘leakiness’ of
racing contacts), however it is much more efficient than mass testing,
articularly when incidence is low. Even without contact tracing, other

targeted’ testing strategies, while not as effective as mass testing,
an reduce incidence significantly (Gharouni et al., 2022) for a lower
ost. Similarly, surveillance testing, of a combination of symptomatic
nd non-symptomatic individuals, is an efficient way to reduce the
mportation of new cases and local outbreaks (Lovell-Read et al., 2021).
ocusing on mass LFD testing, as studied here, we predict a greater
mpact than the model (Hellewell et al., 2021) and more similar to the
odel (although measured differently here) in Ferretti et al. (2021)

s we also use a viral load based model. Models fitted to real data
n secondary schools suggests that twice weekly LFD testing would
ave reduced the school reproduction number by ∼ 40% (if adherence
eached 100%), which is less effective than the 60%–80% (Section 3.3)
stimate provided here. As shown in Table B.2, uncertainty in a number
f parameters could explain this difference. The simplifying assump-
ions in this model are also likely to result in an over-estimate of
ffectiveness. For example, testing behaviour could be correlated with
ontact behaviour (Berrig et al., 2022) and could provide false reassur-
nce to those who are ‘paucisymptomatic’ which would greatly reduce
ts benefit (Skittrall, 2021) for the population as a whole. Similarly,
nfectiousness or testing behaviour may be correlated with symptoms,
hich could also skew these predictions depending on symptomatic iso-

ation behaviours. Therefore, there is a need for integration of models
f behaviour and engagement with testing policies into testing models
o better predict its impact. There are other limitations of the models
sed in this study which need to be highlighted in order to interpret
he results. First, the RNA viral load, testing and infectiousness data
ll pre-dates the emergence of the omicron variant (BA.1 lineages),
hich are characterised by higher reproduction numbers, shorter serial

ntervals, and less severe outcomes (Tanaka et al., 2022; Backer et al.,
022; Del Águila-Mejía et al., 2022). The shorter incubation period
eans repeat asymptomatic testing for omicron is likely to be less

ffective than predicted here, especially for PCR testing with a high
urnaround time. On the other hand, if more people asymptomatically
arry omicron (Garrett et al., 2022), then this will increase testing
mpact. Second, the relationships used to relate RNA viral load, in-
12

ectiousness, and test positive probability are not representative of the C
mechanistic relationships between these quantities. Therefore, the test
sensitivity relationship used will likely marginally overestimate the
impact of very frequent testing (e.g. daily testing) since it does not take
into account possible interdependence of subsequent test results (except
for the correlation with RNA viral load). Other determinants can effect
sensitivity and some studies suggest culture positive probability is a
better indicator of LFD positive-probability than RNA viral load (Kirby
et al., 2022; Pekosz et al., 2021; Pickering et al., 2021; Killingley
et al., 2022). Similarly, while ‘‘infectious virus shed’’ is undoubtedly
a factor in infectiousness, it is not the only determinant (as is assumed
here). Other determinants of infectiousness (independent of contact
rate) such as symptomatology, mode of contact, etc. mean that the
relationship between viral load and infectiousness measured in contact
tracing and household transmission studies can be much less sharp than
used here (e.g. Lee et al., 2021), although as discussed in Ferretti et al.
(2021) both sharp and shallow relationships are plausible depending
on the dataset used and different infectiousness profiles can change the
relative impact of testing and symptomatic isolation (Hart et al., 2021).
The sensitivity analysis presented in Appendix B shows that decreasing
the parameter ℎ (which results in a less sharp relationship between
iral load and infectiousness as well as a broader infectiousness profile,
ee Fig. B.1) significantly decreases the impact of testing. This change
ssentially increases the proportion of infectiousness that occurs before
n individual is likely to test positive and isolate. Therefore, it is impor-
ant to compare multiple different models starting with different sets
f reasonable assumptions to generate predictions that inform policy
nd so models based empirical measures of infectiousness or different
ithin host models will be a useful area of future research. Finally,
e have not carried through the results on testing policies to their

mplications on epidemiological outcomes, such as hospitalisations and
eaths, which would be required to perform a full cost–benefit analysis
f different testing outcomes.

In conclusion, repeat asymptomatic testing with LFDs appears to
e an effective way to control transmission of SARS-CoV-2 in the
orkplace, with the important caveat that high levels of adherence to

esting policy is likely more important than the exact testing regime
mplemented. Specificity of the particular tests being used must be
aken into consideration for these policies, as even tests with high
pecificity can result in the same number of false positives as true
ositives when prevalence is low. The code used for the calculation
f 𝛥IP (Whitfield, 2022b) and the workplace simulations (Whitfield,
022a) is available open-source. As we have shown, the detailed model
f 𝛥IP developed here can be used to simulate both the population-
evel change in effective infectiousness due to a change in testing
olicy, but also the individual-level effect. Direct interpretations of 𝛥IP
hould be made with caution because they only quantify the personal
eduction in transmission risk. While testing can reduce both ingress
nto and transmission within the workplace, repeated ingress and in-
ernal transmission could still result in a high proportion of individuals
ecoming infected (albeit at with a slower growth rate than the no
esting case) even with testing interventions present and functional,
epending on community prevalence and the length of time for which
his prevalence is sustained. Nonetheless, calculations of 𝛥IP have the
otential to be used in existing epidemiological simulations to project
he impact of testing policies without having to simulate the testing an
uarantine explicitly, simply as a scale factor on the individual-level
r population-level infectiousness parameters, depending on the model
eing used.
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Appendix A. Data and simulation methods

A.1. Parameter values

Supplementary Table S1 gives the parameter values used in the
models of viral load, infectiousness and test sensitivity as described in
Sections 2.2.1, 2.2.2, and 2.2.3 derived from sources (Peto, 2021; Ke
et al., 2022; Smith et al., 2020; NHS Test and Trace, 2021; Overton
et al., 2020; Pouwels et al., 2021).

A.2. Calculation of infectious potential

To calculate IP for each individual we discretise equations (3), (5)
and (10). We choose a time-step of 1 day for computational efficiency
and because this is the shortest time between tests that we consider.
In practice, this means we assume that the viral load on day 𝑡 ∈ Z is
given by 𝑉 (𝑡) for the whole day. Since the viral load can actually vary
quickly, and therefore the infectiousness can vary between the start and
end of a day, we account for this by discretise equation (10) as follows

𝐽 (𝑘)
𝑡 = ∫

𝑡+0.5

𝑡−0.5
𝐽𝑘[𝑉𝑘(𝑡)]d𝑡 (A.1)

where the integral is computed analytically using Eqs. (5) and (10).
Thus, the infectiousness on day 𝑡 is given by the average infectiousness
over the 24 hour period. This means that the integral in the calculation
of IP (in Eq. (3)) is discretised as

IP𝑘 ≈ 1
⟨𝜏inf ⟩

𝜏(𝑘)inf
∑

𝑡=0

(

1 − 𝐼 (𝑘)𝑡

)

𝐽 (𝑘)
𝑡 (A.2)

where 𝐼 (𝑘)𝑡 = 0 if individual 𝑘 is at work that day, and 𝐼 (𝑘)𝑡 = 1 if not.
he day 𝑡(𝑘)max is the last day for which an individual has a viral load
xceeding 𝑉cut .

To model isolation, test results and symptom isolation are drawn
ith the relevant probabilities for individual 𝑘 and if any trigger an

solation, the earliest isolation day becomes 𝑡(𝑘)isol. Note that symptomatic
solation is assumed to begin on the nearest whole number day to
he randomly drawn symptom onset time. Similarly, for positive PCRs,
solation begins on the nearest whole number day from the test result
see Fig. A.1 for a summary of the turnaround times used). For positive
FDs, people isolate on the day they perform their test (so it is assumed
o be taken at the start of the day, before any workplace exposure).
nce 𝑡(𝑘)isol has been determined for an individual, we set 𝐼𝑡 = 1 for

≤ 𝑡 < 𝑡 + 𝜏 and re-calculate their IP.
13

isol isol isol
Fig. A.1. Probability distribution of PCR turnaround times used in this paper in hours.
Vertical lines show the median, mean and 95% central interval of this distribution, as
labelled. This distribution was created to imitate data collected by NHS Test-and-Trace
in October 2021, based on weekly PCR testing of staff working in high-risk public
sector jobs. The times quotes are measured from the time the test was taken (at work)
until the result was received (electronically) by the member of staff.

To calculate ⟨𝜏inf ⟩ we generated 5 × 106 trajectories and calculated
the average number of days for which individuals had a viral load
𝑉𝑡 > 𝑉cut , i.e. the period of time they could test positive via PCR. These
values are therefore different for the two viral load models, and are
given in Supplementary Table S1. The code used to perform all of these
calculations is available at Whitfield (2022b).

A.3. Workplace outbreak simulations

We use the same Julia program to simulate both workplace trans-
mission scenarios outlined in Section 2.5 (Whitfield, 2022a). The sim-
ulations proceeds as follows.

At initialisation, the following model features are generated

1. Agents are assigned roles and shift patterns

• All staff have the same role and boolean shift pattern.
Each is drawn a random permutation number from 1–14
to determine when their shift pattern starts.

• In the two-component model, all patients are also assigned
a nominal ‘‘shift pattern’’, however this has value ‘true’ for
every day.

2. If there is a testing regime for staff:

• Staff are selected at random with probability 𝑃not to be
‘non-testers’.

• Testing staff are assigned a boolean testing pattern which
has the same start day as their shift pattern.

• For all days labelled as a testing day, each is changed to a
non-testing day with probability 𝑃miss.

3. An index case is chosen at random and infected. Upon infection,
an agent is assigned the following:

• Viral load and infectiousness trajectories (Eqs. (5) and
(10)).

• Symptom onset time.
• Boolean adherence to symptomatic isolation (true with

probability 𝑝isol).
• If testing: a test positive probability trajectory (Eq. (12) or

Supplementary Table S1).

The main simulation loop is executed for each day of the simulation,
and proceeds as follows:

1. Update infectious state of all individuals moving any to ‘Re-
covered’ status who have reached the end of their infectious

period.
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Table B.1
List of parameters varies in the elementary effects sensitivity analysis. The ‘distribution’ column shows the assumed parameter distribution that the parameters are evenly sampled
across, where U denotes a uniform distribution. The ‘range’ column gives the maximum and minimum values of these distributions used in the sensitivity analysis. The final column
provides some justification for the ranges used. Note that only studies where nasal viral load data was collected in the incubation period was used to inform the ranges for peak
viral load, timing and growth rate parameters.

Parameter Distribution Range Literature values

Median peak VL 𝑉𝑝 U[log(𝑉𝑝)] 106.4–108.8 copies/ml 105.6–107.0 (Ferretti et al., 2021), ∼ 107.5 (Kissler et al., 2021) ∼ 107.6 (Ke et al.,
2022), ∼ 108.0 (Singanayagam et al., 2022), ∼ 108.9 (Killingley et al., 2022).

Median peak VL time 𝑡𝑝 U[𝑡𝑝] 3.0–5.0 days 3.2 (Kissler et al., 2021), 4.0 (Ke et al., 2022), 5 (Killingley et al., 2022)
Median VL inv. growth 1∕𝑟 U(1∕𝑟) 0.25–0.35 days 0.17–0.23 (Ferretti et al., 2021), ∼ 0.25 based on (Killingley et al., 2022),

0.29 (Kissler et al., 2021), 0.3 (Ke et al., 2022)
Median VL inv. decay 1∕𝑑 U(1∕𝑑) 0.41–1.0 days Biased towards longer shedding durations than used here (He et al., 2020;

Singanayagam et al., 2022; Cevik et al., 2021; Killingley et al., 2022)
Median inf. sigmoidal slope ℎ U(ℎ) 0.27–3.0 Lower (not quantified) (Lee et al., 2021; Marc et al., 2021; Marks et al., 2021).

Similar/higher (not quantified) (Goyal et al., 2021; Ferretti et al., 2021)
Inf. scale param. 𝐾𝑚 U[log(𝐾𝑚)] 105.4–107.8 copies/ml Lower (Lee et al., 2021; Marc et al., 2021), Higher (Goyal et al., 2021)
LFD max. sens. 𝜆 U(𝜆) 0.54–0.84 Varying between two sources used and incorporating lower values
LFD sens. cutoff 𝑉 (𝑙)

50 U[log10(𝑉
(𝑙)
50 )] 102.4–105.4 copies/ml Varying between two sources used.

LFD sigmoidal slope 𝑠𝑙 U[log(𝑠𝑙)] 0.67–2.2 Chosen to vary between 2 sources used.
Symp. prob. 𝑃symp U(𝑃symp) 0.20–0.80 Dependent on symptomatic isolation criteria vaccination status.
Mean symp. onset 𝜇𝑠 U(𝜇𝑠) 3.3–6.3 Near to peak viral load (Walsh et al., 2020; Benefield et al., 2020). ∼ 5 (Overton

et al., 2020)
2. Perform testing for all agents testing that day. For all positive
tests generate an isolation time from the current day as ⌊𝜏𝑑+𝑢01⌉
where 𝑢01 ∼ 𝑈 (0, 1) is a number uniformly distributed between
0 and 1, and ⌊.⌉ indicates rounding to the nearest integer (to
simulate tests being performed before or after shifts, at random).

3. Update isolation status for any who are due to isolate on this
day.

4. Identify all agents ‘on shift’ on this day.
5. Generate all workplace contacts of infectious agents:

• For each infectious agent with role 𝑘, generate all contacts
with each job role 𝑚 by selecting from those on shift with
probability 𝐏(𝑐)

𝑘,𝑚.
• Calculate the probability that each contact results in infec-

tion using the expression in Eq. (15).

6. Generate all successful workplace infection events at random
with the assigned probabilities.

7. For any infectees that are subject to more than one successful
infection event, select the recorded infection event at random.

8. Record all infection events, and for every individual infected
change their status to ‘infected’ and their infection time to the
current day. Their susceptibility is set to 0.

9. Increment the day and return to step 1 unless the maximum
number of days has been simulated or if no infectious agents
remain in the simulation.

Appendix B. Sensitivity analysis

B.1. Method

To estimate the sensitivity of the testing model to various parameter
assumptions, we use an ‘‘Elementary Effects’’ approach (Saltelli et al.,
2007) for the main 11 model parameters used for the LFD testing
model. The prior distributions for these parameters have not been
possible to estimate, given that most of them only come from a single
source and only some of them have been the subject of meta-analyses.
Therefore, using the information available we have set plausible ranges
for the parameters we test in Table B.1, and visualised their effects on
model inputs in Fig. B.1.

The Elementary Effects method was performed as follows. The
chosen (uniform) prior for each parameter 𝑘 ∈ {1,… , 11} was split into
𝑝 = 8 equal quantiles. We will denote these quantiles for parameter 𝑘 by
the vector 𝐪𝑘 = [0, 1∕7,… , 1]. Then, 𝑟 = 50 paths were drawn to sample
14

the parameter quantile space. This was performed by first randomly
drawing a starting point 𝐪(0) (i.e. drawing a number from 𝐪𝑘 for each
of the 11 parameters) from the 811 possible starting points in parameter-
value space. Then each path consists of 12 points in this parameter
space by taking steps of size 𝛥𝑞 in each of the 11 parameter dimensions
in a random order. A step size of 𝛥𝑞 = 𝑝∕(2(𝑝− 1)) = 4∕7 was chosen to
give equal probability sampling across the plausible parameter ranges.
The step direction (positive or negative) was determined by the starting
point (since 𝛥𝑞 > 1∕2 and so if 𝑞(0)𝑘 > 0.5 the step for the parameter 𝑘
has to be negative). The path forms the 11 × 12 matrix 𝖰.

To improve the spread of these 𝑟 = 40 paths (i.e. ensure they are
well separated in parameter space) we iteratively replaced paths with
new random paths as follows

1. Calculate the distance 𝑑𝑖𝑗 =
∑12

𝑛1=1
∑12

𝑛2=1

√

∑11
𝑘=1(𝑄

(𝑖)
𝑛1 ,𝑘

−𝑄(𝑗)
𝑛2 ,𝑘

)2
for each pair of paths in the 𝑟 = 40 generated.

2. Calculate the path spread squared 𝐷2
1,…,𝑟 =

∑𝑟
𝑖=1

∑𝑟
𝑗=𝑖+1 𝑑

2
𝑖𝑗 .

3. Generate a new random path 𝖰(𝑟+1).
4. For each path 𝑖 = 1,… , 𝑟, replace the path 𝑖 with the path 𝑟 + 1

and recalculate 𝐷2
1,…,𝑖−1,𝑖+1,…,𝑟+1.

5. If any 𝐷2
1,…,𝑖−1,𝑖+1,…,𝑟+1 > 𝐷2

1,…,𝑟 for 𝑖 ∈ {1,… , 50}, replace the
path 𝑖 corresponding to the maximum value of 𝐷2

1,…,𝑖−1,𝑖+1,…,𝑟+1
with the path 𝑟 + 1 and return to step 3.

We repeated this process 2000 times, at which point paths were being
replaced infrequently (approx. every 50 iterations), suggesting that the
paths were somewhat well spread.

For each step on each of the final 𝑟 = 40 paths, we ran two of
the simulated scenarios considered in Fig. 6, namely the case with 2
LFDs per week and the case with Daily LFDs (with 100% adherence
to testing), using 1000 simulations per scenario. The outcome measure
we use is 𝛥IP which was calculated once again by simulating 10, 000
realisations.

The elementary effects for each parameter 𝑘 and path 𝑖 are then
calculated as follows

EE𝑘(𝑄(𝑖)) =
𝛥IP(𝐐(𝐢)

𝐧+𝟏) − 𝛥IP(𝐐(𝐢)
𝐧 )

𝑄(𝑖)
𝑛+1,𝑘 −𝑄(𝑖)

𝑛,𝑘

, (B.1)

where 𝑛 + 1 is the step in path 𝑖 where the parameter 𝑘 changes
(i.e. 𝑄(𝑖)

𝑛+1,𝑘−𝑄
(𝑖)
𝑛,𝑘 = ±𝛥𝑞). Then the summary statistics of the elementary

effects for each parameter are defined as

𝜇∗
𝑘 = 1

𝑟

𝑟
∑

𝑖=1

|

|

|

EE𝑘(𝑄(𝑖))||
|

(B.2)

𝜇𝑘 = 1
𝑟
∑

EE𝑘(𝑄(𝑖)) (B.3)

𝑟 𝑖=1
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Fig. B.1. Visualisation of the parameter ranges used in the sensitivity analysis. In these figures, parameters are varied independently to show their individual influence across all
f the values they take in the sensitivity analysis. Darker shading indicates higher values and the colour indicates the parameter that has been varied, as labelled. The shaded
rea around the curves shows 95% confidence intervals in the mean, estimated using 1000 bootstrapping samples. (a) Population mean viral load trajectories (Ke et al. model —
lack line) while varying the peak viral load 𝑉𝑝, peak time 𝑡𝑝, inverse growth rate 1∕𝑟, and inverse decay rate 1∕𝑑 parameters. (b) Population mean infectiousness relationships
Ke et al. model — black line) while varying the slope ℎ and threshold viral load 𝐾𝑚 parameters. (c) Test-positive probability relationships (‘high’ and ‘low’ sensitivity models
hown by the solid and dashed black lines respectively) while varying the maximum sensitivity 𝜆, the threshold viral load 𝑉 (𝑙)

50 , and slope 𝑠𝑙 parameters.
Table B.2
Sensitivity of the 𝛥IP measure to various model parameters in the case of testing with 2 LFDs per week
(with 100% adherence) vs. no testing. Results are sorted in descending order of 𝜇∗ value. Values given are
the mean of 10 repeated sensitivity analyses ± the sample standard deviation (estimated by 100 bootstrap
samples).

Parameter 𝛥IP (2 LFDs per week)

𝜇∗ 𝜇 𝜎

LFD max. sens. 𝜆 0.200 ± 0.004 0.200 ± 0.004 0.073 ± 0.003
LFD sens. cutoff 𝑉 (𝑙)

50 0.191 ± 0.004 −0.188 ± 0.005 0.110 ± 0.004
Median peak VL 𝑉𝑝 0.136 ± 0.003 0.121 ± 0.004 0.111 ± 0.004
Median inf. sigmoidal slope ℎ 0.125 ± 0.006 0.113 ± 0.006 0.116 ± 0.006
Symp. prob. 𝑃symp 0.096 ± 0.004 −0.078 ± 0.004 0.091 ± 0.007
Median VL inv. decay 1∕𝑑 0.084 ± 0.005 0.017 ± 0.004 0.108 ± 0.007
Inf. scale param. 𝐾𝑚 0.067 ± 0.004 0.039 ± 0.004 0.082 ± 0.007
LFD sigmoidal slope 𝑠𝑙 0.067 ± 0.001 0.049 ± 0.004 0.069 ± 0.002
Median VL inv. growth 1∕𝑟 0.056 ± 0.002 0.032 ± 0.003 0.073 ± 0.005
Median peak VL time 𝑡𝑝 0.047 ± 0.002 −0.002 ± 0.003 0.069 ± 0.005
Symp. onset 𝜇𝑠 0.044 ± 0.002 −0.005 ± 0.002 0.061 ± 0.003
a
s

𝜎2 = 1
𝑟 − 1

𝑟
∑

𝑖=1
[EE𝑘(𝑄(𝑖)) − 𝜇𝑘]2 (B.4)

Finally, we repeated this process 10 times in total to estimate the
uncertainty in 𝜇∗

𝑘, 𝜇𝑘 and 𝜎𝑘.

B.2. Results

The summary statistics for the sensitivity analysis are shown in
Tables B.2 and B.3. For reference, from Fig. 6, we see that the baseline
values of 𝛥IP for these cases are in the range 0.6–0.9. Therefore, values
of 𝜇∗ < 0.06 correspond to a < 10% change in the result and can be
reated as not having as significant an effect on the predictions. In both
ases this includes the inverse growth rate (1∕𝑟), peak viral load time
15

𝑝, mean symptom onset time 𝜇𝑠, and the infectiousness scale parameter
𝐾𝑚. Note that, we do not change the stipulation within the model that
symptom onset time must occur within 2 days either side of peak viral
load time, which may explain why neither of these parameters have a
large effect (it has been highlighted elsewhere that the relevant timing
of onset of infectiousness and symptoms has important implications for
testing efficacy Hart et al., 2021).

The same 4 parameters also have the largest effect on both cases
simulated, namely the LFD maximum sensitivity 𝜆, LFD sensitivity
threshold 𝑉 (𝑙)

50 , the peak viral load 𝑉𝑝, and the slope parameter for
the sigmoidal relationship between infectiousness and viral load ℎ. In
ll of these cases, the effects appear to essentially always act in the
ame direction (i.e. |𝜇|𝑘 ≈ 𝜇∗

𝑘). The most obvious effects are the LFD
sensitivity parameters, increasing 𝜆 and decreasing 𝑉 (𝑙)

50 improve the
sensitivity of the LFD tests, and so these have a very large impact on

𝛥𝐼𝑃 . The increase in 𝛥IP is a similar effect, it essentially improves
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Table B.3
Sensitivity of the 𝛥IP measure to various model parameters in the case of daily testing with LFDs (with 100%
adherence) vs. no testing. Results are sorted in descending order of 𝜇∗ value. Values given are the mean of
10 repeated sensitivity analyses ± the sample standard deviation (estimated by 100 bootstrap samples).

Parameter 𝛥IP (Daily LFDs)

𝜇∗ 𝜇 𝜎

Median inf. sigmoidal slope ℎ 0.170 ± 0.007 0.169 ± 0.007 0.132 ± 0.006
LFD sens. cutoff 𝑉 (𝑙)

50 0.151 ± 0.003 −0.148 ± 0.003 0.111 ± 0.004
LFD max. sens. 𝜆 0.137 ± 0.003 0.137 ± 0.003 0.076 ± 0.009
Median peak VL 𝑉𝑝 0.112 ± 0.003 0.068 ± 0.005 0.124 ± 0.004
Symp. prob. 𝑃symp 0.089 ± 0.004 −0.079 ± 0.004 0.087 ± 0.009
Median VL inv. decay 1∕𝑑 0.089 ± 0.004 −0.035 ± 0.004 0.118 ± 0.006
Inf. scale param. 𝐾𝑚 0.069 ± 0.002 0.056 ± 0.003 0.080 ± 0.006
LFD sigmoidal slope 𝑠𝑙 0.047 ± 0.002 0.034 ± 0.002 0.054 ± 0.005
Median peak VL time 𝑡𝑝 0.037 ± 0.002 −0.010 ± 0.002 0.053 ± 0.005
Median VL inv. growth 1∕𝑟 0.035 ± 0.001 0.016 ± 0.002 0.047 ± 0.002
Symp. onset 𝜇𝑠 0.032 ± 0.001 0.006 ± 0.002 0.046 ± 0.003
the sensitivity of the LFD tests since these are defined as a function
of viral load. The most interesting effect is perhaps the parameter ℎ. As
hown in Fig. B.1(b) increasing ℎ makes the infectiousness vs. viral load
elationship sharper, in effect this concentrates the infectious period
round the time where testing is most sensitive, and thus increases
IP. In the opposite case, where ℎ decreases, the infectiousness is more
pread out, and people are more likely to be infectious before they test
ositive.

ppendix C. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.jtbi.2022.111335. Table S1 contains the
arameters used to model viral load, infectiousness, and test sensitivity
nd their sources.
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