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Abstract: Mycobacterium abscessus (M. abscessus) is an opportunistic pathogen usually colonizing
abnormal lung airways and is often seen in patients with cystic fibrosis. Currently, there is no vaccine
available for M. abscessus in clinical development. The treatment of M. abscessus-related pulmonary
diseases is peculiar due to intrinsic resistance to several commonly used antibiotics. The development
of either prophylactic or therapeutic interventions for M. abscessus pulmonary infections is hindered
by the absence of an adequate experimental animal model. In this review, we outline the critical
elements related to M. abscessus virulence mechanisms, host–pathogen interactions, and treatment
challenges associated with M. abscessus pulmonary infections. The challenges of effectively combating
this pathogen include developing appropriate preclinical animal models of infection, developing
proper diagnostics, and designing novel strategies for treating drug-resistant M. abscessus.

Keywords: Mycobacterium abscessus; pulmonary infection; host–pathogen interaction; novel
therapeutics; pathogenesis

1. Introduction

Non-tuberculous mycobacteria (NTM) are environmental bacteria that are found ubiq-
uitously in the soil and in natural and potable water, and biofilms. While human exposure
to NTM is widespread, diseases caused by them are relatively uncommon because of the
low pathogenicity of most NTM. However, due to NTM prevalence in natural and human-
made environmental niches in combination with host risk factors, NTM infections are
becoming an emerging global health concern in several countries. Clinical manifestations
range from cutaneous infections to chronic lung disease to disseminated disease. Of the
approximately 200 species of NTM identified, most infections are caused by Mycobacterium
avium (M. avium) complex (MAC, comprised of several species, with the most common
being M. avium, M. intracellulare, and M. chimaera, among several others), M. abscessus com-
plex (with subspecies abscessus, subsp. massiliense, and subsp. bolletii), and M. kansasii [1].
However, depending on the region of the world, some other “less common” NTM species
may be relatively prevalent such as M. malmoense in Northern Europe and M. xenopi in
Canada and certain regions of Europe (central, southern, and the United Kingdom). Lung
disease due to NTM is estimated to be increasing by approximately 8% per year in the
United States in 2.3 million Medicare beneficiaries that were over 65 years of age, and
in whom 58% were female subjects [2]. Other regions of the world have also noted an
increase prevalence of NTM lung disease (NTM-LD). For example, NTM cases also in-
creased from 0.9 to 2.9 per 100,000, respectively, from 1995 to 2006 in England, Wales, and
Northern Ireland [3] and are also increasing in Canada [4]. The two main categories of
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NTM include the rapidly growing mycobacteria and the slowly growing mycobacteria. The
rapid growers include the Mycobacterium chelonae-abscessus complex, including M. abscessus
subsp. abscessus, M. abscessus subsp. bolletti, M. abscessus subsp. massiliense, M. chelonae, and
M. fortuitum [5]. The opportunistic slow growers include the M. avium complex (MAC),
with several different species including M. avium, M. intracellulare subsp. intracellulare, and
subsp. chimaera, among others.

As an opportunistic pathogen, M. abscessus often colonizes the lung airways in patients
with cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), or bronchiecta-
sis [6], whereas humans (and mice) with normal lung airways are typically resistant to
lung infection. Much more remains to be discovered about the host–pathogen interactions
associated with a progressive pulmonary parenchymal infection.

The intrinsic drug resistance in M. abscessus has limited its therapeutic options, with
only a few active antibiotics available that are effective. Severe M. abscessus lung infections
are often treated with a cocktail of oral and parenteral antibiotics as well as surgical lung
resection in those with localized but recalcitrant lung disease.

An evaluation of the in vivo susceptibility and efficacy of these drugs against acute
M. abscessus infection has been performed using both immunocompromised mice and
zebrafish embryos. Imipenem-cilastatin and clarithromycin conferred protection against
M. abscessus as demonstrated by restricted mycobacterial growth, decreased pathologic
manifestations such as brain abscesses, and increased embryo survival [7]. However, antibi-
otic use has been limited due to non-standardized in vivo antibiotic susceptibility testing,
limited cellular/animal testing models, non-uniform susceptibility among different clinical
isolates of M. abscessus, and incongruent clinical response, often resulting in long-term fail-
ure [8]. Worldwide, it is plausible that increased outbreaks and nosocomial transmission of
M. abscessus complex are rising, reflecting an emerging antibiotic resistance crisis that threat-
ens public health [9,10]. Further research is needed to identify optimal in vivo conditions
to test the drug efficacy and optimize therapeutic regimens for M. abscessus infections.

2. Critical Elements of M. abscessus Virulence and Pathogenicity

Classifying M. abscessus as an opportunistic pathogen occurring in immunocom-
promised individuals has recently been challenged based on the observation that the
M. abscessus clade, with numerous virulence factors, may actually fit the criteria of a true
pathogen [11]. The ability of M. abscessus to thrive in various environmental niches [12]
helps explain its ability to also colonize human-made sources and materials, such as potable
water and plumbing systems, as well as medical and surgical instruments/devices resulting
in nosocomial NTM infections [13–15].

The increasing incidence of M. abscessus infections in cystic fibrosis (CF) and non-CF
populations reported globally [16] provides further evidence that M. abscessus possesses
a diverse repertoire of virulence factors that are representative of a successful human
pathogen [11]. M. abscessus pathogenic evolution may be forced by the competing require-
ment to maintain transmission fitness [17]. Perhaps the most prominent finding in these
evolution-based studies are the results that identified strong evolutionary pressure on M.
abscessus genes promoting survival within the macrophage, which seem to come with a
fitness cost in favor of enhanced virulence of M. abscessus isolates.

Due to the ability of M. abscessus to survive and replicate within free-living amoeba,
an essential role of the ESX-4 M. abscessus type VII secretion system (T7SS) was discovered,
further substantiating that a genetic factor may have naturally selected for intracellular
survival of M. abscessus [18]. ESX-4 in M. abscessus is known to block phagosomal acidifi-
cation and disrupt phagosomes, similar to the role of ESX-1 in Mycobacterium tuberculosis
(M. tuberculosis) [18]. In humans and other animal species, the transcriptomic changes of
M. abscessus during intracellular growth in macrophages have demonstrated upregulation
of genes such as heat shock and oxidative stress (e.g., GroEL-ES and hsp) to cope with
intracellular stresses [19]. Those factors are associated with a switch to a slower growth
phenotype, and the utilization of fatty acids as an energy source, which displays the range
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of mechanisms M. abscessus uses to persist in the host. An additional important virulence
factor includes the complex lipids of M. abscessus, including glycopeptidolipids (GPLs),
involved in adherence of M. abscessus. The loss of GPL is associated with the transition from
a smooth (S) to a rough (R) morphotype in NTM [20,21], resulting in increased virulence
in part by forming large extracellular serpentine cording, leading to the prevention of
phagocytosis, increased inflammation, and the characteristic formation of abscesses [22,23].
Interactions between M. abscessus and host myeloid cells revealed the utilization of this
extracellular cording to subvert the host innate immune response [7]. Cord-deficient M.
abscessus mutants exhibit altered mycolic acid composition as well as extremely diminished
phenotypes (i.e., lack of granuloma formation and replication in macrophages) in wild-type
and immunocompromised zebrafish embryos [24]. GPLs also inhibits apoptosis in M.
abscessus-infected macrophages by interacting with the mitochondrial cyclophilin D [25].
During persistent infection, the transition to this unique R colony morphotype is critical
for invading and destroying a variety of cell types, including macrophages in monolayer
culture, as seen in the zebrafish embryo infection model [5]. However, the cellular triggers
for this transition between morphotypes remain unclear.

Another role for GPL is triggering a strong humoral immune response [23]. Anti-GPL
response may explain the conversion to the more virulent R morphotype in order to escape
such response [23,26].

The involvement of complex lipids of M. abscessus in virulence has also shed light
on the importance and role of lipid-specific transporters. For example, the Mycobacterial
membrane protein Large (MmpL) permeases family, including MmpL4a and MmpL4b,
are involved in GPL transport [27]. Another MmpL discovered to be associated with
M. abscessus virulence is MmpL8 [28]. The loss of function (LOS) of MmpL8 results in
reduced glycosyl diacylated nonadecyl diol (GDND) production and decreased intracellular
survival and virulence.

The growing incidence of M. abscessus can also be linked to the global rise in individuals
who are immunocompromised or have pre-existing lung conditions [29]. M. abscessus can
also cause extrapulmonary infections in the skin, soft tissue, bones, joints, lymph nodes,
and internal organs [30]. Like its fellow pathogenic mycobacteria, M. abscessus can form
distinctive granulomas by evading phagosomal defense mechanisms (macrophages and
neutrophils), inducing the production of inflammatory cytokines, such as tumor necrosis
factor (TNF), and recruiting B and T lymphocytes to the site of infection.

3. NTM Diseases
3.1. NTM Lung Disease in Subjects with Known Risk Factors

Non-tuberculous mycobacterial lung disease (NTM-LD) occurs primarily in three
broad groups of patients (Figure 1): (i) Acquired: Those with acquired anatomic lung
or immune abnormalities with no identifiable genetic basis; e.g., localized bronchiectasis
from prior unrelated infections, smoking-related emphysema, pneumoconiosis such as
silicosis [31–33] as well as the use of either inhaled glucocorticoids or tumor necrosis
factor (TNF) antagonists [34], (ii) Genetic/Hereditary: Those with genetic disorders that
predispose to bronchiectasis and/or lung infections; e.g., cystic fibrosis (CF), primary ciliary
dyskinesia, alpha-1-antitrypsin (AAT) deficiency, Williams–Campbell syndrome, Mounier-
Kuhn syndrome, Sjogren’s syndrome, pulmonary alveolar proteinosis (PAP), and common
variable immunodeficiency [35,36], and (iii) No Obvious Predisposing Factors: Those with
no known prior lung or immunological abnormalities [37–39]. The pathophysiologic
mechanisms by which primary immunologic and/or genetic disorders predispose to
isolated NTM-LD are listed in Table 1. One of the acquired risk factors includes chronic
aspiration. Chronic aspiration due to gastroesophageal reflux disease (GERD) has been
reported to be more common in patients with lung disease associated with MAC and other
NTM [40–42]. MAC disease can also occur in patients that aspirate due to other reasons.
Swallowing disorders can also lead to the risk of aspiration (Figure 1) [40].
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Table 1. Major known mechanisms that predispose to NTM-LD.

Mechanism for Predisposition Associated Conditions

Structural lung disease Emphysema, bronchiectasis of any cause, including CF,
alpha-1-antitrypsin deficiency (AAT), and Sjogren’s syndrome

Primary or ciliary dysfunction Primary ciliary dyskinesia, bronchiectasis of any cause, MST1R
dysfunction (?)

Thickened secretions CF

Macrophage dysfunction Alpha-1-antitrypsin (AAT) deficiency or anomaly, silica exposure,
pulmonary alveolar proteinosis

Deficiency of specific immune molecules Anti-TNF therapy, common variable immunodeficiency, CF (human
beta-defensin?), inhaled glucocorticoid

Cartilage deficiency in airways Williams–Campbell syndrome

Elastin deficiency in airways Mounier-Kuhn syndrome

MST1R = macrophage-stimulating 1 receptor.

Another acquired risk factor listed in Figure 1 is calcified chest adenopathy. In a
retrospective study including 79 patients with pulmonary MAC disease, calcified chest
adenopathy was present in one-third of the patients, and furthermore, those with calcified
lymphadenopathy in the chest lived in a Histoplasma capsulatum endemic area, whereas
those living outside this endemic region had no adenopathy [43]. This led to a hypothesis
that fungal infection could predispose the lungs of some patients to MAC infection by
either airway distortion or parenchymal damage [43].

Smoking is known to be a risk factor for TB, which is not surprising based on the
damaging effects that smoking has on the lungs and the immune system (for a recent
review, see Quan et al. [44]). Smoking-related emphysema is an acquired risk factor for
NTM lung disease as well (Figure 1). PAP as a risk factor is supported by the finding that
mice with disruption of the granulocyte-monocyte colony stimulating factor-1 are more
vulnerable to M. abscessus [45]. We discuss below in greater detail two conditions well
established to be associated with NTM-LD: CF and AAT deficiency.

3.1.1. CFTR Anomalies and Susceptibility to NTM

CF is an autosomal recessive disorder caused by mutation of the CYSTIC FIBROSIS
TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) gene. The prevalence of a
CFTR gene mutation in the Caucasian population is estimated to be 1 in 20 individuals,
resulting in occurrences of CF in 1 in 2000–2500 live births [52]. CF patients are particularly
susceptible to recurrent and chronic bacterial and mycotic infections, including those due
to Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex, and NTM,
among others [53–55]. The mechanisms for susceptibility in CF patients are complicated by
thickened mucus and inability to clear bacteria, secondary ciliary dysfunction, and reduced
human beta-defensin-2 function and level [56]. Macrophage dysfunction due to the CFTR
mutation has also been demonstrated and resulting in impaired phagocytosis and reduced
efferocytosis (with reduced clearance of apoptotic neutrophils), and excessive production
of inflammatory mediators directed towards microbial stimuli [34,57]. Although the topic
of whether the M1 (“pro-inflammatory”) or the M2 (“anti-inflammatory”) macrophage phe-
notype predominates in the CF lung is controversial, there is evidence that CF macrophages
are defective in switching between these two phenotypes [58].

Heterozygous carriers of a single CFTR mutation may also be more susceptible to NTM
lung infection, particularly with respect to bronchiectasis [59,60]. It is not known, however,
whether the one defective CFTR gene increases the susceptibility to NTM, bronchiectasis,
or both.
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3.1.2. AAT Anomalies and Susceptibility to NTM

AAT deficiency predisposes to NTM-LD by two main mechanisms. One is that AAT
deficiency is a risk factor for both chronic obstructive pulmonary disease and bronchiectasis,
well-known underlying lung conditions for subsequent NTM-LD [34,56,57,61].

Another mechanism is that AAT itself has host-defense properties against NTM
through induction of autophagy in macrophages [62]. This finding is supported epidemio-
logically by studies showing that the presence of heterozygous AAT anomalies—which
are not known to cause bronchiectasis on their own—were more common in patients with
NTM-LD compared to the general population in the U.S. [63,64]. Thus, susceptibility of
AAT-deficient individuals to NTM-LD may occur because of impaired innate immunity as
well as alterations in lung architecture (bronchiectasis and COPD).

3.2. NTM-LD in Patients without a Known Underlying Cause

In individuals with NTM-LD without any known predisposing conditions, the bronchiec-
tasis, bronchiolitis, and the sequelae of atelectasis and cavities are presumed to be caused
by the NTM infection and chronic airway inflammation. It has been observed that a sig-
nificant number of NTM-LD subjects without an identifiable predisposing factor possess
a life-long slender body habitus (Figure 1) [38,46,65–67] and reduced visceral fat with the
caveat that weight loss may also occur post-NTM infection [68]. Low body weight itself has
been hypothesized as a risk factor for NTM-LD and tuberculosis [35,69–71]. Furthermore,
low BMI (<18.5 kg/m2) is associated with a greater number of diseased lung segments and
NTM-LD-specific mortality [69,72]. Interestingly, NTM-LD has been reported in younger
women (ages 20–53 years old) diagnosed with anorexia nervosa [73–76]. In general, since
NTM-LD is much less common in younger individuals than in the elderly, this lends credence
to the possibility that a thin body habitus is a risk factor for NTM-LD. Elderly Caucasian, post-
menopausal females with slender body morphotypes are disproportionately predisposed to
NTM-LD compared to males [47,54]. Hormonal changes and immune-senescence (changes in
the immune system as a result of aging) likely contribute to risk factors for NTM-LD, in which
an accumulation of damaged DNA and other factors are thought to result in a low-grade
inflammatory phenotype termed ‘inflammaging’, which can alter immune function [47,49].

A possible mechanism by which slender individuals with low body fat content may
be predisposed to NTM infections is the relative deficiency of leptin, a satiety hormone [77].
Leptin has a number of immunomodulatory functions that can potentially enhance host
immunity against NTM, including the differentiation of uncommitted T0 cells toward the
TH1 interferon-gamma (IFNγ)-producing phenotype [77]. Indeed, mice deficient in leptin
are more susceptible to experimental M. abscessus lung infection [65,77,78]. Reduced levels
of leptin in the sera of pulmonary NTM patients have also been observed [79].

Some NTM-LD patients have a greater than expected preponderance of abnormalities
within the thoracic cage region, such as pectus excavatum and scoliosis [46,65–67,75,79,80].
We and others have postulated that thoracic cage abnormalities may be a marker for an
underlying and yet-to-be identified genetic predisposition, perhaps related to a minor
variant of Marfan syndrome (due to mutations of fibrillin-1) or ciliary dysfunction (due
to mutations of different genes that encode for ciliary proteins) [65,66], [75,80–82]. Pectus
excavatum and scoliosis have also been described in other connective tissue disorders,
such as Loeys–Dietz syndrome (LDS, due to gain-of-function mutation of transforming
growth factor-beta receptors 1/2—TGFβR1/2) and Shprintzen–Goldberg Syndrome (SGS,
due to mutation of the Sloan Kettering Institute (SKI) protein, a downstream inhibitor of
TGFβ signaling) [83]. While these disorders are due to monogenic mutations of different
genes, each result in increased signaling of TGFβ, a cytokine known to predispose to NTM
infection [84,85].

In light of this, the whole blood of NTM patients was found to produce more TGFβ,
and lower levels of IFNγ upon ex vivo stimulation with various Toll-like receptor agonists
or with M. intracellulare as compared to similarly stimulated whole blood from uninfected
controls [65]. Daniels et al. analyzed for the presence of dural ectasia—an enlarged dural
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sac seen in MFS, LDS, and SGS—in patients with idiopathic bronchiectasis, CF subjects,
MFS, and controls and found that the L1–L5 dural sac diameter was significantly greater
in patients with idiopathic bronchiectasis as compared to controls and to CF subjects, sug-
gesting the possibility of an underlying connective tissue disorder in those with idiopathic
bronchiectasis [82]. They also found a strong correlation between dural sac size and NTM-
LD, as well as dural sac size and long fingers [82]. NTM-LD was also reported in a patient
with congenital contractural arachnodactyly, a genetic disorder due to FIBRILLIN-2 gene
mutation and which shares many clinical features with MFS [86].

Fowler et al. described reduced ciliary beat frequency in the nasal epithelium and
reduced nasal nitric oxide (NO) in NTM-LD patients compared to controls; the ciliary beat
frequency was increased by NO donors or compounds that increased the concentration
of cyclic guanosine monophosphate, a downstream mediator of NO [87]. Subsequent
whole exome sequencing of NTM-LD subjects showed, compared to control data from the
1000G Project, increased variants in immune, CFTR, ciliary, and/or connective tissue genes,
implicating a multigenic disorder for some patients with NTM-LD [81].

Because the variants of immune genes were significantly more common in NTM-LD
patients than in unaffected family members, immune gene variants may be the discrimi-
nating genetic factor for the development of NTM-LD [81]. Furthermore, the number of
CFTR variants per person was actually greater in both control groups (family members
not infected with NTM and in the 1000G Project cohort) than in NTM-LD subjects [81]—in
contrast to the other three non-CFTR gene categories in which the number of variants was
least in the control 1000G Project cohort—it favors the possibility that the risk for NTM-LD
in CF patients is perhaps due to the presence of bronchiectasis and not to the CFTR mu-
tation per se. Becker and colleagues performed whole exome sequencing on 11 NTM-LD
subjects with slender body habitus, pectus excavatum, and scoliosis and found one with
mutation of the Fibrillin-1 gene and four (two being sisters) with heterozygous mutations
of the Macrophage-Stimulating 1 Receptor (MST1R) gene and in none of 29 NTM-LD
patients without pectus excavatum or scoliosis [88]. While these investigators showed that
MST1R may function to increase IFNγ production, MST1R was previously reported to be
a tyrosine kinase receptor found on the apical epithelial surfaces of fallopian tubes and
airways and upon binding to its ligand (macrophage stimulating protein), enhanced ciliary
beat frequency [89,90].

3.3. Disseminated NTM Disease

Patients with extrapulmonary visceral organ or disseminated NTM disease are almost always
frankly immunocompromised, such as those receiving tumor necrosis factor (TNF) antagonist ther-
apy, organ transplantation, and having untreated AIDS (Figures 1 and 2) [91–93]. Figure 2 includes
several host-defense pathways used against M. abscessus in addition to mechanisms that can inter-
fere with host-defense and lead to NTM disease. The use of immunosuppressive drugs, such as
inhaled corticosteroids, can increase the risk of NTM disease [50,51] (Figures 1 and 2). Mutations
in GATA2 (guanine-adenine-thymine-adenine-2), a transcription factor, can lead to monocytope-
nia and mycobacterial (MAC) infection (called monoMAC syndrome), causing disseminated
NTM with decreases in monocytes, DC’s, B cells and NK cells [94,95] (Figure 2). Individuals
with other certain rare inherited disorders—particularly those with defects of the interleukin
12 (IL-12)/interferon-gamma (IFNγ) cytokine axis, and that fall under the rubric of Mendelian
Susceptibility to Mycobacterial Diseases (MSMD)—are predisposed to an extrapulmonary vis-
ceral organ or disseminated NTM infections (Figure 2) [96–108]. Several of the MSMD-causing
mutations have been identified in seven different autosomal genes and are described in detail in
the review by Bustamante et al. [100]. Some of the proteins encoded by these genes are included
in Figure 2 and represent the importance of each in the host’s defense against mycobacterial infec-
tions, including the IL-12 receptors (encoded by IL12 B (p40 subunit) and IL12B1 (b1 chain of the
IL-12 receptor), IFNγ receptors (encoded by IFNGR1 and IFNGR2), transcriptional factor induced
by IFNγ (IRF8), and signal transducer and activator of transcription 1 (STAT1); IFNγ-inducible
factor (ISG15) (one of the seven autosomal genes with MSMD-causing mutations, not shown in
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Figure 2). MSMD-causing mutations in the X-linked gene include the nuclear factor-kappa B
(NF-kB) essential modulator (NEMO), shown in Figure 2. The major component of the NADPH
oxidase complex (CYBB) is another X-linked gene with MSMD-causing mutations [100]. Suscepti-
bility to disseminated NTM in such individuals is corroborated experimentally by the increased
vulnerability to M. abscessus in the IFNγ-knockout mice (Ordway et al., 2008). Individuals with
acquired autoantibodies to IFNγ have more recently been described to be also more vulnerable to
extrapulmonary visceral organ and disseminated NTM disease [109]. TNF-α inhibitors (including
anti-TNF-α monoclonal antibodies and soluble TNF receptor fusion proteins (TNFR) used to
suppress the immune response in patients with chronic inflammatory diseases, such as rheuma-
toid arthritis (RA), have been reported to increase the rate of mycobacterial disease, including
NTM, compared to untreated patients and the general population [93,110,111]. The mechanism
of anti-TNF monoclonal antibodies and soluble TNFR in host-defense impairment have been
described elsewhere [112].

Microorganisms 2022, 10, x FOR PEER REVIEW 9 of 26 
 

 

 
Figure 2. Genetic and acquired causes of disseminated NTM disease. 

Many mycobacteria, including M. abscessus and fungi, are recognized by Toll-like 
receptor 2 (TLR2) and the beta-glucan receptor Dectin-1 [113]. Dectin-1 signaling leads to 
caspase-1 and IL-1β activation through the nucleotide-binding domain (NOD)-like 
receptor protein 3 (NLRP3)/ASC inflammasome, leading to host defense responses 
against M. abscessus [114]. Both Dectin-1 and TLR2 are necessary for M. abscessus-induced 
expression of innate antimicrobial responses, including interleukin-1 beta (IL-1β) and LL-
37 [115]. TLR2-deficient mice are extremely susceptible to rough variants of M. abscessus 
due to failure of TH1-induced immunity [116]. Interleukin-8 (IL-8, also called CXCL8) is a 
chemokine-induced by infection and produced by macrophages and other cells and is a 
neutrophil chemotactic factor. Early neutrophil responses may help control infection with 
NTM, as shown with M. fortuitum [117]. These “experiments of nature” provide great 
insights into which elements of the immune system provide host-induced protection 
against mycobacteria.  

4. Treatment against M. abscessus Related Infections 
4.1. Antibiotics Used for Treating M. abscessus 

Despite its low virulence, treatment of M. abscessus is particularly difficult because of 
its intrinsic resistance to several commonly used antibiotics (Figure 3). Recommendations 
from The American Thoracic Society/Infectious Diseases Society of America include 
macrolides (typically Azithromycin favored over Clarithromycin) [118], Aminoglycosides 
(Amikacin), Carbapenems (Imipenem), and Cephamycins (Cefoxitin) [118–120]. 

Figure 2. Genetic and acquired causes of disseminated NTM disease.

Many mycobacteria, including M. abscessus and fungi, are recognized by Toll-like
receptor 2 (TLR2) and the beta-glucan receptor Dectin-1 [113]. Dectin-1 signaling leads
to caspase-1 and IL-1β activation through the nucleotide-binding domain (NOD)-like re-
ceptor protein 3 (NLRP3)/ASC inflammasome, leading to host defense responses against
M. abscessus [114]. Both Dectin-1 and TLR2 are necessary for M. abscessus-induced ex-
pression of innate antimicrobial responses, including interleukin-1 beta (IL-1β) and LL-
37 [115]. TLR2-deficient mice are extremely susceptible to rough variants of M. abscessus
due to failure of TH1-induced immunity [116]. Interleukin-8 (IL-8, also called CXCL8) is
a chemokine-induced by infection and produced by macrophages and other cells and is
a neutrophil chemotactic factor. Early neutrophil responses may help control infection
with NTM, as shown with M. fortuitum [117]. These “experiments of nature” provide
great insights into which elements of the immune system provide host-induced protection
against mycobacteria.
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4. Treatment against M. abscessus Related Infections
4.1. Antibiotics Used for Treating M. abscessus

Despite its low virulence, treatment of M. abscessus is particularly difficult because of its
intrinsic resistance to several commonly used antibiotics (Figure 3). Recommendations from
The American Thoracic Society/Infectious Diseases Society of America include macrolides
(typically Azithromycin favored over Clarithromycin) [118], Aminoglycosides (Amikacin),
Carbapenems (Imipenem), and Cephamycins (Cefoxitin) [118–120].
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Figure 3. A schematic representation of M. abscessus current treatment protocol.

Macrolides target bacterial 23S rRNA, inhibiting bacterial protein synthesis. M. abscessus
possess two major forms of macrolide resistance, and both involve the bacterial 23S rRNA
by different mechanisms. The first is “genetic” macrolide resistance and is due to single
point mutation in position 2058 or 2059 of the bacterial 23S rRNA gene (also known as the
rrl gene) [121]. The second form is known as “inducible” macrolide resistance, wherein a
functional ERM41 gene encodes a methylase that occupies a site on 23S rRNA preventing
macrolides from binding [122,123] (Figure 4). Among the M. abscessus organisms, the majority
of subsp. abscessus and subsp. bolletii strains possess a functional ERM41 gene, which confers
an inducible resistance to macrolides.
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Figure 4. Mechanism of inducible resistance in M. abscessus. In M. abscessus sensu stricto and M.
bolletii, macrolide binds to 23S rRNA and inhibits bacterial protein synthesis. With induction of
methylase production by clarithromycin, the methylase prevents the binding of macrolide, creating an
inducible resistance. Since clarithromycin induction of the ERM41 gene to produce methylase is much
greater than by azithromycin, clarithromycin is much more likely to induce macrolide resistance
than azithromycin.

Conversely, a minority (15–20%) of subsp. abscessus isolates possess a T28C mutation
of the ERM41 gene, resulting in a non-functional methylase with preserved macrolide
susceptibility. Similarly, all subsp. massiliense strains contain a partially deleted, non-
functional ERM41 gene and thus also have preserved macrolide susceptibility. Thus, in
the absence of rrl gene mutation, NTM-LD patients infected with M. abscessus with a non-
functional ERM41 gene and hence preserved macrolide susceptibility (a minority of subsp.
abscessus strains and all strains of subsp. massiliense) have better clinical outcomes than
those infected with M. abscessus isolates with a functional ERM41 gene and consequently
inducible macrolide resistance (most subsp. abscessus and essentially all of subsp. bolletii).

The enzymatic modification of antibiotics by N-acetyltransferases confers aminogly-
coside resistance. These specific enzymes add chemical groups to the 2′ amino groups of
aminoglycosides, thus blocking the antibiotic from binding to its target protein [124]. In
recent years, poor outcomes in patients infected with susceptible strains (approximately
90% of M. abscessus clinical isolates) stem from the development of resistance to amikacin, a
key drug. In particular, patients with amikacin-resistant M. abscessus-LD (frequently involv-
ing rrs mutations) have shown unsatisfactory treatment outcomes, which is problematic
given amikacin’s important role in long-term treatment [125]. M. abscessus can acquire
fluoroquinolone resistance through cumulative mutations in a highly conserved region in
the quinolone resistance-determining region (QRDR) of a DNA gyrase gene [126].

Unique structural and pathological traits contribute to drug resistance in clinical
isolates of M. abscessus, including a capacity to form biofilms that prevents drug penetra-
tion [127]. A major pathogenic trait is an indolent progression; the rapid, silent growth can
go undetected, eventually causing a severe deterioration in the human host [128]. Patients
with chronic structural lung diseases such as CF and emphysema are at exceptionally high
risk of pulmonary disease [129]. Early signs include sudden, progressive lung dysfunction,
often accompanied by caseous lesions and alveolar granulomas [130,131]. While technically
serving as a host defense mechanism, the granuloma also enables latent NTM infection
and drug evasion by blocking drug penetration. Thus, early diagnosis and detection are
vital but limited by poor understanding of its pathogenesis and the inability to adequately
differentiate its symptoms from TB. Given the lack of standardized diagnostic criteria,
misdiagnosis and treatment with anti-Mycobacterium tuberculosis medications are frequent
but inappropriate considering the distinct treatment needs [126].

4.2. Strategies for Treating Drug-Resistant M. abscessus

Worldwide, outbreaks and nosocomial transmission of M. abscessus complex are rising,
reflecting an emerging drug resistance crisis and a critical public health problem [9]. In
recent years, poor treatment outcomes in patients infected with susceptible strains, which
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comprise approximately 90% of M. abscessus clinical isolates, have been spurred by the
development of resistance to amikacin, a key drug against this pathogen. Given the current
suboptimal outcome in patients with M. abscessus infection, more effective antimicrobials
are needed not only for killing efficacy but also for a shorter time of treatment.

Currently, macrolides (Clarithromycin or Azithromycin) are the most used antibiotics
against M. abscessus. Thus, it is not surprising whether a M. abscessus isolate is susceptible
or resistant to the macrolides is a key decision point in both the initial choice of antibiotic
regimen and clinical outcome (Figure 3). While the absence or presence of macrolide
resistance is also a key decision point for treatment and outcome of MAC-LD, the option
for oral antibiotics for M. abscessus is much more limited than for MAC.

Several antibiotic alternatives to treat multi-drug resistant (MDR) M. abscessus include
natural plant-derived products with antimicrobial effects, antimicrobial nanoparticles,
antimicrobial peptides, antibiotic combinations, structurally modified antibiotics, pathogen-
specific monoclonal antibodies, drug-induced changes in small regulatory RNAs (sRNAs),
and therapeutic bacteriophages [132,133]. Of these, the use of pathogen-specific bacterio-
phages, known as phage therapy (PT), has shown exciting results. Abundant in nature and
prolific, phages can either actively replicate (the lytic cycle) or lie dormant (the lysogenic
cycle) in their hosts. Genetic engineering can be used to enhance the killing properties
and host range of phages [132]. The first successful use of PT to treat a severe M. abscessus
subsp. massiliense infection occurred in 2019 in a 15-year-old lung-transplant patient [134].
No adverse effects were observed following a cocktail regimen with three phages (one
natural, two engineered). However, limitations to PT include a lack of lytic phages with an
extensive host range and a possibility of emerging phage resistance. Bacteriophage cocktail
therapy and CRISPR-Cas genomic technology are being strongly considered to increase
mycobacteriophages’ host range and therapeutic potential against MDR M. abscessus.

Recently, compassionate use with phage therapy was included in a pilot study in
patients with various mycobacterial infections, untreatable with antibiotics, which showed
positive clinical responses in 11 out of 20 patients [135]. Favorable or partial responses
were observed in two patients with M. abscessus subsp. massiliense, six patients with M.
abscessus subsp. abscessus, one patient with M. chelonae, one patient with Mav complex,
and one patient with disseminated BCG [135]. The development of phage treatments could
provide a crucial tool for physicians when no other options are available.

5. Novel Therapeutic Strategies

Treatment of M. abscessus infection is becoming more challenging with increased
resistance to many of the current drugs and the lack of a sufficient pipeline of new
drug candidates.

There are several novel drug approaches, however, that are currently being investigated.
Guo et al. have recently shown in vitro efficacy of Cotezolid (MRX-I), (S)-5-([isoxazol-3-
ylamino]methyl)-3-(2,3,5-trifluoro-4-[4-oxo-3,4-dihydropyridin-1(2H)-yl]phenyl)oxazolidin-2-
one, which is an oxazolidinone, against M. abscessus [136]. Linezolid, also an oxazolidinone,
is recommended for use against M. abscessus; however, Cotezolid may have an advantage
by inducing fewer side effects; oral MRX-I administration was found to be well tolerated in
humans in a Phase 1 study where adverse events were shown to be mild to moderate [137]. In
the study by Guo et al., both Cotezolid (MRX-I) and linezolid are effective against M. abscessus
but not M. avium or M. intracellulare [136]. Furthermore, Contezolid (MRX-I) was compatible
with other M. abscessus drugs, including Azithromycin, Clarithromycin, Cefoxitin, Imipenum,
Tigecycline, Bedaquiline, Amikacin, and Amoxifloxacin [136].

An analog of Linezolid, called Sutezolid, exhibits lower in vitro minimal inhibitory
concentration (MIC) and minimal bactericidal concentration (MBC) against M. abscessus
compared to Linezolid (Dae Hun Kim, AAC, 2021, PMID:33903101) and may have fewer
in vivo toxicities than linezolid as shown in studies testing the use of these drugs in healthy
volunteers for intended use against Mycobacterium tuberculosis [138,139].
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Ganapathy et al. have recently shown that a novel mycobacterial DNA gyrase in-
hibitor (MGI), an advanced M. tb drug candidate, EC/11716, has in vitro bactericidal
activity against both Mav and M. abscessus and importantly has activity against M. absces-
sus biofilms [140]. EC/11716 was also shown to have in vivo efficacy in a preclinical M.
abscessus NOD SCID mouse model [140]

Another promising drug candidate for use against M. abscessus is T405, which is a
novel b-lactam of the penem subclass and was recently shown to have in vitro synergy in
combination with other antibiotics, including imipenem cefditoren or avibactam [141]. Fur-
thermore, T405 combined with probenecid exhibited bactericidal efficacy in the C3HeB/FeJ
in vivo mouse model against the well-characterized ATCC29977 reference strain (Rimal
B. et al., AAC, 2022, PMID:35638855). Beta-lactam antibiotics are known to interfere with
bacterial cell wall peptidoglycan biosynthesis (for the mechanism of activity of b-lactams,
see a recent review by Turner et al.) [142].

Diazabicyclooctanes (DBOs), including Durlobactam (DUR), are included within a
class of novel b-lactamase inhibitors that inhibit peptidoglycan transpeptidases which,
when combined with dual b-lactams, could potentially improve clinical efficacy and reduce
the toxicity of Mab treatment regimens [143,144].

Unlike M. tuberculosis, there is currently no vaccine available for M. abscessus, and
there are no vaccines in clinical development. Therapeutic vaccination as an adjunct to
drug treatment against M. abscessus and other NTM could shorten drug treatment regimens
and decrease the side effects associated with the current repertoire of available drugs used
against NTM.

Recently, two relatively new additions to the anti-NTM drugs, developed originally
to treat tuberculosis or leprosy, were used against M. abscessus-PD; Bedaquiline (BDQ)
and Clofazimine (CFZ), respectively [145,146]. BDQ, an ATPase inhibitor, is the first drug
approved to treat MDR-TB by the FDA in 40 years [147]. In a recent study by Sarathy et al.,
3,5-dialkoxypyridine analogues of BDQ showed promising in vitro and in vivo activities
against M. abscessus, similar to its BDQ parent [148]. Given that analogues of BDQ are less
lipophilic, have higher clearance, and display lower cardiotoxicity, they are promising drug
candidates to be co-administered with currently used drugs. On the other hand, CFZ is an
approved drug for leprosy being repurposed for TB treatment [149]. CFZ is considered to
be one of few candidates that are being tested for monotherapy against M. abscessus-PD [5].
In a recent trial, after one year of CFZ-containing regimes, treatment of M. abscessus-PD
patients showed conversion to culture negative (CCN) [150]. Both BDQ and CFZ drugs
have shown efficacy against M. abscessus alone and in combination [145,146].

Notably, Amikacin is known to induce systematic toxicity, including hearing loss, loss
of balance, or both, especially when given by the intravenous route [151]. To reduce these
adverse effects and to increase drug concentrations in endobronchial tissues, amikacin
by aerosolization has been increasingly used [152]. In previous trials, inhaled amikacin
demonstrated increased efficacy in terms of increased chance of CCN [152,153]. Amikacin
liposome inhalation suspension (ALIS), in which amikacin is encapsulated in liposomes
and delivered into the lungs via aerosol nebulization, has shown increased efficacy against
M. avium refractory lung disease [154]. Compared with intravenous administration of
non-liposomal amikacin, ALIS increased amikacin concentration by 42-fold in lung tissues,
69-fold in airways and 274-fold in macrophages [155]. ALIS is currently in a phase II trial
for treating M. abscessus-LD [5]. Recently, a compassionate use study using ALIS in patients
with M. abscessus pulmonary disease previously treated with various treatment regimens
was described. This study included 41 patients, 61% of which had a ‘good outcome’ defined
as outcomes cure, microbiologic cure, and clinical cure [156].

Another novel approach for treating M. abscessus-PD is using the apoptotic bodies
to target host immune responses targeted to the pathogen, rather than directly target-
ing the pathogen. The principal of using apoptotic bodies is to improve phagocytosis,
phagolysosomal maturation, and intracellular mycobacterial killing by sending in a second
lipid messenger (bioactive lipids) known for promoting phagosomal maturation through
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recognition of specific lipid-binding domains [157,158]. Apoptotic bioactive-lipids (ABL)
loaded with different bioactive lipids have been evaluated in case of bacterial interference
of phagolysosome biogenesis and genetically impaired phagolysosome-dependent antimi-
crobial response, i.e., CF [159]. In both conditions, ABLs demonstrated a significant increase
in intraphagosomal acidification and induction of reactive oxygen species (ROS) produc-
tion and ultimately promoted intracellular mycobacterial killing in macrophages [159].
Recently, in a study by Poerio et al., ABLs loaded with phosphatidylinositol 5-phosphate
(ABL/PI5P), alone or in combination with amikacin, have been evaluated for the treatment
of M. abscessus-PD [160]. The combination treatment of ABL/PI5P and amikacin showed a
significant reduction of pulmonary mycobacterial burden.

BCG, the only approved vaccine used for the prevention of serious forms of TB in
children and adolescents, showed cross-protective immunity against M. avium and M.
abscessus-related infection [161]. This fact was confirmed through the epidemiological
evidence suggesting that BCG vaccination decreases the risk of developing NTM-PD [162].
It was suggested that BCG vaccination can be used as either a therapeutic or prophylac-
tic vaccine against M. abscessus-PD [161,163]. BCG, as a live-attenuated vaccine, induces
T-cell expansion important for intracellular pathogens like M. abscessus [161,164]. How-
ever, BCG is contraindicated for immune-compromised individuals such as HIV/AIDS
patients [165,166]. Additionally, BCG does not reduce M. avium infection in the mice model
in case of prior exposure to NTM [167,168]. The use of BCG as an intervention to prevent
or treat M. abscessus-PD is hindered by the complex mechanism of NTM exposure.

Due to the complexities and difficulties in the treatment of M. abscessus infection,
there is an urgent need for a therapeutic vaccine to overcome the lengthy treatment time
and required toxic concentrations of antibiotics [169]. A therapeutic vaccine could also
help with the acquired drug resistance to antibiotics used with M. abscessus infections.
The design of a therapeutic vaccine can be acquired from the knowledge gained in the
M. tb field. The most prominent example is the use of the Phase 2a clinical trial ID93 +
glucopyranosyl lipid adjuvant (GLA) formulated in an oil-in-water stable nanoemulsion
(SE) as a therapeutic vaccine against M. tb [170–172]. This vaccine design highlights the
importance of selecting both mycobacterial antigens and a potent immune-stimulating
adjuvant. The use of protein/adjuvant immunotherapy combined with a drug treatment
strategy is commonly used for other vaccine studies for infectious diseases [170,173–177].
However, the lack of vaccine development for M. abscessus infection (either prophylactic or
therapeutic) calls for the need to invest in these strategies to overcome the complexities
involved with the treatment of M. abscessus infections.

6. Preclinical Models for M. abscessus

The biggest challenge in discovering novel host-directed therapeutic interventions
for M. abscessus infections is the absence of an adequate experimental animal model. A
summary of the preclinical M. abscessus models is shown in Table 2. M. abscessus are
generally less virulent than Mycobacterium tuberculosis complex members, shown by the de-
creased capacity to induce a sustained progressive infection in an immunocompetent mouse
model [178]. Therefore, there is an urgent need therefore for the development of a M. absces-
sus challenge model for the development of host-directed therapies and other host interven-
tions such as therapeutic vaccines. Experimental animal models have been of great benefit
for developing prophylactic and therapeutic vaccine strategies for treating M. tb, which has
been the focus of our laboratory for several years [168,169,179,180], and we have now begun
applying our expertise to vaccines against NTM infections [168,169]. Others have also fo-
cused on this challenging quest for therapeutic solutions against NTM [160,181–186]. Many
preclinical models have been proposed to study NTM Infection for early drug discovery
and vaccine research [30].
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Table 2. Summary of different models used for M. abscessus infection.

Type of Model Model Nature Advantages Drawbacks

Nonmammalian
models

Amoebas
(Dictyostelium
discoideum)

- Environmental
phagocyte organisms

- Natural hosts of
NTM organisms

- Model for
host-pathogen
interaction

- Used for screening
anti-mycoba-
cterial drugs

- Relative transparency

- Maximal survival
temperature is 27 ◦C
which may affect
bacterial growth

- Inability to mimic
chronic infection

Drosophila
melanogaster

- Adult ages 5 to 7
days are used as
models for M.
abscessus infection

- Host for M.
abscessus infection

- Used for screening
anti-mycobact-
erial drugs

- Minimal pathogenicity
after M. abscessus
infection

Galleria
mellonella
larvae

- Larvae are used as
models for studying
the innate
immune system

- Physiologic
temperatures (up to
37 ◦C) suitable for
bacterial growth

- Relative transparent
- Used for screening

anti-mycobac-
terial drugs

- Drug-exposure response
doesn’t emulate
mammalian host

1. Inability to mimic
chronic infection

Zebrafish

- Model for early innate
immunity given by
macrophages and
neutrophils

- Mycobacteria-
infected zebrafish
mimics granuloma-
like lesions

- Used for screening
anti-mycobact-
erial drugs

- Relative transparent

- Susceptibility profiles to
different mycobacterial
organisms are different

Silk worm
- Larvae are used as

models for studying
bacterial infections

- Used for screening
anti-mycobact-
erial drugs

- Rapid growing NTM are
detrimental for larvae

Mammalian
models

Nude Mice
- Compromised B cells,

T cells and natural
killer cells

- Similar progressive
infection with human
M. abscessus
lung disease

- Can’t be used for
studying the efficacy of
either prophylactic or
therapeutic vaccines

GKO Mice - Ifnγ knock out

- Similar progressive
infection with human
M. abscessus
lung disease

- Can’t be used for
studying the efficacy of
either prophylactic or
therapeutic vaccines

Beige Mice

- Mutation of a
lysosomal trafficking
regulator protein
leading to impaired
phagocytosis

- Extreme
susceptibility to MAC

- Can be used for
studying the efficacy
of vaccines

- Less studied mouse
model for M. abscessus
infection

C57BL/6 Mice - Susceptible to
NTM infection

- Can be used for
studying the efficacy
of vaccines

- Rapid clearance of the
M. abscessus

BALB/c - Susceptible to
NTM infection

- Can be used for
studying the efficacy
of vaccines

- Rapid clearance of the
M. abscessus

Regarding M. abscessus, many nonmammalian models are also used, such as Amoe-
bas (Dictyostelium discoideum) [187], Drosophila melanogaster [188], Galleria mellonella lar-
vae [189], Silkworm [190], and zebrafish [191–193]. Nonmammalian models are valuable
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models for screening anti-mycobacterial drugs and imaging host–pathogen interactions
at a cellular level due to their relative transparency combined with the development of
recombinant bacterial strains that express fluorescent proteins. Drawbacks of those models,
however, include their inability to mimic chronic infection that can only be modeled in a
mammalian host.

The mouse infection model, developed for several infectious disease pathogens, has
been more extensively utilized than any other preclinical model for drug discovery and
vaccine research. As previously mentioned, the use of an immunocompetent mouse model
in M. abscessus infection is not considered an adequate model due to the rapid clearance
of the M. abscessus [194]. The existence of several immunocompromised mouse models,
including severe combined immunodeficiency (SCID) mice, granulocyte monocyte-colony
stimulating factor knockout mice (GM-CSF−/−), and NOD.CB17-Prkdcscid/NCrCrl mice
with compromised B cells, T cells, and natural killer cells resulted in M. abscessus progressive
infection, similar to that seen with human M. abscessus-LD [194]. Recently, a protective
role for type 1 IFN (IFNβ) has been shown, where M. abscessus clearance in macrophages
was facilitated through the production of NO in a NO-dependent fashion [195]. The
same authors also showed that NOD2-mediated activation of p38 and JNK, ultimately
leading to NO production, can effectively clear M. abscessus in macrophages. Whereas
individual immune factors may be implicated as risk factors for M. abscessus infections, the
use of transgenic mice with single-gene deletion for NOS, TNF, IFNγ, or MyD88 may be
compensated for with a different mechanism of the immune system [195–198]. Additionally,
the route of infection greatly influences the host-immune response against M. abscessus
lung infection, and so infection results [78,199]. The challenge dose of M. abscessus also
requires optimization for establishing pulmonary lung infection. An aerosol infection with
M. abscessus was shown to require 1 × 105–109 CFUs to enable a progressive infection in an
immunocompromised mouse model [78].

The use of nude and IFNγ knock-out (GKO) mice present two models in which
antibiotic therapy studies can be performed [178]. These animal models, however, are not
conducive to studying the efficacy of either prophylactic or therapeutic vaccines against
NTM, including M. abscessus, for which other mouse models are required. One lesser
studied mouse strain for M. abscessus infection is the Beige mouse, a model for Chédiak–
Higashi syndrome [200], an immune disorder characterized by impaired phagocytosis due
to a mutation of a lysosomal trafficking regulator protein [201]. This mouse strain also has
defective polymorphonuclear cells, monocytes, and NK cells, with delayed chemotaxis and
microbicidal capacity [202]. The Beige model is considered the standard model for much
slow-growing NTM, such as M. avium, as extreme susceptibility to MAC infection, has
been demonstrated by us and others [168,203–205]. Previous studies in the Beige mouse
model showed a dominant Th2 immunity that allows for MAC growth [206]. Even so,
infection of Beige mice with M. abscessus does not lead to a persistent infection, which
limits its utility as a model for vaccine development [194]. In a previous study on seven
mouse strains, including Beige, BALB/c, Nude, GKO, A/J, Swiss, and C57BL/6 mice,
most immunocompetent mice were able to rapidly clear the infection with M. abscessus (by
30 days in the lungs and 60 days in the spleen) [178]. Notably, those infections were done
via the intravenous route, decreasing the chances for progressive infection. Additionally,
the laboratory M. abscessus ATCC 19977 strain is often utilized in published studies. Future
considerations could aim to establish progressive infection through using the aerosol route
and through the use of a clinical isolate, which would likely show a higher degree of
virulence. Furthermore, one could compare infection with the S and R variants of M.
abscessus in the Beige mice to further shed light on the mechanism(s) by which the R variant
is more virulent than the S variant in an in vivo model.
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