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Abstract

MDA-7/IL-24 was involved in the specific cancer apoptosis through suppression of Bcl-2 expression, which is a key apoptosis
regulatory protein of the mitochondrial death pathway. However, the underlying mechanisms of this regulation are unclear.
We report here that tumor-selective replicating adenovirus ZD55-IL-24 leads to Bcl-2 S-denitrosylation and concomitant
ubiquitination, which take part in the 26S proteasome degradation. IL-24-siRNA completely blocks Bcl-2 ubiquitination via
reversion of Bcl-2 S-denitrosylation and protects it from proteasomal degradation which confirmed the significant role of
MDA-7/IL-24 in regulating posttranslational modification of Bcl-2 in cancer cells. Nitric oxide (NO) is a key regulator of
protein S-nitrosylation and denitrosylation. The NO donor, sodium nitroprusside (SNP), down-regulates Bcl-2 S-
denitrosylation, attenuates Bcl-2 ubiquitination and subsequently counteracts MDA-7/IL-24 induced cancer cell apoptosis,
whereas NO inhibitor 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (PTIO) shows the opposite effect. At
the same time, these NO modulators fail to affect Bcl-2 phosphorylation, suggesting that NO regulates Bcl-2 stability in a
phosphorylation-independent manner. In addition, Bcl-2 S-nitrosylation reduction induced by ZD55-IL-24 was attributed to
both iNOS decrease and TrxR1 increase. iNOS-siRNA facilitates Bcl-2 S-denitrosylation and ubiquitin-degradation, whereas
the TrxR1 inhibitor auranofin prevents Bcl-2 from denitrosylation and ubiquitination, thus restrains the caspase signal
pathway activation and subsequent cancer cell apoptosis. Taken together, our studies reveal that MDA-7/IL-24 induces Bcl-2
S-denitrosylation via regulation of iNOS and TrxR1. Moreover, denitrosylation of Bcl-2 results in its ubiquitination and
subsequent caspase protease family activation, as a consequence, apoptosis susceptibility. These findings provide a novel
insight into MDA-7/IL-24 induced growth inhibition and carcinoma apoptosis.
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Introduction

Interleukin 24(IL-24), also called melanoma differentiation

associated gene-7(MDA-7), is a unique member of the IL-10 gene

family, that displays a selective induction of cancer specific

apoptosis without deleterious effects on the normal cells [1–3].

MDA-7/IL-24 induces growth suppression and apoptosis in a

broad spectrum of human cancer cells, including melanoma,

malignant glioma, and carcinomas of the breast [4–8]. The

involvement of MDA-7/IL-24-induced apoptosis in tumor tissues

was associated with endoplasmic reticulum (ER) stress and

mitochondrial dysfunction and reactive oxygen species (ROS)

production [7,9,10]. Moreover, MDA-7/IL-24 induced potent

‘‘bystander antitumor’’ activity, an ability to block tumor

angiogenesis, synergy with radiation, chemotherapy, monoclonal

antibody therapies and immune modulatory activity [11,12],

which make it a ideal tool for cancer gene therapy.

Although the pathways by which MDA-7/IL-24 enhances

apoptosis in tumor cells are not fully elucidated, evidence from

several studies suggests that MDA-7/IL-24 mediates many

proteins important for the onset of growth inhibition and

involvement of the mitochondrial apoptotic cell death pathway

[7]. B-cell lymphoma gene 2(Bcl-2), one of the anti-apoptotic Bcl-

2-family members, is localized in the outer mitochondrial

membrane. Some antiapoptotic mechanisms of Bcl-2 include

regulation of calcium homeostasis and neutralization of proapop-

totic protein Bax by forming heterodimers. In addition, Bcl-2

promoted the blockade of cytochrome c release and the association

with mitochondrial apoptosis factor Apaf1, finally prevented the

activation of caspase protease family and preserved mitochondrial

integrity [13,14]. MDA-7/IL-24 repressed Bcl-2 protein expres-

sion, which thus increased the ratio of specific pro- and anti-

apoptotic proteins tilting the balance from survival to death in

carcinoma cells. In contrast, overexpression of Bcl-2 protected

prostate cancer cells from MDA-7/IL-24-mediated apoptosis,

suggesting Bcl-2 plays an important role in cancer cell apoptosis in

response to MDA-7/IL-24 [8]. However, the exact mechanism by

which MDA-7/IL-24 regulated Bcl-2 to facilitate the mitochon-

drial dysfunction has not been identified. In the present study, we

used tumor-selective replicating adenovirus expressing IL-24

(ZD55-IL-24) which deleted the essential viral E1B 55 kDa gene
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and exerted a strong cytopathic effect and significant apoptosis in

tumor cells without normal cells [15] to further explore the

mechanism of MDA-7/IL-24 inducing Bcl-2 down-regulation and

subsequent carcinoma cell apoptosis.

Although the expression of Bcl-2 is regulated by several

mechanisms, such as transcription, posttranslational modification,

dimerization and degradation [16,17], increasing evidence dem-

onstrates that posttranslational modification plays a critical role in

a potential Bcl-2 turnover under stress condition [18,19,20]. Some

studies indicate protein S-nitrosylation is a regulatory process in

signal transduction pathways that adjusts the function of Bcl-2 by

the covalent attachment of a nitric oxide (NO) group to a cysteine

thiol side chain. It has been shown that the two cysteine residues of

Bcl-2, Cys158 and Cys229 are responsible for S-nitrosylation of Bcl-

2, and mutation of these two residues completely inhibit Bcl-2 S-

nitrosylation [16]. S-nitrosylation has been regulated by NO

synthases (NOSs) including neuronal NOS(nNOS), endothelial

NOS(eNOS) and inducible NOS(iNOS) [21,22]. Among three

NO synthases, iNOS, a Ca2+-independent enzyme, is defined as

the ‘high-output’ NOS, generating major amounts of NO. Some

previous papers also show iNOS was found to be increased in

advanced stages of melanoma and expression of MDA-7/IL-24

negatively regulated iNOS expression in malignant melanoma cell

lines [23,24,25], suggesting that iNOS might contribute to

enhance tumor progression. Nevertheless, the exact role of iNOS

in tumorigenesis is unclear. Whether ZD55-IL-24-induced iNOS

decrease would further influence Bcl-2 S-nitrosylation level is the

first aim of our present study. Given that protein S-nitrosylation

level not only depends on NO-mediated S-nitrosylation via NOS

but also denitrosylating enzyme such as thioredoxin (Trx/TrxR)

systems [26], we also investigate whether Bcl-2 S-nitrosylation

reduction in response to ZD55-IL-24 is determined by both iNOS

and Trx/TrxR systems.

Some present reports show that cisplatin-induced generation of

reactive oxygen species causes Bcl-2 S-nitrosylation which inhibits

26S proteasome degradation, thus indicating that S-nitrosylation

may exert the biological function through changing the protein

stability. Similarly, NO-mediated S-nitrosylation of Bcl-2 associ-

ated with its ubiquitin degradation could be important in apoptosis

resistance and the development of lung cancer induced by Cr(VI)

and other carcinogens [16,27]. Consequently, there is growing

interest towards understanding the cellular mechanism whether

Bcl-2 S-nitrosylation alteration in addition of ZD55-IL-24 is

implicated in its ubiquitination and proteasomal degradation.

Since the mechanisms by which MDA-7/IL-24 suppresses Bcl-2

expression and facilitates cancer cell apoptosis have not been

clarified. Our present study determined the significant role of Bcl-2

denitrosylation in its ubiquitin proteasome degradation, which

finally mediates the caspase signal pathway activation and cancer

cell apoptosis in response to ZD55-IL-24. Moreover, Bcl-2 S-

nitrosylation diminishment in response to ZD55-IL-24 includes

both iNOS-mediated S-nitrosylation and Trx/TrxR1 involved

with denitrosylation, which subsequently facilitates the ubiquitin-

mediated proteasome degradation. Such a tight relationship

between Bcl-2 denitrosylation and ubiquitination sheds new light

on IL-24-induced Bcl-2 degradation and specific tumor apoptosis.

Figure 1. ZD55-IL-24 mediated IL-24, E1A and Bcl-2 expression in Hela, A375 and 7860 cells. (A) Time course analysis of IL-24 protein
expression in Hela, A375 and 7860 cells treated with ZD55-IL-24 (20 MOI). (B) Time course analysis of E1A protein expression in Hela, A375 and 7860
cells treated with ZD55-IL-24(20 MOI). (C) Time course analysis of Bcl-2 protein expression in Hela, A375 and 7860 cells treated with ZD55-IL-24(20
MOI). b-actin was used as a loading control. (D) ZD55-EGFP (5 MOI) carrying report gene EGFP was used to detect infection efficiency of the
replicative adenovirus at different time points (Magnification6200). (E) Hela, A375 and 7860 cells viability treated with ZD55-IL-24(20 MOI) at the
different time points were determined by MTT assay. Data are means6standard deviation (S.D.) from three independent experiments (n = 3); *p,0.05
versus control group.
doi:10.1371/journal.pone.0037200.g001

Figure 2. Effect of different titers of ZD55-IL24 on Bcl-2
expression and Hela cells viability. (A) Effects of the different
titers of ZD55-IL-24 (0.1 MOI, 1 MOI, 5 MOI, 10 MOI, 20 MOI) on Bcl-2
expression induced by Western blotting 48 h after infection of ZD22-
IL24. b-actin was used as a loading control. (B) ZD55-EGFP at the
different titers was used to detect infection efficiency of replicative
adenovirus (Magnification6200). (C) Hela cell viability treated with the
different titers of ZD55-IL-24 was determined by MTT assay. Data are
means6standard deviation (S.D.) from three independent experiments
(n = 3); *p,0.05 versus control group.
doi:10.1371/journal.pone.0037200.g002
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Figure 3. Effect of ZD55-IL-24 on Bcl-2 S-nitrosylation and ubiquitination. (A) Hela, A375 and 7860 cells in response to ZD55-IL-24 (20 MOI)
were prepared for immunoprecipitation using anti-Bcl-2 antibody. The resulting immune complexes were analyzed for anti-S-nitrosocysteine by
Western blotting and stood for Bcl-2 S-nitrosylation level at the different time points 12 h, 24 h, 36 h and 48 h, respectively. (B) Time course of Bcl-2
ubiquitination in Hela cells was detected by immunoprecipitation using anti-Bcl-2 antibody and then followed by immunoblotting with anti-ubiquitin
antibody. (C) Effect of IL-24-siRNA (100 nM) upon IL-24, Bcl-2 expression, Bcl-2 S-nitrosylation and ubiquitination in Hela cells was detected by
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Western blotting and co-immunoprecipitation. b-actin was used as a loading control. The corresponding bands were scanned and the optical density
(O.D.) was determined as the fold change versus control group. Data are means6standard deviation (S.D.) from three independent experiments
(n = 3); *p,0.05 versus control group; #p,0.05 versus scrambled siRNA group.
doi:10.1371/journal.pone.0037200.g003

Figure 4. Effect of ZD55-IL-24 on activation of caspase signal pathway and cancer cell apoptosis. (A) Time course analysis of caspase-9,
caspase-3 and PARP in Hela cells treated with ZD55-IL-24 (20 MOI). The corresponding bands were scanned and the optical density (O.D.) was
determined as the fold change versus control group. (B) Early apoptosis and late apoptosis in Hela cells were detected by staining cells with Annexin
V-FITC (green color) and Propidium Iodide (red color) at the different time points. (C) Hela cells treated with ZD55-IL-24 for the different time were
stained with Annexin V-FITC/Propidium Iodide (PI) and immediately analyzed by flow cytometry. Data are presented as the percentage of Annexin V
positive cells from three independent experiments. *p,0.05 versus control group.
doi:10.1371/journal.pone.0037200.g004
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Materials and Methods

Cells and Reagents
The human Henrietta Lacks (Hela) cell line, the

human malignant melanoma cancer cell line (A375) and the

human renal carcinoma cell line (7860) were obtained from

Shanghai Cell Collection (Shanghai, China). Hela and A375 cells

were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)

(GIBCO BRL, Grand Island, NY) containing 5% fetal bovine

serum (FBS, GIBCO-BRL), 2 mM L-glutamine, and 100 units/ml

penicillin/streptomycin and a 5% CO2 environment at 37uC. The

renal cancer 7860 cells were cultured in RPMI1640 medium,

supplemented with 5% FBS and antibiotics. Sodium Nitroprusside

(SNP), 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-

3-oxide (PTIO), dithiothreitol (DTT), Dimethyl sulfoxide (DMSO)

and Z-Leu-Leu-Leu-al (MG132) were purchased from Sigma-

Aldrich Co (St. Louis, MO), Antibodies for Bcl-2, phospho-Bcl-

2(Ser87), NOS2(iNOS), protein A-agarose, and IL-24-siRNA,

iNOS-siRNA and scrambled control-siRNA were purchased from

Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Antibodies for

ubiquitin and S-nitrosocysteine were from Sigma-Aldrich Co (St.

Louis, MO). Antibodies for b-actin, procaspase-3, cleaved caspase-

3, procaspase-9, cleaved caspase-9 antibodies, anti-poly ADP-

ribose polymerase (PARP) and cleaved PARP were purchased

from Cell Signaling Technology, Inc. (Danvers, MA).

Virus construction and production
pZD55, the E1B 55-kDa-deleted oncolytic adenovirus construc-

tion plasmid; pCA13, the E1-deleted adenovirus shuttle plasmid;

and ZD55-enhanced green fluorescent protein (EGFP) with

reporter gene EGFP were kindly provided by Professor Liu

(Xin-Yuan Liu, Institute of Biochemistry and Cell Biology,

Shanghai Institutes for Biological Sciences, Chinese Academy of

Sciences, Shanghai, China). IL-24 was first cloned into pCA13 to

form pCA13-IL-24. Then IL-24 excised from pCA13 was

subcloned into pZD55 to construct pZD55-IL-24. Oncolytic

adenovirus, ZD55-IL-24 was generated in HEK293 cells (Shang-

hai Cell Collection, Shanghai, China) by homologous recombina-

tion between pZD55-IL-24 and the adenovirus packaging plasmid

pBHGE3 (Microbix Biosystems), respectively. Large scale purifi-

cation of all adenovirus particles was performed by ultracentrifu-

gation with cesium chloride according to standard techniques. The

titers were determined using a plaque assay on HEK293 cells.

Small interfering RNA assay
For experiments involving IL-24 specific siRNAs, cells (36105

per well) were plated in 6-well plates. At 24 h after incubation,

Hela cells were washed, replenished with fresh medium and

treated with ZD55-IL-24(20 MOI) for 12 h, cells were subse-

quently washed and placed in fresh culture medium and added

with IL-24 specific siRNA (100 nM) by using a siRNA transfection

reagent. After 24 h of siRNA transfection, cell lysates were

prepared and subjected to the western blot analysis as described

below.

For experiments involving iNOS-siRNAs, cells were transfected

with 100 nM iNOS-specific siRNA for 12 h, cells were subse-

quently washed and placed in fresh culture medium and then

treated with ZD-55-IL-24(20 MOI) for 12 h. After 24 h of siRNA

transfection, cell lysates were prepared and subjected to the

western blot analysis as described below.

Western Blotting
After specific treatments, cells were incubated in lysis buffer

containing 20 mmol/L Tris-HCl (pH 7.5), 1% Triton X-100,

150 mmol/L NaCl, 10% glycerol, 1 mmol/L Na3VO4, 50 mmol/

L NaF, 100 mmol/L phenylmethylsulfonyl fluoride, and a

commercial protease inhibitor mixture (Roche Molecular Bio-

chemicals) for 20 minutes on ice. After insoluble debris was

pelleted by centrifugation at 14,000 g for 15 minutes at 4uC, the

supernatants were collected and determined for protein content

using the Bradford method (Bio-Rad Laboratories, Hercules, CA).

Proteins (80 mg) were resolved under denaturing conditions by

SDS-PAGE (10%) and transferred onto nitrocellulose membranes.

After blocking for 2 h in phosphate-buffered saline with 0.1%

Tween20 (PBST) and 3% bovine serum albumin (BSA), mem-

branes were incubated overnight at 4uC with the appropriate

primary antibody in PBST containing 3% BSA. Membranes were

then washed and incubated with alkaline phosphatase conjugated

goat anti-rabbit IgG or anti-mouse IgG (Sigma, 1:10 000) in PBST

for 2 h and developed using NBT/BCIP color substrate (Promega,

Madison, USA).

Immunoprecipitation
For immunoprecipitation, cytosolic fractions (each containing

400 mg of proteins) were diluted four-fold with HEPES buffer

containing 50 mM HEPES (pH 7.4), 150 mM NaCl, 10%

glycerol, 1% Triton X-100, and 1 mM each of EGTA, EDTA,

PMSF and Na3VO4. The samples were then pre-incubated for 1 h

with 20 ml protein A agarose and centrifuged to remove any non-

specifically adhered proteins from the protein A agarose. The

supernatant was then incubated with 2 mg specific antibodies

overnight at 4uC. After the addition of Protein A agarose, the

mixture was incubated at 4uC for an additional 2 h. Samples were

triple washed with HEPES buffer and eluted by sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS–PAGE) loading

buffer then boiled at 100uC for 5 minutes. Immune complexes

were separated by 10% SDS-PAGE and analyzed by Western

blotting as described above.

Measurement of apoptosis by Annexin V analysis
An Annexin V-binding assay was used according to the

manufacturer’s instructions. Briefly, cells (36105 per well) in 6-

well plates were treated with ZD55-IL24 (20 MOI) for the

different time 12 h, 24 h, 36 h, 48 h, and 72 h. Cells were

Figure 5. Effect of NO modulators on Bcl-2 S-nitrosylation, ubiquitination and protein expression. (A) Hela, A375 and 7860 cells were
pretreated with ZD55-IL-24 (20 MOI) for 24 h and then treated with NO donor SNP(2 mM), NO inhibitor PTIO(300 mM) and SNP co-administration of
reducing agent DTT(10 mM) for 6 h respectively. Bcl-2 S-nitrosylation was detected by immunoprecipitation using anti-Bcl-2 antibody and then
followed by immunoblotting with anti-S-nitrosocysteine antibody. (B) Effect of NO modulators on Bcl-2 ubiquitination in Hela cells were detected by
immunoprecipitation using anti-Bcl-2 antibody and then followed by immunoblotting with anti-ubiquitin antibody. (C) Effect of NO modulators on
Bcl-2 expression in Hela, A375 and 7860 cells was detected by western blotting using anti-Bcl-2 antibody. (D) Hela, A375 and 7860 cells were
pretreated with ZD55-IL24 for 24 h and then treated with proteasomal inhibitor MG132 (10 mM) for 6 h. Bcl-2 expression was analyzed by Western
blotting using anti-Bcl-2 antibody. (E) Bcl-2 phosphorylation in Hela cells was detected by Western blotting with anti-p-Bcl-2(Ser87) antibody. b-actin
was used as a loading control. The corresponding bands were scanned and the intensities were determined by optical density (O.D) measurements.
Data are means6standard deviation (S.D.) from three independent experiments (n = 3). #p,0.05 versus ZD55-EGFP; *p,0.05 versus ZD55-IL-24
group; @p,0.05 versus DMSO group.
doi:10.1371/journal.pone.0037200.g005
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collected and the Annexin V-FITC and Propidium iodide (PI)

dual-staining assay was performed according to the manufacturer’s

instructions ((Nanjing Keygen Biotech, China). Collected cells

were briefly washed with ice-cold phosphate-buffered saline (PBS)

twice and resuspended in 200 ml 16binding buffer containing 5 ml

Annexin V-FITC for 15 minutes and then in 300 ml 16binding

buffer containing 5 ml Propidium iodide (PI) for 5 minutes at room

temperature in the dark. After incubation, the cells were analyzed

using a FACStar flow cytometer.

Cell viability assay
The carcinoma cells (1.06104 per well) were incubated in

triplicate in a 96-well plate and treated with ZD55-IL-24 and NO

modulators. Cell survival rate was evaluated by a standard 3-(4, 5-

dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as-

say (Sigma, St. Louis, MO) in the presence or absence of the

indicated test samples in a final volume of 0.2 ml for various

lengths of time at 37uC. Thereafter, 20 ml MTT solution (5 mg/ml

in PBS) was then added to each well. After 4 h incubation at 37uC,

150 ml DMSO was added. Finally the plates were shaken and the

optical density at 570 nm was measured on ELX-800 spectrom-

eter reader (Bio-Tek Instruments Inc., USA). Four replicate wells

were tested per assay and each experiment was repeated three

times. Percent cell viability was calculated as the ratio of the

experimental samples to the control samples6100.

Statistical analysis
Values are expressed as mean 6SD. Statistical analysis of the

results was carried out using the Student’s t-test or one-way

analysis of the variance (ANOVA) followed by the Duncan’s new

multiple range method or Newman-Keuls test. P-values,0.05

were considered significant.

Results

Effect of ZD55-IL-24 on Bcl-2 expression and cancer cell
viability

Protein expressions of IL-24 and E1A accompanied with

adenovirus ZD55-IL-24 replication and translation in Hela,

A375 and 7860 cells were detected by Western blotting at the

different time points. Our data showed a distinct increase of IL-24

from 24 h to 72 h compared to controls, as shown in Fig. 1A. At

the same time, E1A protein standing for replication ability of

ZD55-IL-24 showed the obvious enhancement from 12 h to 72 h

in Fig. 1B, which is similar to the time course of enhanced green

fluorescence protein (EGFP) expression treated with ZD55-EGFP

in Fig. 1D. In addition, Bcl-2 expression has the inverse decrease

from 24 h to 72 h (Fig. 1C). Moreover, the Bcl-2 decline in

response to ZD55-IL-24 was shown in a dose-dependent manner.

The efficient titers of ZD55-IL-24 to inhibit the Bcl-2 expression

are 10 and 20 MOI, as shown in Fig. 2A. To further investigate

whether ZD55-IL24 affects three carcinoma cells survival, cell

viability was determined by MTT assay (Fig. 1E). Our results

showed that ZD55-IL-24 effectively decreased cell survival and

this inhibition was also shown in a dose-dependent manner (Fig. 1E

and 2C). Taken together, these results indicate the ZD55-IL24

could mediate a high-level and stable IL-24 expression from 24 h

to 72 h and reduce Bcl-2 protein level in time- and dose-

dependent manner.

Effect of ZD55-IL-24 on Bcl-2 S-nitrosylation and
ubiquitination

To investigate whether ZD55-IL-24 would contribute to

alteration of Bcl-2 S-nitrosylation and ubiquitination, we detected

Bcl-2 S-nitrosylation and ubiquitination level in Hela, A375 and

7860 cells. The results showed that ZD55-IL-24 in Hela cells

diminished the Bcl-2 S-nitrosylation from 79% at 24 h to 38% at

48 h compared with the control group (Fig. 3A). In contrast, Bcl-2

ubiquitination increased from 1.4 fold at 24 h to 2.3 fold at 48 h,

as shown in Fig. 3B. The results from A375 and 7860 cells were

consistent with the above trend. To further confirm the potential

role of IL-24 in the regulation of Bcl-2 S-nitrosylation and

ubiquitination, specific IL-24-siRNA was used to knockdown IL-

24 expression. Our data indicated IL-24-siRNA obviously restored

Bcl-2 S-nitrosylation and thus suppressed Bcl-2 ubiquitination

compared with scrambled control siRNA (Fig. 3C). Consequently,

ZD55-IL-24 induced decreased Bcl-2 S-nitrosylation and in-

creased Bcl-2 ubiquitination.

Effect of ZD55-IL-24 on caspase activation and cancer cell
apoptosis

To further determine whether the Bcl-2 aberrant diminishment

in response to ZD55-IL-24 would result in the activation of

caspase signal pathway in Hela cells, caspase-9, caspase-3 and

PARP were detected at the different time points 12 h, 24 h, 36 h

and 48 h respectively, as shown in Fig. 4A. The results

demonstrated that procaspase-9 gradually decreased from 76%

at 24 h to 36% at 48 h. In contrast, the cleaved caspase-9

correspondingly increased from 1.5- at 24 h to 2.5-fold at 48 h

compared with the control group. Caspase-3 and PARP

performed the similar alteration like caspase-9. Our results show

that ZD55-IL-24 induced the cleavage of caspase-9, caspase-3 and

PARP to activate the caspase signal pathway. In addition, Hela

cells apoptosis was detected by Annexin V/PI and then analyzed

using flow cytometry (Fig. 4B and C). The results indicated that

ZD55-IL-24 dramatically enhanced apoptosis in Hela cells from

2.3- at 24 h to 7.4-fold at 72 h compared with the control group.

Taken together, ZD55-IL-24 initiated the caspase signal pathway

activation and cancer cell apoptosis.

Effect of Bcl-2 S-nitrosylation alteration on the regulation
of its ubiquitination in response to ZD55-IL-24

To investigate whether ZD55-IL-24 could regulate Bcl-2 S-

nitrosylation via NO, which subsequently affects its ubiquitination,

we treated Hela, A375 and 7860 cells with NO donor SNP, NO

inhibitor PTIO and SNP co-administration of the reducing agent

DTT after administration of ZD55-IL24, respectively. As shown in

Figure 6. Effect of NO modulators on caspase signal pathway and Hela cell viability. (A) Hela cells were pretreated with ZD55-IL24 (20
MOI) for 24 h and then added with NO donor SNP(2 mM), NO inhibitor PTIO(300 mM), SNP co-administration of reducing agent DTT(10 mM) and
proteasomal inhibitor MG132(10 mM) for 6 h respectively. Procaspase-9, cleaved caspase-9, procaspase-3, cleaved caspase-3 were detected by
Western blotting. (B) Effect of NO modulators SNP, PTIO, SNP+DTT and proteasome inhibitor MG132 on early apoptosis and late apoptosis in Hela
cells treated with ZD55-IL-24 were detected by staining with Annexin V-FITC (green color) and Propidium Iodide (red color) respectively. (C) Hela cells
were stained with Annexin V-FITC and Propidium Iodide and immediately analyzed by flow cytometry. (D) Effects of NO modulators and MG132 on
Hela cell viability were determined by MTT assay. The corresponding bands were scanned and the optical density (O.D.) was determined as the fold
change versus control group. Data are means6standard deviation (S.D.) from three independent experiments (n = 3). #p,0.05 versus ZD55-EGFP
group; *p,0.05 versus ZD55-IL-24 group; @p,0.05 versus DMSO group.
doi:10.1371/journal.pone.0037200.g006
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Figure 7. Effect of iNOS on Bcl-2 S-nitrosylaiton, ubiquitination and protein expression and caspase signal pathway. (A) Time course
analysis of iNOS expression in Hela, A375 and 7860 cells treated with ZD55-IL-24 (20 MOI). (B) Hela, A375 and 7860 cells were transfected with iNOS-
siRNA (100 nM) for 12 h, then treated with ZD55-IL-24 for 12 h. Effect of iNOS-siRNA on iNOS expression was analyzed by Western blotting. (C) Effect
of iNOS-siRNA on Bcl-2 protein expression was analyzed by Western blotting. (D) Effect of iNOS-siRNA on Bcl-2 S-nitrosylation were detected by
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Fig. 5A, exogenous NO donor SNP effectively increased the Bcl-2

S-nitrosylation whereas this rescue effect was negated by co-

administration with DTT. At the same time, NO inhibitor PTIO

significantly reduced Bcl-2 S-nitrosylation. Conversely, NO donor

SNP inhibited the ubiquitination of Bcl-2, but DTT co-treatment

counteracted the effects of SNP. Moreover, NO inhibitor PTIO

facilitated the ubiquitination of Bcl-2 in Fig. 5B. Fig. 5C shows

ZD55-IL-24 treatment for 24 h caused a significant decrease of

Bcl-2 expression, which was further decreased upon the addition

of NO inhibitor PTIO. In contrast, treatment with NO donor

SNP significantly resisted ZD55-IL-24-induced Bcl-2 down-

regulation. Similarly, co-administration with DTT offset the Bcl-

2 enhancement induced by SNP.

To further detect whether ZD55-IL-24-induced Bcl-2 degrada-

tion is ubiquitin-proteasome dependent, the proteasome inhibitor

MG132 was use to block the proteasomal degradation in Hela,

A375 and 7860 cells. Our results showed that MG132 significantly

improved Bcl-2 expression (Fig. 5D) compared with vehicle

control DMSO group, implicating that the ubiquitin-proteasome

system was involved with Bcl-2 degradation induced by ZD55-IL-

24. In summary, these results suggested that ZD55-IL-24 through

its ability to regulate NO, may interfere with the Bcl-2 S-

nitrosylation, promote its ubiquitination process and finally induce

Bcl-2 proteasome dependent degradation. Previous evidence

indicates that Bcl-2 phosphorylation induces a conformational

change in Bcl-2, which controls its stability and apoptotic function.

Dephosphorylation at Ser87 is the critical step of Bcl-2 degrada-

tion. To test whether NO-mediated S-nitrosylation would take

part in the regulation of phosphorylation of Bcl-2 and therefore

influence its ubiquitination and stability, we detected the effect of

these NO modulator on Bcl-2 phosphorylation through Western

blotting using specific phosphor-Bcl-2 (Ser87) antibody. The results

showed that NO donors and inhibitors had no significant effect on

the Bcl-2 phosphorylation level (Fig. 5E), suggesting that ZD55-IL-

24 regulates Bcl-2 degradation via Bcl-2 S-nitrosylation/denitro-

sylation and ubiquitination in a phosphorylation-independent

manner.

Effect of Bcl-2 S-nitrosylation alteration on activation of
caspase signal pathway and cancer cell apoptosis in
response to ZD55-IL-24

Bcl-2, which is located on the outer mitochondrial membrane, is

important for the suppression of mitochondrial manifestations of

apoptosis. We examined whether alteration of Bcl-2 S-nitrosyla-

tion and ubiquitination in response to ZD55-IL-24 would

subsequently contribute to activation of caspase-dependent path-

way. Hela cells were treated with ZD55-IL-24 for 24 h and then

added with NO donor SNP, NO inhibitor PTIO and SNP co-

administration of DTT, respectively. Our data demonstrated that

NO donor SNP attenuated the cleavage of caspase-9 and caspase-

3. In contrast, NO inhibitor PTIO had the opposite effect and

aggravated the activation of caspase-9 and caspase-3, as shown in

Fig. 6A. Additionally, SNP inhibitor DTT co-administration

reversed SNP protection of caspase-9 and caspase-3 from

activation. It was shown that activation of caspase-9, caspase-3

was regulated by Bcl-2 S-denitrosylation induced by ZD55-IL-24.

Moreover, we further assessed whether these NO modulators

would influence apoptosis in Hela cells treated with ZD55-IL-24.

Flow cytometric analysis of Annexin V/PI double stained cells was

used to quantitatively assess apoptosis. Our data showed that

incubation of ZD55-IL-24 for 48 h dramatically led to apoptosis

increase in Hela cells, which was attenuated by NO donor SNP

but aggravated by NO inhibitor PTIO. At the same time, SNP

inhibitor DTT co-administration reversed the apoptosis inhibition

of SNP. Moreover, proteasome inhibitor MG132 significantly

alleviated apoptosis in Hela cells treated with ZD55-IL-24,

indicating that inhibition of Bcl-2 degradation plays an important

role in protection from caspase proteins cleavage and apoptosis in

Hela cells (Fig. 6B and C). In addition, our results showed that NO

donor SNP enhanced Hela cell survival. However, NO inhibitor

PTIO or SNP co-administration with DTT diminished Hela cell

survival, as shown in Fig. 6D. Taken together, these results

suggested that alteration of Bcl-2 S-nitrosylation via NO modu-

lators regulated Hela cell apoptosis in response to ZD55-IL-24.

Effect of iNOS on Bcl-2 S-denitrosylation and
ubiquitination in response to ZD55-IL-24

To explore whether Bcl-2 S-denitrosylation in response to

ZD55-IL-24 was associated with iNOS-mediated S-nitrosylation,

we detected the iNOS expression in Hela, A375 and 7860 cells, as

shown in Fig. 7A. Our data showed that ZD55-IL-24 palpably and

gradually diminished iNOS expression from 62% at 24 h to 36%

at 48 h (Fig. 7A) in Hela cells, which is in agreement with the

results from A375 and 7860 cells. In addition, specific iNOS-

siRNA knocked down iNOS protein level (Fig. 7B), attenuated

Bcl-2 S-nitrosylation level (Fig. 7D), subsequently enhanced Bcl-2

ubiquitination (Fig. 7E) and ultimately decreased Bcl-2 protein

level (Fig. 7C), compared with the control siRNA, suggesting that

iNOS was involved with Bcl-2 S-denitrosylation in response to

ZD55-IL-24. Moreover, iNOS-siRNA also promoted activation of

caspase signal pathway via Bcl-2 denitrosylation, as shown in

Fig. 7F.

Effect of TrxR1 on Bcl-2 S-denitrosylation and
ubiquitination in response to ZD55-IL-24

Like phosphorylation and dephosphorylation, S-nitrosylation is

reversible biological process. The extent of protein S-nitrosylation

depends on the rate of both S-nitrosylation and denitrosylation.

To explore whether the denitrosylation enzyme TrxR1 was

implicated in Bcl-2 S-denitrosylation in response to ZD55-IL-24,

we detected the time course of TrxR1 expression in Hela, A375

and 7860 cells, as shown in Fig. 8A. Our data showed that ZD55-

IL-24 improved TrxR1 expression from 1.8-fold at 24 h after

infection of ZD55-IL-24 to 2.1-fold at 48 h compared with the

control group in Hela cells, which is consistent with results from

A375 and 7860 cells. In order to further detect the role of TrxR1

in IL-24-coupled Bcl-2 S-denitrosylation, we treated these three

cancer cells with TrxR1 inhibitor auranofin to detect the

alterations of TrxR1 expression, Bcl-2 expression, Bcl-2 S-

nitrosylation, and Bcl-2 ubiquitination. Fig. 8B–E showed that

auranofin obviously diminished TrxR1 expression, restored Bcl-2

S-nitrosylation, down-regulated Bcl-2 ubiquitination, and en-

hanced Bcl-2 expression compared with vehicle control DMSO

group. Additionally, auranofin also protected the caspase-9,

immunoprecipitation using anti-Bcl-2 antibody and then followed by immunoblotted with anti-S-nitrosocysteine antibody. (E) Effect of iNOS-siRNA
on ubiquitin-Bcl-2 was detected by immunoprecipitation using anti-Bcl-2 antibody and then followed by immunoblotting with anti-ubiquitin
antibody. (F) Effect of iNOS-siRNA on caspase-9, caspase-3 and PARP in Hela cells was detected by Western blotting. The corresponding bands were
scanned and the optical density (O.D.) was determined as the fold change versus control group. Data are means6standard deviation (S.D.) from three
independent experiments (n = 3). *p,0.05 versus control group; #p,0.05 versus scrambled siRNA group.
doi:10.1371/journal.pone.0037200.g007
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caspase-3 and PARP from cleavage to activate caspase signal

pathway, as shown in Fig. 8F. Taken together, these results suggest

that ZD55-IL-24 induces Bcl-2 S-denitrosylation via regulation of

TrxR1 and iNOS. Moreover, Bcl-2 S-denitrosylation facilitates its

ubiquitin-proteasome degradation, then initiates the activation of

caspase signal pathway and finally results in cancer cell apoptosis.

Discussion

MDA-7/IL-24 that selectively kills cancer cells and decreases

survival in adjacent tumor cells as a profound ‘bystander effect’

represents an appealing molecule for cancer gene therapy.

Multiple reports confirm that IL-24 is mediated by mitochondrial

pathways involving bcl-2 family gene members. Bcl-2 may regulate

caspase activation through sequestration of unidentified caspase

adaptors/activators and directly interact as substrates with

different subsets of caspase [28]. In addition, overexpression of

Bcl-2 can protect prostate cancer cells from apoptosis induced by

MDA-7/IL-24, indicating that the caspase machinery activated by

MDA-7/IL-24 in LNCaP cells might be preferentially inhibited

only by Bcl-2 [29]. Our data also show that ZD55-IL-24

downregulates Bcl-2 expression and initiates the caspase signal

Figure 8. Effect of TrxR1 on Bcl-2 S-nitrosylaiton, ubiquitination and protein expression and caspase signal pathway. (A) Time course
analysis of TrxR1 expression in Hela, A375 and 7860 cells treated with ZD55-IL-24 (20 MOI). (B) Hela, A375 and 7860 cells were treated with ZD55-IL-24
for 24 h and then added with TrxR1 inhibitor auranofin (5 mM) for 6 h. Effect of TrxR1 inhibitor auranofin on TrxR1 protein expression was detected by
Western blotting. (C) Effect of TrxR1 inhibitor auranofin on Bcl-2 protein expression in Hela, A375 and 7860 cells was detected by the western blot
assay. (D) Effect of TrxR1 inhibitor auranofin on Bcl-2 S-nitrosylation was detected by immunoprecipitation using anti-Bcl-2 antibody and then
followed by immunoblotting with anti-S-nitrosocysteine antibody. (E) Effect of TrxR1 inhibitor auranofin on Bcl-2 ubiquitination in Hela cells was
detected by immunoprecipitation using anti-Bcl-2 antibody and then followed by immunoblotting with anti-ubiquitin antibody. (F) Effect of TrxR1
inhibitor auranofin on caspase-9, 3 and PARP was detected by Western blotting. b-actin was used as a loading control. The corresponding bands were
scanned and the optical density (O.D.) was determined as the fold change versus control group. Data are means6standard deviation (S.D.) from three
independent experiments (n = 3). *p,0.05 versus ZD55-EGFP; #p,0.05 versus DMSO group.
doi:10.1371/journal.pone.0037200.g008

Figure 9. Schematic model of IL-24 induced cancer cell apoptosis. (I) IL-24 inhibits iNOS expression leading to reduction of NO turnover and
attenuation of Bcl-2 S-nitrosylation. (II) Trx denitrosylates S-nitrosylated Bcl-2 through its dithiol moiety, thereby forming a reduced Bcl-2 and oxidized
Trx; oxidized Trx is reduced (and therefore reactivated) by the seleno-flavoprotein Trx reductase(TrxR) and NADPH, suggesting that TrxR through
reducing oxidized Trx may facilitate Bcl-2 denitrosylation. (III) Under basal condition, Bcl-2 S-nitrosylation stabilizes protein structure and resists to the
ubiquitin-proteasome degradation. Formation of heterodimers with proapoptotic protein such as Bax, inhibition of cytochrome c release and caspase
protease family activation, and regulation of mitochondrial transmembrane potential are some of mechanisms by which Bcl-2 exerts its anti-
apoptotic effect. (IV) In response to IL-24, Bcl-2 S-denitrosylation via both iNOS decrease (a) and TrxR1 increase (b) facilitates Bcl-2 ubiquitination,
which finally is degraded by the 26S proteasome. Bax triggers release of cytochrome c and activation of caspase protease family, which mediated the
intracellular proteolysis that is characteristic of cell apoptosis.
doi:10.1371/journal.pone.0037200.g009
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pathway activation. However, the precise mechanism by which

MDA-7IL-24 efficiently induces Bcl-2 decrease and cancer cell

apoptosis remains to be defined.

The anti-apoptotic function of Bcl-2 is bound by its expression

level tightly associated with some post-translational modifications.

Protein S-nitrosylation is a cGMP-independent, redox-dependent

modification that attaches nitrosonium ion (NO+) to cysteine

sulfhydryls. Nitric-oxide synthases (NOS) play a role in the

production of NO and may thus influence NO-mediated functions

in tumor tissues. MDA-7/IL-24 expression in melanoma nega-

tively correlates with inducible nitric oxide synthase (iNOS)

expression. The present findings revealed that MDA-7/IL-24

treatment of melanoma cells activates phosphorylation of STAT3

and down-regulates interferon regulatory factor (IRF-1) whereas

up-regulating IRF-2 expression, which reduces iNOS expression

level [25,30]. Our data also demonstrated that ZD55-IL-24

induced iNOS decrease in Hela, A375 and 7860 cells. Moreover,

the inverse expression of MDA-7/IL-24 and iNOS is related with

Bcl-2 S-nitrosylation. iNOS-siRNA dramatically inhibited Bcl-2 S-

nitrosylation level and facilitated its subsequent ubiquitination

degradation, thus activated the caspase signal pathway, suggesting

that IL-24-mediated iNOS reduction is involved with regulation of

Bcl-2 protein level via S-nitrosylation modification. However, like

phosphorylation and dephosphorylation, S-nitrosylation and

denitrosylation are the reversible post-translational modifications

that implicate in regulation of the signal transduction [31,32]. In

the present study, we also demonstrate that Bcl-2 S-nitrosylation

decrease in response to ZD55-IL-24 was attributed to not only

inhibition of iNOS, but also activation of denitrosylation enzymes

such as thioredoxin system. The thioredoxin system includes Trx

protein, Trx reductase (TrxR) protein and NADPH. Trx

denitrosylates S-nitrosylated protein through its dithiol moiety,

thereby forming a reduced protein thiol (-SH) and oxidized Trx

which is reduced by the seleno-flavoprotein Trx reductase (TrxR)

and NADPH [33], as shown in Fig. 9, II. Some studies revealed

that Trx system can reverse the inhibitory effects of NO on protein

function by catalyzing protein denitrosylation [34]. However,

inhibition of Trx1 or TrxR1 increased the amount of S-

nitrosylated caspase-3, suggesting the cellular Trx system regulates

basal and stimulus-induced caspase-3 denitrosylation [35]. In

agreement with the previous studies, our results also showed that

ZD55-IL-24 tilted the balance from Bcl-2 S-nitrosylation to

denitrosylation through TrxR1 expression increase and iNOS

protein level decrease. Moreover, TrxR1 inhibitor auranofin

dramatically reinstated Bcl-2 S-nitrosylation via suppression of

denitrosylating Trx1/TrxR1 system. Given that Fas or TNF-a as a

trigger of cell apoptosis was associated with activation denitrosyla-

tion of some caspase isoforms and NF-kB [36,37], whether MDA-

7/IL-24 via the other modulator like Fas or TNF-a would directly

or indirectly affect Trx1/TrxR1 system and be involved with Bcl-2

denitrosylation remains an outstanding issue.

Although the importance of gene expression in controlling

apoptotic signal pathway has been underlined, whether Bcl-2

turnover under MDA-7/IL-24 is mainly determined by the post-

translational modification is unclear. Our present findings verified

that the proteasome inhibitor MG132 blocks the decrease of Bcl-2

protein induced by ZD55-IL-24, suggesting Bcl-2 degradation in

response to IL-24 via ubiquitin-proteasome pathway. Some studies

have shown that S-nitrosylation of Bcl-2 prevented its ubiquitin-

proteasomal degradation and the apoptotic cell death induced by

chromium (VI) in lung cancers [16]. Additionally, NO inhibited

Bcl-2 ubiquitin-dependent degradation to restore Bcl-2 protein

level in human lung carcinoma H-460 cells [27]. These studies

demonstrated that Bcl-2 degradation induced by ubiquitination

was tightly associated with S-nitrosylation modification. Although

the exact mechanism by which Bcl-2 S-nitrosylation blocked Bcl-2

ubiquitination is not manifest, it may take part in the conforma-

tional change of S-nitrosylated Bcl-2 protein, which may prevent

its recognition and subsequent attachment of ubiquitin by the

enzyme ubiquitin ligase. Moreover, ubiquitin ligases themselves

were identified as targets for S-nitrosylation, which inhibited these

ligases like parkin, an E3 ubiquitin ligase [38]. Some previous

studies showed that S-nitrosylation of protein, such as Akt/PKB,

PLIP and caspases, has been reported to modulate their apoptosis

activities [35,39]. Our results also indicated that Bcl-2 down-

regulation induced by ZD55-IL-24 was linked to Bcl-2 S-

denitrosylation and subsequent Bcl-2 ubiquitination. On one

hand, the peaks of Bcl-2 denitrosylation and ubiquitination were

concurrent with the bottom of Bcl-2 expression. It suggested that

Bcl-2 S-denitrosylation and ubiquitination modification were

probably correlated incident. Moreover, IL-24-siRNA blocked

Bcl-2 S-denitrosylation and ubiquitination to reverse the decrease

of Bcl-2 expression, suggesting that IL-24 mediates the Bcl-2 S-

denitrosylation and ubiquitin degradation. On the other hand, the

addition of NO donor SNP inhibited Bcl-2 S-denitrosylation,

which subsequent attenuated ubiquitination, whereas NO inhib-

itor PTIO showed the opposite effects. Additionally, a known

inhibitor of S-nitrosylation DTT was able to prevent Bcl-2 S-

nitrosylation, thus facilitated its ubiquitin degradation and

activated the caspase protease family, indicating that NO was

involved with regulation of Bcl-2 denitrosylation, which further

influenced Bcl-2 ubiquitination and proteasomal degradation.

Taken together, our present study suggested that ZD55-IL-24

induced Bcl-2 denitrosylation, which facilitated its ubiquitination

and protein down-regulation through proteasome-mediated deg-

radation.

Some reports show that phosphorylation of Bcl-2 had also been

reported to affect the conformational changes and degradation via

ubiquitination. Dephosphorylation at Ser87 by ROS and TNF-a
has been shown to be required for ubiquitination and degradation

of Bcl-2 [18]. However, our study demonstrated that Bcl-2 S-

nitrosylation alteration via NO modulators was not involved with

the phosphorylation of Bcl-2. Since NO played a crucial role in

Bcl-2 denitrosylation and ubiquitination in cancer cell apoptosis

induced by ZD55-IL-24, it suggested that Bcl-2 denitrosylation

was a different mechanism from dephosphorylation induced by

ROS. Nevertheless, protein S-nitrosylation has emerged as a

redox-dependent post-translational modification. Alternatively,

ROS probably exhibited effects on regulation of Bcl-2 stability

through either denitrosylation or dephosphorylation. The detailed

mechanism needed to be further investigated.

To detect whether IL-24 mediated Bcl-2 denitrosylation is

involved with activation of the caspase signal pathway, we used

pharmacologic manipulation such as SNP and PTIO to adjust Bcl-

2 S-nitrosylation level and then detected the caspase protein

expression in response to ZD55-IL-24. Our data revealed that Bcl-

2 denitrosylation induced by ZD55-IL-24 triggered the activation

of caspase-9, caspase-3, PARP and final carcinoma cell apoptosis

from the results of western blotting and flow cytometry. In

addition, NO donor SNP enhanced Bcl-2 S-nitrosylation and thus

resisted cleavage of caspases. NO inhibitor PTIO had the opposite

effect. Consequently, we deduced that Bcl-2 denitrosylaiton

coupled with ubiquitination play an important role in activation

of the caspase signal pathway in response to ZD55-IL24.

In summary, our study suggests an important, regulatory role of

Bcl-2 stability in IL-24 mediated carcinoma cell apoptosis, as

shown in Fig. 9. Under basal condition, Bcl-2 S-nitrosylation

prevents it from ubiquitin degradation, which forms heterodimers
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with the proapoptotic protein Bax to neutralize its death effector

properties and switch cancer cell to survival. In contrast, under

stress condition, MDA7/IL-24 reduces Bcl-2 S-nitrosylation via

down-regulation of iNOS and up-regulation of TrxR1, which

further results in Bcl-2 ubiquitination modification. Released

cytochrome c followed by Bcl-2 degradation promotes the caspase

protease family activation, which mediates the intracellular

proteolysis and finally induces carcinoma cell apoptosis. Seeing

that increased iNOS production and Bcl-2 expression have been

associated with several human tumors, this finding on the novel

function of MDA-7/IL-24 on regulation of Bcl-2 denitrosylation

may provide a valuable mechanism for MDA-7/IL-24 induced

cancer-specific apoptosis.
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