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Pseudogenes have been considered as non-functional genes. However, peptides and
long non-coding RNAs produced by pseudogenes are expressed in different tumors.
Moreover, the dysregulation of pseudogenes is associated with cancer, and their
expressions are higher in tumors compared to normal tissues. Recent studies show
that pseudogenes can influence the liquid phase condensates formation. Liquid phase
separation involves regulating different epigenetic stages, including transcription,
chromatin organization, 3D DNA structure, splicing, and post-transcription
modifications like m6A. Several membrane-less organelles, formed through the liquid
phase separate, are also involved in the epigenetic regulation, and their defects are
associated with cancer development. However, the association between pseudogenes
and liquid phase separation remains unrevealed. The current study sought to investigate
the relationship between pseudogenes and liquid phase separation in cancer
development, as well as their therapeutic implications.
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INTRODUCTION

Cancer remains a global health threat, and its impact on human being has been intense. Excluding
melanoma skin cancer, there will be an estimated 19.3 million cancer diagnoses and around 10
million deaths worldwide in 2020 (1). The intricacy of cancer growth pathways, such as changes in
the cellular microenvironment, environmental variables, and aberrant gene/epigenetic expressions,
influences cancer management challenges. The epigenetic expression has been linked to the
development of liquid-liquid phase separation (LLPS). LLPS mediates the epigenetic expression
by providing the adaptability of the cellular microenvironment according to the cellular stress (2).
LLPS is formed by the interaction between RNAs-RNAs, RNAs-protein, ribonucleoprotein,
Abbreviations: 3D, Three dimensional; AKAP95, A Kina Anchoring Protein 95; Cx43, Connexin43; EDC3, Enhancer of
mRNA decapping 3; hnRNPDL, Heterogeneous ribonucleoprotein D-like; IDPs, Intrinsically disordered proteins; LINE-1 or
L1, Long Interspersed Element-1; LLPS, Liquid-liquid phase separation; NADs, Nucleolus associated domains; P-bodies,
Processing bodies; PCAWG, Pan-Cancer Analysis of Whole Genomes; RN7SKP9, 7SK small nuclear pseudogene; scaRNA2,
small Cajal body-specific RNA 2; TAZ, Transcriptional co-activator with PDZ binding motif; USP42, Ubiquitin Specific
Peptidase; YAP, Yes-associated protein.
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proteins-proteins, and non-coding RNAs interaction, which
subsequently results in the formation of dynamic condensates
(3–5).

Pseudogenes have been regarded as defective duplicates of
coding genes that lack a functioning gene product for decades
(junk DNA). However, using advanced technologies such as
RNA sequencing and proteomics analysis, the findings indicate
that pseudogenes can influence gene expression by competing
with miRNA for the parental gene targets, being translated into
peptides, and being transcribed into long non-coding RNAs that
participate in other cellular functions (6, 7). The recent
tremendous breakthrough in research on cancer has explored
the link between pseudogenes and cancer progression. For
instance, using cancer proteomics datasets, 1970 novel peptides
of pseudogenes were found in tumor tissues, where some
pseudogenes-encoded peptides are tumor-specific as
pseudogene RHOXF1P3 is upregulated up to 16 folds in breast
cancer (8). Moreover, peptide-encoded non-coding RNAs are
linked to cancer formation, with 2044 unique peptides detected
in tumor samples and 426 novel peptides found in healthy tissues
(8). Along the same lines, Cx43 pseudogene (YCx43), a
pseudogene of connexin43 (Cx43), which is a gap junction
protein, is highly expressed in several cancer cell lines but not
in normal cell lines (9). Table 1 summarises the correlation
between dysregulated pseudogenes and cancer cell proliferation,
migration, and poor prognosis.

Apart from their roles in cancer development, pseudogenes
affect the formation of liquid phase separation, and various
findings show that LLPS affects different epigenetic expression
levels. As a result, the abnormal expression of pseudogenes and
the formation of LLPS plays a significant role in cancer
development. The current study sought to sift through the
existing literature to assess the relationship between
pseudogenes and LLPS and cancer formation, which may
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provide a new perspective on approaching cancer development
in the future.
LLPS AND EPIGENETIC
EXPRESSION STAGES

Current research focuses on epigenetic expression as a result of
the dysregulation of several variables that contribute to cancer
formation. Among these factors, LLPS influences numerous
cellular events and subsequently affects different epigenetic
expression stages, including chromatin organization, histone
modification, transcription factors activation, RNA splicing,
non-coding RNAs metabolism, and m6A modification.
LLPS AND CHROMATIN ORGANIZATION

Genomic DNA is wrapped around histone proteins, forming the
more compact and dense complex known as chromatin. This
organization regulates various nuclear processes and controls
histone modifications or other chromatin-binding proteins (24).
The existing literature shows that the nucleosomal array
mediates the LLPS, where histone1 enhances the phase
separation and leads to the aggregates’ formation, while
histone acetylation suppresses the condensate formation (25).

Mechanically, MeCP2 competes with linker histone H1 and
compacts the nucleosomal array to maintain the chromatin
structure. A recent study shows that MeCP2 promotes chromatin
condensates by inducing the DNA methylation and LLPS on
nucleosomal arrays (26). In the same vein, heterochromatin-
binding protein HP1 serves as a transcriptional repressor by
binding to methylated lysine 9 residue of histone H3 and assists
TABLE 1 | Functions of pseudogenes in different tumors.

Pseudogene Function Reference

Pseudogene PTTG3P Its high indicates a poor prognosis breast cancer (10)
PseudogeneHMGA1P6 and
HMGA1P7

Their high expressions promote cancer migration and proliferation (11)

Pseudogene CTNNAP1 Its lower expression promotes cancer by downregulating its cognate gene CTNNAP1 gene expression (12)
Pseudogene from lncRNA DUXAP10 Its lower expression suppresses the proliferation, migration of pancreatic cancer (13)
HMGA1 pseudogenes HMGA1 pseudogene enhances the proliferation and migration of the mouse pituitary tumor cell lines (14)
DUXAP8 pseudogene DUXAP8 pseudogene promotes lung cancers by targeting EGR1 and RHOB (15)
DUXAP10 pseudogene DUXAP10 pseudogene can serve as a diagnostic, prognostic marker. It promotes hepatocellular carcinoma by

activating AKT
(16)

DUXAP10 pseudogene DUXAP10 pseudogene promotes lung cancer by binding with LSD1 and repressing LATS2 and RRAD (17)
Pseudogene derived from lncRNA
SFTA1P

It suppresses the proliferation and migration of gastric cancer (18)

DUXAP8 pseudogene DUXAP8 pseudogene promotes colorectal cancer proliferation, migration by interacting with EZH2 and
H3K27me3

(19)

Pseudogene derived from lncRNA
DUXAP8

It enhances gastric cancers proliferation and migration by silencing PLEKHO1 (20)

HMGA1P6 pseudogene HMGA1P6 pseudogene promotes ovarian cancer by enhancing the expression of HMGA1/2 (21)
DUXAP8 derived from lncRNA It promotes pancreatic carcinoma by silencing CDKN1A and KLF2 (22)
DUXAP8 pseudogene It promotes hepatocellular carcinoma proliferation and migration by sponging MIR-490-5P to enhance the BUB1

expression
(23)
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the chromatin cohesion, promoting aggregation formation in the
nuclear state (27). Additionally, numerous membrane-free
organelles generated by LLPS (such as paraspeckles and splicing
speckles) interact with chromatin via their long non-coding
RNAs (28).

To efficiently package the genome, the chromatin is settled in
three dimensional (3D) structure in the nuclear loci. The study
shows that the variation in 3D chromatin structure promotes
tumorigenesis (29). Furthermore, the evidence points out the
impact of LLPS on the 3D structure, where the suppression of
liquid phase separate by 1,6-hexanediol compromises the 3D
structure organization in living cells (30–33). Given that histone
modification and three-dimensional structure are connected
with liquid phase separation, and non-coding RNAs in
membraneless organelles interact with chromatin structure,
LLPS plays a critical role in chromatin organization.
LLPS AND TRANSCRIPTION FACTORS

Transcription factors are proteins that can bind to DNA
sequences to regulate the rate of mRNA transcription process
(34). To achieve transcription precision, the transcriptional
factors activate LLPS to concentrate the super-enhancers,
enrich the transcriptional factors, and bind the RNA
polymerase II. For instance, a transcriptional co-activator, Yes-
associated protein (YAP) mediates phase separate condensates
formation in the nucleus. Yu et al., 2021 reported that the
interferon-gamma induces cancer drug resistance by
promoting the nuclear translocation and phase different
condensate of YAP, and the disruption of YAP condensates
suppresses the tumor growth and promote immune responses
(35). Along the same lines, the RNA polymerase II is recruited in
phase separation condensates during the initiation of the
transcription process; then, the formed aggregate assists the
CycT1 to phosphorylate the carboxy-terminal domain of RNA
polymerase II, which subsequently promotes the transcription
elongation of polymerase II. Co-activator MED1 and
bromodomain-containing proteins like BRD4 promotes the
phase separation at the super-enhancers site (which is
dominated by Nanog, Sox, and Oct4) to augment the
transcriptional efficacy (36).

The study supports the function of transcription factors in
LLPS, demonstrating that synthetic transcription factor
aggregates upregulate gene expression up to five fold in various
mammalian cell lines and an in vivo model (37). TAZ, a
transcriptional co-activator with PDZ binding motif, is
increased in more than 20% of breast cancers and promotes
the growth and spread of cancer cells. TAZ coordinates
transcriptional responses by condensing its DNA-binding
cofactors and co-activators via the LLPS. The deletion of the
TAZ coiled-coil domain hinders the formation of LLPS and the
ability of the LLPS to begin the expression of its specific genes of
interest (38). Based on these findings, LLPS plays a significant
role in assuring transcription accuracy by aggregating the various
transcription factors.
Frontiers in Oncology | www.frontiersin.org 3
SPLICING AND LLPS

Alternative RNA splicing is the main step in gene expression
regulation that allows the production of different messenger
RNAs of varied functions from the same gene. Aberrant
alternative RNA splicing involves in pathophysiology leading
to various diseases, including cardiovascular diseases,
immunopathological diseases, neurological diseases, and
cancer (39).

The mRNA splicing mediates cellular developmental
processes by regulating the liquid phase separation formation.
For instance, Embryo defective 1579, which regulates the gene
transcription and mRNA splicing, induces the formation of the
condensate in vitro and in vivo, and its suppression affects the
global gene expression and mRNA splicing as well (40).
Similarly, Ubiquitin Specific Peptidase (USP42), which involves
the deubiquitination process, uses its C-terminal disordered
domain to drive the phase separation of spliceosome
components in regulating the various mRNA splicing events.
USP42 integrates the spliceosome component PLRG1 into
nuclear speckles, and its inhibition affects the splicing process,
which results in cancer development (41). To the same extent,
alternative splicing drives the phase separation of heterogeneous
ribonucleoprotein D-like (hnRNPDL), which is known to act as a
transcriptional regulator. The study reveals that a mutation of
the C-terminal disordered domain of hnRNPDL promotes the
formation of the aggregates and affects the splicing products (42).
Kawachi et al. show that splicing of the large exons is associated
with phase separation of transcription factors, where the
depletion of splicing factors, such as hnRNP K and SRSF3
disrupt the condensate assemblies (43). Le et al. demonstrate
that a nuclear protein known as A Kina Anchoring Protein 95
(AKAP95), mediates different cellular events, including histone
modification, cell-signaling pathways, and RNA splicing can
induce phase liquid separate-like aggregates. The AKAP95
requires the LLPS to control the transcription and RNA
splicing effectively, and its defect in the biophysical property
and aggregates formation is associated with cancer development
(44). Thus, LLPS is an essential regulator of the splicing process,
and its aberrant production causes malignancy.
ROLE OF M6A IN LLPS PROCESS

m6A is the most prevalent mRNA modification, accounting for
25% of all mRNAs. m6A affects the mRNA’s placement,
translation, and degradation, depending on the included
transcript. To achieve these mRNA metabolism processes
accurately, m6A is assisted by its readers. The m6A readers such
as YTHDF1, YTHDF2, and YTHDF3 can undergo LLPS, and this
phase separation process depends on the abundance of m6A (45).
For instance, YTHDF2 can recruit the m6A -containing transcript
into P-bodies for being degraded (46). Moreover, Translocated in
LipoSarcoma/Fused, a nuclear RNA-binding that forms the
membrane-less aggregates, is affected by various m6A
modifications in mediating the liquid phase separate
July 2022 | Volume 12 | Article 912282
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condensates (47). Lee et al. show that the m6A modification
regulates gene expression through liquid phase separate
intervention. Furthermore, they reveal that m6A on enhancer
RNAs display the highly active enhancers and recruit m6A
reader (YTHDC1) to liquid phase separate into aggregates
formation, which co-mixes with BRD4. This phase-separated
condensate of m6A-enhancer RNA and YTHDC1 reveals the
importance of enhancer RNA modification in the LLPS and
gene expression control processes (48).

Apart from its role in mediating LLPS, the dysregulation of LLPS
due to the defect in m6A expression is associated with cancer. The
m6A is required for YTHDC1 to undergo LLPS and form nuclear
aggregates, where the number of nuclear YTHDC1-m6A aggregates
is higher in acute myeloid leukemia than in normal hematopoietic
stem cells (49). Based on the aforementioned evidence, m6A
modification and other epigenetic mediators like chromatin
organization and splicing may collaborate to influence the RNA
transcript regulation/destiny and mediate the liquid-liquid phase
separation process. Their dysregulation contributes to cancer
development (Figure 1). As the current study fouses on m6A,
future studies could explore the impact of other RNAmodifications
to LLPS formation.
PSEUDOGENES FORMATION

Pseudogenes have been considered as non-functional relatives of
genes that have lost their protein-coding capability as they lack
Frontiers in Oncology | www.frontiersin.org 4
the necessary sequence required for transcription or translation.
More than 10% of the human genome is characterized as
pseudogenes and more than 2,075 human genes are denoted
by at least one pseudogene. Pseudogenes are frequently
generated by DNA duplication, nonsense mutation, or mRNA
transcripts that undergo reverse transcription which leads to
processed pseudogenes. More than 8,000 processed pseudogenes
are associated with Long Interspersed Element-1 (LINE-1 or L1)
retrotransposition machinery (50). LINE-1 mRNA achieves its
task by using its peptides, namely ORF1p (a nucleic acid
chaperone) and ORF2p (an endonuclease and reverse
transcriptase). L1 retro-transposition uses its enzymes to
reverse the target mRNA transcript and integrate it into the
host genome, resulting in a processed pseudogene as a final
product (50).
ROLE OF PSEUDOGENES IN LLPS

LLPS is referred as physical changes of a substance from one state
into another, where the homogeneous substance de-mixes into
two liquid phase states depending on the threshold of
concentration. The factors which influence the threshold
concentration of substance include pH, chaperons, ATP,
temperature, and posttranscriptional/posttranslational
modification (51, 52). Membrane-less organelles are formed by
LLPS, once diverse macromolecules such as peptides, coding
RNAs, and non-coding RNA connect due to the presence of
FIGURE 1 | Interaction between pseudogenes and LLPS to mediate cancer: Pseudogenes can be produced in three processes: pseudogenes due to nonsense
mutation, pseudogene due to DNA duplication, and processed pseudogenes as the result of retrotransposition machinery. Both LINE-1 and pseudogenes can
mediate the liquid phase condensates formation. A defect in pseudogenes expression may affect the liquid phase separate process, eventually affecting the
epigenetic mediators, including chromatin organization, DNA 3D structure, transcription factors, alternative splicing, and m6A modification. Abnormal expression in
these epigenetic mediators promotes cancer development.
July 2022 | Volume 12 | Article 912282
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various interactions such as ionic bonds, hydrogen bonds, and
van der Waals forces (53).

The main question is whether non-coding RNAs like
pseudogenes can mediate the liquid phase condensates
formation. To obtain the answer based on the published
literature, the authors first analyzed L1 retrotransposons’
impact on liquid phase separation. As L1 retrotransposons play
a critical role in processed pseudogene formation, the crosstalk of
L1 retrotransposons to LLPS can indirectly affect the processed
pseudogenes formation. Several findings unveil the role of L1
retrotransposons in liquid phase separate formation. The recent
study discloses that LINE-1 ORF1 proteins are among other
RNA-binding proteins co-localized in stress granules, and LINE-
1 ORF1 proteins collaborate with stress granules and processing
bodies (P-bodies) to mediate the processed pseudogenes
formation (54). L1 is also involved in developing P-bodies
since ORF1p co-localizes with non-L1 mRNA that is elevated
in P-body granules (55).

Recent study has revealed that LLPS is regulated by
intrinsically disordered proteins (IDPs). These misfolded
proteins lack a proper 3D structure, which help them to form
membrane-less organelles (56, 57). The alpha-synuclein and
beta-amyloid are common misfolded proteins in liquid phase
aggregate formation (57). As science evolves, a recent study
shows that pseudogenes influence the LLPS by mediating the
aggregation of these misfolded proteins. For instance,
pseudogene T04B2 regulates the accumulation of beta-amyloid
and alpha-synuclein proteins leading to the formation of the
aggregates, where the downregulation of pseudogene TO4B2
intensifies the beta-amyloid and alpha-synuclein protein
condensates formation (58). This suggests that the interplay of
pseudogenes and misfolded proteins controls the liquid phase
separation process.

Besides, pseudogene ACTBP2 is associated with b-Amyloid
(Ab) depositionin mediating blood-brain barrier permeability,
which reveals the interaction between pseudogene and b-
Amyloid in regulating barrier permeability (59). Moreover,
mRNA purification in P-bodies reveals that 89% is enriched
with protein-coding RNAs compared to 67% of non-coding
RNAs, with the percentage of pseudogene RNAs among non-
coding RNAs co-localized in the P-bodies (60). Similarly, the
transcriptomes of lysate granules and stress granules show the
presence of various classes of non-coding RNAs, such as long
non-coding RNA and pseudogene RNAs as well (61). Another
recent study shows a high 7SK small nuclear pseudogene
(RN7SKP9) enrichment in stress granules (62). In addition, the
nucleolusformed by LLPS involves ribosome biogenesis, cell
cycle, DNA damage, and sensing the stress response (63). By
using fluorescence-activated cell sorting to isolate the nucleolus
and deep sequencing to characterize the nucleolus-associated
domains (NADs), pseudogenes are the most enriched in NADs
among non-ribosomal RNAs gene, which reveals the impact of
pseudogenes in influencing the 3D chromatin structure (64).

Moreover, the dysregulation of the liquid phase separately
affects nucleolus formation and leads to different diseases like
ribosomopathies, neurodegenerative disease, aging, and cancer
Frontiers in Oncology | www.frontiersin.org 5
(65). The aberrant expression of pseudogenes in NADs can lead
to various illnesses, based on evidence that NADs include
pseudogenes and the fact that liquid phase condensate impacts
the nucleolus to mediate physiology and pathology.

Another membrane-less organelle that formed via liquid
phase separation is the Cajal body with coilin protein as
scaffold protein. Cajal bodies are involved in the cell cycle, cell
proliferation, ribonucleoprotein, and telomerase production
(66). A recent study shows that the pseudogenes of coilin,
coilp1 is accumulated in the nucleus, with strong accumulation
in the nucleolus. The same research shows that the protein
produced by pseudogene coilp1 has the ability to bind to small
Cajal body-specific RNA 2 (scaRNA2) and small Cajal body-
specific RNA 9 (scaRNA9) (67). The scaRNA2 is highly
overexpressed in colorectal cancer than normal tissues. The
findings reveal that the overexpression of scaRNA2 competes
with miR-342-3p by ending up with the high expression of
epidermal growth factor receptor, leading to colorectal cancer
chemo-resistance (68). Increased expression of scaRNA2 also
promotes cell proliferation, migration, and invasion in cutaneous
squamous cell carcinoma (69).

To summarise, the data indicates that pseudogenes may play a
significant role in LLPS by engaging in various misfolded
proteins and co-localizing with various membrane organelles
such as the nucleolus, Cajal bodies, stress granules, and P-bodies.
PSEUDOGENES AND LLPS IN CANCER

According to the aforementioned findings, LLPS significantly
impacts several epigenetic stages, which therefore may mediates
cancer development. The dysregulation of different membrane-
less organelles formed via LLPS, including P-body, Cajal body,
and stress granules, promotes cancer progression and metastasis.
For instance, the mammary epithelial cells treated with
transforming growth factor-beta promote the P-body
formation and EMT, while the inhibition of P-body formation
suppresses the EMT (70). Bearss et al. show that the enhancer of
mRNA decapping 3 (EDC3) regulates the cancer cells
proliferation and invasion by upregulating the P-body
maturation. The inhibition of Pim1 and 3 protein kinases
(which phosphorylate the EDC3) obstructs the localization of
EDC3 in the P-body (71). Besides, Beneventi et al. show the role
of Cajal bodies in cancer progression, where small Cajal body-
specific RNAs 15 (SCARNA15) regulate the alternative splicing
by modulating the pseudouridylation of U2 spliceosomal RNA,
which influences the suppressor tumor genes like p53 and ATRX.
Suppression of SCARNA15 downregulates the p53 expression,
followed by cancer cells proliferation (72). Moreover, Adjibade
et al. show how the stress granules formation affects cancer drug
resistance, where Lapatinib, a tyrosine kinase inhibitor in breast
cancer treatment, induces stress granules formation and
suppresses the translation initiation by targeting the translation
initiation factor elF2a (73). These results reveals therefore the
importance of liquid phase separation and related membraneless
organelles in driving cancer growth.
July 2022 | Volume 12 | Article 912282
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Apart from the involvement of LLPS in the epigenetic stages,
the recent studies also show the impact of pseudogenes in these
cellular processes, including splicing, transcription factors
regulation, and chromatin organization. For instance, the
splicing of pseudogene CYP3AP1 to CYP3A7 induces the
formation of CYP3A7.1L, which has different functional
properties and distribute in tissue specifically than the parental
CYP3A7 enzyme (74). In the line of transcriptional activities, a
transcriptional factor, Foxo3, is regulated by the expression of
Foxo3 pseudogene (75). Another interesting finding is that the
effects of pseudogene on the structure of chromatin are
implicated by computational and experimental evidence
showing a connection between the modifications of DNA and
histones, as well as chromatin remodeling (76). Similarly, mOct4P4
lncRNA interacts SUV39H1 (histone methyltransferase) and RNA
binding protein FUS to target its parental Oct4 promoter
heterochromatin formation (77). Moreover, the recent study
shows that the methylation of parental genes and pseudogenes are
different in a tissue-specific manner (78). These findings reveal the
role of pseudogenes in different cellular processes (Figure 2).

Based on the formation of pseudogenes, LINE-1
retrotransposons contribute a lot to produce the processed
pseudogenes. Therefore, it is paramount to glance at the impact
of these retrotransposons in cancer development before reaching
the pseudogenes themselves. The literature shows that about half
of all somatic cancers are associated with the integration of
retrotransposons, and also LINE-1 retrotransposons compose
about 17% of the entire DNA content (78). These evidence
brought light to the hypothesis that overexpression LINE-1
retrotransposon might be considered a hallmark of many
cancers. Mechanically, abnormal L1 integrations induces the loss
Frontiers in Oncology | www.frontiersin.org 6
of tumor suppressor genes or the amplification of oncogenes via
breakage–fusion–bridge cycles. Pan-Cancer Analysis of Whole
Genomes (PCAWG) project identified 19,166 somatically
acquired retrotransposition events, which affected 35% of
samples and LINE-1 variation is the most frequent in
esophageal adenocarcinoma and the second in colorectal cancers
(79). LINE-1 RNA is composed of two non-overlapping open
reading frames, encoding two proteins, ORF1p and ORF2p. The
expression level of ORF1p is 1000-10,000 times higher than
ORF2p, which makes ORF2p less detectable in many cancers.
The quantitative analysis shows that the LINE-1 ORF1p encoded
peptides are highly overexpressed in uterine corpus endometrial
carcinoma, ovarian cancer, and colon cancer compared to their
respective normal samples (80).

Moreover, Cancer Genome Atlas (TCGA) analysis shows that
expression levels of ORF1p bound mRNAs correlate with the
expression of LINE-1 RNA in prostate cancer. In the same study,
the findings show that ORF1p interacts with various non-LINE-1
mRNA targets, and these interactions were especially enriched to
P-bodies in prostate cancer (55). According to the investigation of
the cancer genome atlas and bioinformatics tools, the expression
of ORF1p identified in the P-body is connected with the
production of pseudogenes and the development of tumors (55).
As the LINE-1 retrotransposition involves processed pseudogene
formation, the recent study validates that retrotransposition
promotes cancer growth. Retrotransposition is related to
processed pseudogene insertion in small lung and colorectal
cancers, where the pseudogenes are integrated into the
promotor or first exon of the suppressor gene (81). Similarly,
the retrocopy process is linked to structural variation in human
genomes and that several prominent retrocopy insertions are
FIGURE 2 | Overview of involvement of pseudogene in different cancer in the human body. Icons of body parts for the refrence are taken from different websources.
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present in malignancies, whereas it is absent in healthy
persons (82).

Beta-amyloid fibrils and alpha-synuclein misfolded proteins
interact with the pseudogene TO4B2. LLPS is known to be
exacerbated by these misfolded proteins. Recent studies reveal
the role of these misfolded proteins in cancer development. For
instance, the accumulation of amyloid is considered as a part of
the tumor microenvironment in glioma, and authors suggest that
these accumulations might serve as diagnostic and therapeutic
markers (83). The beta-amyloid also promotes the growth and
migration of cancer cells by upregulating glial-specific fibrillary
acidic protein (GFAP) expression and enhancing angiogenesis.
The study also found that amyloid-beta is collected in breast
cancer and that its high accumulation is related to high-grade
breast cancer (84). The accumulation of amyloid-beta
isassociated with the downregulation of tumor suppressor p53
in cancer (85).

To sum up, retrotransposition elements have a potential role in
regulating LLPS and processed pseudogenes. Besides, the
dysregulation of pseudogenes expression may affect the misfolded
protein regulation. The abnormal retrotransposition elements may
affect the pseudogene production, which affects the misfolded
protein regulation, resulting in the disorganized liquid phase
separate condensate, which can ultimately enhance tumorigenesis.

The findings from bioinformatics databases reveal that
modifications and mutations in OCT4 pseudogenes are
connected with low survival rate in cancer patient, indicating
its potential for cancer prognosis (86). Besides, eight processed
OCT4 pseudogenes, produced by the POU5F1 gene, exist in
different cancer cell lines (87). Mutations in tumour suppressor
genes, notably in the PTEN tumour suppressor gene, are thought
to be a hallmark of cancer. Methylation of the PTENP1
pseudogene is significantly more prevalent in endometrial
cancer than in normal tissues. Due to the possibility of
competing for endogenous mRNAs, pseudogene methylation
reduces transcription, resulting in the downregulation of the
PTEN gene (88). Besides, some pseudogenes are cancer-specific,
like CXADR-Y expression is upregulated in more than 25% of
prostate cancer tissues and has no expression in normal tissues
(89). For instance, the embryonic NANOG (NANOG1) gene,
which is known as an essential regulator of pluripotency, its
deregulation promotes cancer development. The recent study
shows that NANOGP8 (NANOG-pseudogene) involves
tumorigenesis, and single NANOG1-CRCs form spherical
aggregates, indicating its potential in LLPS (90).

Apart from the role of pseudogenes at the transcription level,
m6A on pseudogenes induce the gene expression accordingly.
For instance, some RNAs of processed pseudogenes have more
m6A levels than their equivalent protein-coding genes, and this
modification promotes the degradation of RNA pseudogenes
depending on the microRNAs’ involvement (91). Moreover, this
modification assists the pseudogenes to mediate tumor growth,
where m6A modified pseudogene HSPA7 regulates the immune
responses in glioblastoma. The HSPA7 pseudogene triggers the
development of YAP1 and LOX, which is followed by
macrophage infiltration and the expression of SSP1 (92).
Frontiers in Oncology | www.frontiersin.org 7
Taken together, the pseudogenes can influence gene
expression and cancer development due to their presence in
different epigenetic factors like LLPS, transcription process, m6A
modification, regulating the misfolded proteins, and some of
them are cancer-specific (Figure 2).
CLINICAL UTILITY OF PSEUDOGENES
AND LLPS IN CANCER MANAGEMENT

Several challenges have been identified in cancer management,
including cancer relapse and chemo-resistance. It is known that
the best treatment relies on accurate diagnosis. To overcome
cancer therapy failure, new indicators could be investigated.
Nevertheless, the new findings demonstrate that pseudogenes
are elevated in cancer tissues than their normal counterparts, and
their overexpressions are related to poor prognosis. For instance,
pseudogene DUXAP10 is upregulated in different types of cancer
(93). Besides, high expression of ANXA2 pseudogene induces a
shorter overall survival in hepatocellular carcinoma patients (94).
Similarly, increased expression of HSPB1P1 pseudogene is
associated with poor prognosis in renal cell carcinoma (95).
Thus, it reveals that pseudogenes can serve as novel markers in
cancer diagnosis.

Additionally, a recent study discovered that LLPS-related
genes are overexpressed in various malignancies, including
ovarian epithelial carcinoma (96). Moreover, aberrant of LLPS
is associated with cancer drug resistance in multiple myeloma.
The mechanism behind this chemo-resistance is that the
overexpression of histone methyltransferase NSD2 promotes
the elevated steroid receptor coactivator-3 (SRC-3) by
stimulating its aggregates formation via LLPS. Targeting this
interaction using an inhibitor, SI-2, enhances the BTZ treatment
functionality and overcomes this chemo-resistance (97). Along
the same lines, the inhibition of core regulatory circuity, which
interacts with super-enhancer to mediate LLPS at the
transcriptional level, uses H3K27 demethylase inhibitor, GSK-
J4, re-sensitizes the chemotherapy in osteosarcoma (98).

Following that, pseudogene can affect the liquid phase
separation process. Abnormal pseudogene expression and
LLPS formation can promote cancer growth, resulting in a low
survival rate, a poor prognosis, and chemo-resistance (99).
Therefore, impact of pseudogenes and LLPS may be used as
biomarkers in cancer diagnosis, and targeting LLPS may give a
novel therapeutic approach in near future.
CONCLUSIONS AND
FUTURE PERSPECTIVES

Since the last few decades, much effort and research have been
made to unravel the interplay of the small biomolecules involved
in carcinogenesis. However, the connection between pseudogenes
and the liquid phase remains fragmented. The purpose of this
review is to examine the relationship between LLPS and
July 2022 | Volume 12 | Article 912282
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pseudogenes and their potential impacts on cancer development.
Based on the findings, pseudogenes considered junk DNA, are
involved in different gene expression stages, including
transcription process, post-transcription modifications, and
regulating the liquid phase condensates formation.

The dynamicity of liquid phase separation (its property to mix
and de-mix depending on cellular stress) greatly impacts gene
epigenetic expression regulation. Its defect may result in different
diseases, including infectious diseases, neurodegenerative
disorders, and cancer. Since tumors may change morphology
and respond in unpredictable ways, it’s critical to think about
how pseudogenes (some of which are only found in tumor cells)
can affect future cancer detection and treatment. Moreover, it will
be interesting to explore the potential biomarkers based on LLPS
in different diseases diagnosis and treatment. For instance, studies
could investigate whether scaffold protein expression of the
membraneless organelles can be used to differentiate cancer cells
from normal cells. Furthermore, based on the fact that
pseudogenes are considered as long non-coding RNAs, and their
Frontiers in Oncology | www.frontiersin.org 8
impact to LLPS is tremendous, it would be for paramount to assess
the impact of microRNAs to the LLPS in the future.
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et al. Identification of Nucleolus-Associated Chromatin Domains Reveals a
Role for the Nucleolus in 3D Organization of the A. Thaliana Genome. Cell
Rep (2016) 16(6):1574–87. doi: 10.1016/j.celrep.2016.07.016

65. Lafontaine DLJ, Riback JA, Bascetin R, Brangwynne CP. The Nucleolus as a
Multiphase Liquid Condensate. Nat Rev Mol Cell Biol (2021) 22(3):165–82.
doi: 10.1038/s41580-020-0272-6

66. Yao Y, Tan HW, Liang ZL, Wu GQ, Xu YM, Lau ATY. The Impact of Coilin
Nonsynonymous SNP Variants E121K and V145I on Cell Growth and Cajal
Body Formation: The First Characterization. Genes (Basel) (2020) 11(8):895.
doi: 10.3390/genes11080895

67. Poole AR, Enwerem II, Vicino IA, Coole JB, Smith SV, Hebert MD.
Identification of Processing Elements and Interactors Implicate SMN,
Coilin and the Pseudogene-Encoded Coilp1 in Telomerase and Box C/D
scaRNP Biogenesis. RNA Biol (2016) 13(10):955–72. doi: 10.1080/
15476286.2016.1211224

68. Zhang PF, Wu J, Wu Y, Huang W, Liu M, Dong ZR, et al. The lncRNA
SCARNA2 Mediates Colorectal Cancer Chemo-Resistance Through a
Conserved microRNA-342-3p Target Sequence. J Cell Physiol (2019) 234
(7):10157–65. doi: 10.1002/jcp.27684

69. Zhang Z, Jia M, Wen C, He A, Ma Z. Long non-Coding RNA SCARNA2
Induces Cutaneous Squamous Cell Carcinoma Progression via Modulating
miR-342-3p Expression. J Gene Med (2020) 22(12):e3242. doi: 10.1002/
jgm.3242

70. Hardy SD, Shinde A, Wang WH, Wendt MK, Geahlen RL. Regulation of
Epithelial-Mesenchymal Transition and Metastasis by TGF-b, P-Bodies, and
Autophagy. Oncotarget (2017) 8(61):103302–14. doi: 10.18632/oncotarget.21871

71. Bearss JJ, Padi SK, Singh N, Cardo-Vila M, Song JH, Mouneimne G, et al.
EDC3 Phosphorylation Regulates Growth and Invasion Through Controlling
P-Body Formation and Dynamics. EMBO Rep (2021) 22(4):e50835.
doi: 10.15252/embr.202050835

72. Beneventi G, Munita R, Cao Thi Ngoc P, Madej M, Cieśla M, Muthukumar S,
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