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Evolution and Selection in Yeast Promoters:
Analyzing the Combined Effect of Diverse
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In comparative genomics one analyzes jointly evolutionarily related species in order to identify conserved and
diverged sequences and to infer their function. While such studies enabled the detection of conserved sequences in
large genomes, the evolutionary dynamics of regulatory regions as a whole remain poorly understood. Here we
present a probabilistic model for the evolution of promoter regions in yeast, combining the effects of regulatory
interactions of many different transcription factors. The model expresses explicitly the selection forces acting on
transcription factor binding sites in the context of a dynamic evolutionary process. We develop algorithms to compute
likelihood and to learn de novo collections of transcription factor binding motifs and their selection parameters from
alignments. Using the new techniques, we examine the evolutionary dynamics in Saccharomyces species promoters.
Analyses of an evolutionary model constructed using all known transcription factor binding motifs and of a model
learned from the data automatically reveal relatively weak selection on most binding sites. Moreover, according to our
estimates, strong binding sites are constraining only a fraction of the yeast promoter sequence that is under selection.
Our study demonstrates how complex evolutionary dynamics in noncoding regions emerges from formalization of the
evolutionary consequences of known regulatory mechanisms.
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Introduction

Genomic regulatory regions harbor complex control
schemes that collectively allow the genome to operate in a
flexible and dynamic fashion. Such control schemes are
encoded into the DNA sequence in a way that is not yet fully
understood. Important elements of such regulatory code are
short DNA sequences that are bound by transcription factors
(TFs). TFs bind regulatory DNA specifically, by recognizing
short motifs, and contribute to the assembly of complex
switches that govern the transcription of a gene, given various
environmental or internal signals. Much of the current
understanding of the way in which DNA determines the
regulatory program of a gene is based on identification of TF
binding sites (TFBSs) and their association with TFs of known
function.

Despite remarkable progress in functional genomics
technologies, and in the ability to experimentally profile
TF-DNA interactions on a genomic scale [1,2], the under-
standing of function in regulatory regions remains a major
challenge. At the same time, the complete sequencing of
evolutionarily close genomes has made the detailed compa-
rative study of regulatory regions possible. Consequently,
comparative genomics has emerged as one of the central ways
by which regulatory signals are computationally detected and
studied. All comparative methods assume (explicitly or
implicitly) an evolutionary model that distinguishes neutral
sequences from functional ones. Most commonly [3-7],
comparative studies focus on conservation, classifying se-
quences to be functional or nonfunctional by assuming that
evolution in functional loci is slower. In yeast, many
conserved loci were shown to correspond to TFBSs, allowing
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detection of novel sites that were not identifiable using single
species methods.

As more species are sequenced, a desirable challenge is to
extend the simple conservation-based studies by adding more
structure to the function-evolution relationship in regulatory
regions. In coding regions, our understanding of the genetic
code makes sophisticated evolutionary predictions possible,
e.g., by identifying cases of positive selection [8], correlated
residues [9], and more. It is hoped that by acquiring better,
more detailed understanding of the function encoded by
regulatory loci, one can greatly extend the utility of
comparative studies in a similar way.

In this study, building on simple assumptions of the
mechanisms of transcriptional regulation, we formalize an
evolutionary model combining a neutral mutational process
with selection on multiple heterogeneous TFBSs. We develop
techniques for computing the likelihood of such a model
given pairwise alignments and for learning maximum-like-
lihood model parameters. Using the new techniques, we can
express a substantial part of the current functional knowl-
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edge on gene regulation in evolutionary terms and evaluate
observed patterns of divergence and conservation based on
this model. Applying our method to promoter sequences of
Saccharomyces yeast species, we validate our approach and
exemplify its use. Specifically, we discuss how the selection on
binding sites of different TFs vary in intensity, and how some
families of similar TFBSs are in fact divided into subgroups
that are separated by selection. We compute the fraction of
promoter sequence that is under selection due to charac-
terized TFBSs and show that strong TFBSs constitute only a
small fraction of the promoter sequences in yeast. The gap
between selection due to strong TFBSs and global estimates
of the selection on yeast promoters can be used to estimate
the relative roles of classical binding sites and of other effects
(low affinity transcriptional interactions, and possibly other
factors, e.g., chromatin organization) in driving functional
transcriptional networks.

Results

Probabilistic Modeling of Promoter Evolution

We developed an integrated model for the evolution of
promoters under the influence of heterogeneous TFBSs
(Methods). Briefly, the TF recognition code is a collection of
distinct DNA motifs, where each motif (corresponding to a
TF) is represented by a set of nucleotide k-mers. We assume
that each set (termed target k-mer set) contains all k-mers
recognized by the TF (see Figure 1A for an illustration), and
any appearance of a k-mer from the target k-mer set is
declared to be a binding site. All k-mers in the same target k-
mer set are of the same length, but are otherwise uncon-
strained. In practice, target k-mer sets are usually variations
over a consensus sequence. Our model represents a simpli-
fication of a much more complex biological reality, by
assuming that binding at each locus is completely determined
by the existence of a motif, and is either perfect or
nonexisting (therefore ignoring differences in binding
affinity between k-mers of the same target k-mer set). These
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simplifications allow us to develop a model for which
computation is practical, but should be carefully evaluated
and eventually relaxed in future revisions of the model.

To model the evolution of a promoter region, we assume
that sequences are evolving neutrally, except for loci affected
by selection on TFBSs. Each target k-mer set (and therefore
each TF) is associated with a selection factor 0 < o < 1, which
represents the relative fixation probability of a mutation
introducing or eliminating a binding site (note that the
selection factor is not equivalent to the classical selection
coefficient). Smaller ¢ values represent stronger selective
pressure on loci bearing k-mers that belong to a given target
set. Our model assumes that each appearance or loss of a
TFBS is selected against. The replacement of a k-mer from a
target set by another k-mer from the same target set is not
selected against, since according to our model all k-mers in
the same target set are equivalent. This simple functional
model allows us, once equipped with a TF recognition code,
to write down a Markov model representing the evolution of
an entire promoter sequence.

The evolutionary forces outlined in our model affect the
rate of mutation at a particular single base if it is in the
context of a TFBS. The evolution of one base can therefore
depend on several adjacent bases, and the model formalizes
this type of epistasis using the simple assumptions of TFBSs
described above. Although the epistasis considered by the
model is simple and spatially limited (including only binding
site k-mers), exact computation of the likelihood of a TF
recognition code given a multiple or even pairwise alignment
is very difficult and involves exponentiation of a 4! by 4!
matrix, 1 being the sequence length. We developed algorithms
for approximate calculation of the likelihood of a model,
which provide us with a method for evaluating to what extent
our model agrees with the patterns of divergence in the
alignment. We score models by comparing their likelihood to
that of a null model representing neutral substation rates on
independent loci, deriving a log-likelihood ratio (LLR) score.
Using these tools, we can search for maximum likelihood
selection factors for a given recognition code, e.g., based on
available experimental information. We can also learn a
recognition code de novo directly from alignments and study
the collective evolution of a group of TFBSs in an unbiased
fashion (Methods).

We note that our framework was not designed as an attempt
to develop another TFBS motif finding algorithm, a problem
that is already treated extensively in the literature [10].

We focused on the evolutionary dynamics of Saccharomyces
gene regulatory regions. The yeast system has the advantage
of many well-documented TFBS motifs and clearly identifi-
able promoters, and was used before in many studies of
transcriptional regulation and its evolution [4,6,11]. We
extracted pairwise alignments from multiple alignments of
Saccharomyces sensu stricto species (Methods). For example, the
resulting alignments for S. cerevisiae—S. mikatae consisted of
more than 900,000 aligned bases from the upstream regions
of 3,503 genes, with 74.2% identity. Alignments of S.
cerevisiae=S. bayanus and of S. cerevisiae-S. paradoxus were also
used (Table S1).

Literature-Based TFBSs
We started by constructing an evolutionary model from
known TF binding models. We used the compendium of TFBSs
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Figure 1. An Integrated Model for Evolution under the Effect of Multiple TFs

(A) A TF recognition code. The TF recognition code model is defined by a set of target k-mer sets identified by specific TFs, and selection factors that
quantify the intensity of selection on substitutions affecting them. In this example, the model consists of three target k-mer sets for three TFs. The
background substitution probabilities are also part of the model.

(B) Selection on k-mers. Substitutions between k-mers that belong to a target k-mer set (large grey circles) and k-mers that do not belong to that target
k-mer set are under negative selection. The probability for that substitution is derived by multiplying the background probability by the appropriate
selection factor(s).

(C) Epistatic blocks. To compute the likelihood of a model given alignments, we first decompose the sequence into epistatic blocks that evolve almost
independently of each other. Nontrivial epistatic blocks (marked by rectangles) include overlapping TFBSs or k-mers that are one substitution away
from a target k-mer set (boundary k-mers). Ovals marked TFX represent a TFBS for TF X. Ovals marked (tfX) represent boundary k-mers for TF X. Loci that
are not related to any TF form trivial epistatic blocks of size 1, and are not shown.

(D) Scheme for computing likelihood. We approach the complex task of computing likelihood in our model by decomposing the sequence to epistatic
blocks and computing likelihood inside each of them.

doi:10.1371/journal.pcbi.0040007.g001

composed by Maclsaac et al. based on extensive ChIP-on-chip
data and literature review [12]. Out of 124 consensus sequences
reported by the authors (in IUPAC format), we chose those 94
that translated to target k-mer sets containing at most 512 k-
mers each, and had at least five matches in the aligned S.
cerevisiae—S. mikatae promoters. We constructed a model
starting from an empty one, and incrementally attempting to
add each of the 94 target k-mer sets (in an arbitrary order). For
each candidate target k-mer set in turn, we tentatively added it
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to the model and inferred an optimal selection factor for it.
We then tested whether the expanded model with the added
target k-mer set had a selection factor smaller than 1 and a
higher model likelihood (note that a target k-mer set with a
selection factor equal to 1 would result in a log-likelihood ratio
of 0). If this was the case, the target k-mer set was accepted to
the model. Otherwise it was rejected and not kept in the
model. In total, we accepted 74 target k-mer sets (79%). Similar
results were obtained for the other two yeast species.
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We next studied possible factors that contribute to
acceptance or rejection of literature target k-mer sets in
our model. According to our model, every appearance of a
motif is considered to be functional and under selection. In
reality, not all appearances are necessarily functional, and
some may be functionally different than others. We examined
the correlation between the number of appearances of k-
mers from a target k-mer set in the data and the model
acceptance rate. While 87% of the target k-mer sets with 0-
149 hits were accepted, only 77% of target k-mer sets with
150-499 hits were accepted, and only 47% of the target k-mer
sets with more than 500 hits were accepted. These results
suggest that the specificity of some of the literature target k-
mer sets may be too low to allow acceptance by our rather
stringent model.

To try to control for motif specificity in a systematic way, we
next examined, for each TF, a model constructed using a
limited dataset, containing only pairwise alignments of
promoters that were found to be bound by that TF in ChIP-
on-chip experiments (using a p < 0.005 cutoff) [2,13]. Since the
set of ChIP-bound promoters is different for each TF, we could
not construct a complete model in this case, but simply
computed the LLR for each TF in a model containing a single
k-mer target set. We call the resulting model the ChIP model.
Out of 62 TFs with at least five hits in the ChIP bound
promoters, 52 target k-mer sets had positive LLR at ¢ <1
(84%), of which six were not accepted in the original model
(Spt2, Ndd1, Swib, Basl, Hap2 and Met31). All of the target k-
mer sets that were accepted in the original model but not in
the ChIP model (27 in total) had fewer than five hits in the ChIP
data and therefore were not considered. In summary, although
our model assumptions are simplistic, they are enough to
roughly approximate the behavior of a large fraction of the
known binding sites in the yeast genome. The cases of known
TFBSs whose evolution is not well captured by the model are
not resolved by restricting the analysis to experimentally
verified TF targets, suggesting that the simple association
between motifs and function does not hold for them.

Learning a Nonredundant TF Recognition Code De Novo

We next applied our model learning algorithm to
construct a TF recognition code model de novo. By
constructing a de novo model we were not hoping to
discover new TFBS motifs, but rather to study the evolu-
tionary dynamics of the yeast promoters given the selection
on an unbiased set of putative TFBSs. The model was
constructed automatically, considering gapless k-mers of
width 6-12 as candidate target k-mer seeds (Methods). The
learning algorithm produced a model containing 62 target
k-mer sets when executed on the S. cerevisiae-S. mikatae
alignments (see Figure 2 and Table S2). The de novo target
k-mer sets matched 45 distinct known motifs (Methods). We
note that most of the target k-mer sets that we learned are
relatively specific, with no or limited redundancy, and that
we preferred a larger model over a more stringent one, to
allow global properties of the model to be explored.

In our modeling framework, it can be assumed that each
inferred target k-mer set represents a distinct function and
that no two target k-mer sets that represent the same
function coexist in the model. The reason for this is that
substitutions between k-mers in two equivalent target k-mer
sets of the same TF would be predicted by the model to be
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selected against (multiplying the probability of neutral
substitution by the selection factors of each of the target k-
mer sets), while, in fact, substitution between redundant
target k-mer sets must behave neutrally. This discrepancy
should result in lower likelihood for a model that includes
two redundant target k-mer sets instead of just their union.
Looking at the results, we indeed see only a few cases of
seemingly redundant target k-mer sets, each of which can be
biologically rationalized as described below.

In the first type of model redundancy, one target k-mer set
contains substrings of another (e.g, GCGATGAGATG and
CGATGAG in the PAC motif). This can be accounted for by
the inaccuracy of the discrete binding assumption. If one
target k-mer set represents strong (more specific) binding
sites and the other represents weaker sites, then having two
target k-mer sets with different selection factors improves
likelihood. In this case, according to our model the selection
on a locus with the more specific version is calculated as if it
were part of binding sites for both target k-mer sets (implying
a de facto stronger selection on it). In contrast, the selection
on a locus with the less-specific version would be affected
only by the selection factor of one target k-mer set. This is
exemplified in Figure 3A.

In the second type of model redundancy, two k-mers from
distinct target k-mer sets differ in one position (e.g.,
TTACCCG and TTACCCT in the Rebl motif, TATTTATA
and TATTTACA in the RIm1 motif). In this case, the likelihood
of a model in which the two target k-mer sets are combined
into one is lower than the likelihood of the redundant model.
This suggests that the separation between the two target k-mer
sets is selected for, possibly since BSs from each set are
functioning differently (Figure 3B). Examples for such
separation were argued for heuristically and demonstrated
experimentally before [11,14], but now we are equipped with
the computational means to quantify such selection.

As shown in Figure 3C, substitutions between target k-mer
sets that are seemingly redundant can be directly shown to
occur at a lower rate than expected using Z-score statistics
(Methods), as well as using the LLR of the redundant and
combined models. The cases we observed include the
previously discussed Rebl motifs [11,15,16] and separation
among variants of the still cryptic PAC motif. PAC targets are
highly enriched in stress response genes [17], but the
mechanisms of PAC based regulation are not well charac-
terized. We discovered two separated PAC-like families
(GCGATGAG and GAGATGAG) that are significantly sepa-
rated from each other. Interestingly, both variants of the PAC
model tend to co-occur in the same promoters with the RRPE
motifs (co-occurrence Z scores of 15.5 and 15.6), suggesting
that they share a common mechanism rather than represent-
ing two distinct factors.

TFBS Selection Factors

An important characteristic of our model is the separation
between background substitution rates and the selection
factor on target k-mer sets (¢ values). Since we analyzed
separately pairwise alignments of three different species with
S. cerevisiae, and since these species differ significantly in their
divergence times from S. cerevisiae, we can compare the ©
values of the same TFBS obtained in each pair of species. We
can attribute differences in such ¢ values to changes in
selective pressure or to other TF-specific effects (like
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Figure 2. De Novo Model

Shown are the LLR and selection factor values for the 20 target k-mer sets with the highest LLR values as discovered in the de novo model. The full
model is presented in Table S2. For each target k-mer set, we present its motif logo, and, when the set matches a published binding site motif, its most
likely TF. Target k-mer sets are sorted according to selection factor, indicating many of the known TFs as having relatively high factor and weak
selection. Also shown is the LLR of each target k-mer set, which is affected by both the number of motif appearances and their divergence properties.

doi:10.1371/journal.pcbi.0040007.g002

divergence of the TF itself), rather than to different
divergence times between species pairs or other background
effects. According to the results (Figure 4) the ¢ values of the
same TFBS are similar across the different species pairs
(Spearman correlation values ranging around 0.9), even
though some species pairs are four times as distant
evolutionarily [4-7,18], suggesting that these values represent
a quantity that is by and large independent of background
divergence.

We observed significant variability in the inferred selection
factor of known TF motifs in the literature-based target k-
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mer sets. Many of the well-known TFs with low degeneracy
target k-mer sets (<8 k-mers) had small o values, suggesting
specific binding and tight selection. Some examples are Rebl
(0.18), Rpn4 (0.16), Umeb6 (0.03), and Leu3 (0.12). However, for
other well-known motifs we derived much higher ¢ values.
These include the CACGTG motifs (Cbfl, Pho4, Tye7, and
Met28) (0.4-0.91), Mbp1 (0.46), Swi6 (0.54), and Msn2/4 (0.54).
Interestingly, we inferred high ¢ values (>0.35) for these TFs
in the ChIP-restricted model, too (see Table S3 for o values
computed for different ChIP thresholds). This suggests that
the mild selection factors for these TFBSs are not primarily a
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Figure 3. Overlapping and Bimodal Target k-mer Sets

(A,B) We demonstrate the effect of similar motifs in two types of redundancies, using examples from the de novo model. In one type of redundancy (A),
two motifs are overlapping (here GCGATGAGATG and CGATGAG). This organization corresponds to one effective motif with two levels of affinity. The
strong affinity binding sites appears as a hit for both motifs, and therefore the selection on it is the combined selection of both motifs. The weak affinity
binding sites appears as a hit for just one motif (CGATGAG). A different type of redundancy (B) associates two similar motifs that differ in one base (here
TATTTATA and TATTTACA), suggesting selection is preserving the separation between two variants of the same motif. We quantify the intensity of
separation by comparing the likelihoods of models with merged and separated target k-mer sets, or by directly assessing the rate of substitutions

between motifs in the two target k-mer set variants (Text S1).

(Q) Inferred bimodal motifs. Shown are cases of similar but separated target k-mer sets in the de novo model, indicating the number of observed and
expected substitutions between them, a z-score for these numbers (see Methods), and the LLR of the merged and separated models.

doi:10.1371/journal.pcbi.0040007.g003

side effect of false positives, since it is widely assumed that
motifs in promoters that are also ChIP targets are very likely
to be bound in vivo.

One possible explanation for the reduced selection on
some of the target k-mer sets may be that k-mers from these
sets tend to appear in multiple copies in each of the
promoters they regulate. We therefore examined the per-
centage of promoters with multiple hits for specific target
sets. All the motifs mentioned above as having tight selection
(low ©) appear exactly once in all of the promoters, while
motifs with less tight selection are occasionally repeated in
promoter regions (Swib is repeated in 11% of its promoters,
Pho4 and Tye7 in 7%, Msn2 and Mbpl in 5%, and Msn4 in
5%). While the number of cases is too limited to reach a clear
statistical conclusion on the relation between redundancy
and selection, it can be hypothesized that for many TFs,
redundancy may be high (including multiple hits and possibly
also low specificity binding sites), and that such redundancy
can alleviate some of the selective pressure on individual loci.
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0082

Another possible explanation to low selective pressure on
the targets of some critical TFs may be that while some of the
physical targets of these TFs are functionally essential and
therefore under strong selection, other targets are evolutio-
narily transient and do not have a major functional role,
although they bound specifically in vivo. This hypothesis
should be further explored using experimental data on TF
binding for additional yeast species.

Quantifying Selection on Boundary Motifs

The evolutionary model we described implies three evolu-
tionary regimes on motifs: k-mers can a) be functional sites
(part of a target k-mer set), b) be one substitution away from
becoming a functional site (boundary k-mers), or c) be at a
distance of two substitutions or more from any target k-mer
set, and thus behave in a neutral manner (background k-mers)
(Figure bA). According to our basic assumptions, only
substitutions between target k-mers and boundary k-mers
are subject to selection. Consequently, we predict functional
sites to be highly conserved, and boundary k-mers to be
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Figure 4. Selection Factors

S. mikatae

Shown are inferred selection factors, compared for pairs of similar target k-mer sets on alignment of S. cerevisiae promoters with different yeast species.
C, the correlation between the ¢ values in the two models. R, the root mean square difference value. The high correlation among the inferred o values
indicates that our model successfully decomposes the background mutation rate (which is different for each species) and the selection on each TFBS

(which is quite stable as seen here).

(A,D,E) Comparison of ¢ values in the literature-based model for each pair of species.
(B) The literature-based model using ChIP-bound promoters only on cerevisiae-paradoxus alignments compared to the same model on cerevisiae-

mikatae alignments.

(C) The de novo model on cerevisiae-paradoxus alignments compared to the same model on cerevisiae-mikatae alignments.

doi:10.1371/journal.pcbi.0040007.g004

slightly conserved—not due to functionality but due to
possible selection against binding site emergence. As dis-
cussed above, in cases where our modeling assumptions are
too restrictive, we may be classifying as boundaries certain k-
mers that are in fact weak binding sites. In these cases, we
expect some selection to act on substitutions between such
boundary k-mers and background k-mers.

To try to characterize the global effects of selection on
boundary k-mers, we compared the degree of conservation of
target k-mer set, boundary, and neutral k-mers in the
literature-based model. This was done by testing how often
motifs from each of these groups appear conserved,
compared to what is expected given a neutral model. As
shown in Figure 5B, the observed conservation of target k-
mers is far above what we expect from a neutral model. A
weaker but still significant increase in conservation is
observed for boundary k-mers, possibly due to weak selection
on binding site appearance, or more likely because of mild
selection on weak but functional sites. We next examined the
substitutions between target k-mers and boundary k-mers,
and between boundary and background k-mers, using again
the number of observed substitutions compared to the
number expected by a neutral model. As shown in Figure
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5C, substitutions between target k-mers and boundary k-mers
are occurring much less than expected given the neutral
model. We observe a slightly weaker, yet similar pattern for
substitutions from boundary to background k-mers. At least
some of the boundary k-mers in our model may therefore be
functional and under some weak selection, forming together
with a target k-mer set a TFBS recognition model that is more
complex than our simple assumptions.

Percentage of Sequence under TFBS Selection

Based on the literature model, 1.77% of the promoter
sequence is covered by a TFBS. Using the de novo model, the
fraction is 2.36%. These models may be extremely incom-
plete, but even using the entire repertoire of motifs in the
Maclsaac study (without conservation or LLR constraints), the
fraction is only 3.24%. It is therefore reasonable to conclude
that only a small fraction of the promoter sequences is under
tight selection against losing high-specificity binding sites.

Previous global studies on the selection on yeast promoters
[19] estimated that about 30% of the sequence in S. cerevisiae
is under selection. The gap between these estimates and the
scarcity of TFBSs can be explained in several ways. Weak
selection may affect low-affinity or weakly functional [20]
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Figure 5. Selection on Target k-mer Sets

(A) The selection on single nucleotide substitutions. Our model predicts substitutions between target k-mer set k-mers (inner circle) and boundary k-
mers (ring) to be under negative selection, and substitutions between boundary k-mers and background k-mers (outside the ring) or between two
background k-mers not to be under selection. The right hand box shows observed and expected counts for the substitutions in one example (CACGTG
in the cerevisiae-mikatae alignment), as well as the ratio between the observed and expected counts.

(B) Ratio of observed and expected conservation. The plot shows the cumulative distribution of the ratios between the observed number of conserved
motif appearances and the number expected given a neutral model. Shown are the distributions for three different sets of motifs: target k-mer set (red),
boundary (green), and background (blue). A full concordance with the neutral model would have resulted in a perfect lognormal distribution. The
background distribution is the closest to lognormal, but still shows bias toward increased conservation due to the clustering of mutations in yeast
promoters (unpublished results). Target k-mers are conserved above what is expected. This is evident from looking at the observed-expected ratio
distribution, and also when comparing it to the observed-expected ratio distribution for background k-mers (KS (Kolmogorov-Smirnov test) = 0.42 for
difference from background k-mers, p < 3.8e-43), and the same is true for boundary k-mers, but to a lesser degree (KS = 0.09 for difference from
background k-mers, p < 3.4e-36).

(C) Ratio of observed and expected substitutions. The plot shows the cumulative distribution of the ratios between the observed number of
substitutions between motifs and the number expected by a neutral model. Shown are plots for substitutions between target k-mers and boundary k-
mers (red), between boundary and background k-mers (green), and between background k-mers (blue). Substitutions between target k-mers and
boundary k-mers appear less than expected. Again, this is evident when looking both at the ratio distribution (more than 60% of the data points have
ratio < 1) and at its difference from the distribution for substitutions between background k-mers (KS = 0.14, p < 2.3e-13). Substitutions between
boundary k-mers and background k-mers are also occurring less often than expected, but to a somewhat lesser extent (KS=0.1, p < 3.8e-169). As with
the conservation data, the background distribution here is not lognormal, due to the non uniform distribution of mutations.
doi:10.1371/journal.pcbi.0040007.g005

boundary k-mers, and, in fact, when considering target set k- Discussion

k- h h 7.1 f th
mers and boundary k-mers together, they cover 27.1% of the In this study we introduced a new probabilistic model for

sequence in the literature-based model and 29.2% in the de the evolution of promoter regions that takes into account the

novo model. Another possible factor contributing to the combined effects of multiple TFs. We developed an algorithm
selection, which is not included in our model, are forces for calculating the likelihood of a model given pairwise
determining chromatin structure [18,21]. alignments of promoters of orthologous genes from two
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species. Additionally, we developed algorithms for learning
maximum likelihood model parameters. We applied our
algorithms to Saccharomyces promoter regions, first inferring a
model that summarized previously characterized TF specific-
ities in yeast into one principled evolutionary model. We then
applied our methods to learn a full model from scratch. We
analyzed the patterns of selection on promoter regions as
revealed by these models. Specifically, we used our models to
study the intensity of selection on TFBSs and to estimate the
amount of promoter region under selection due to high
specificity TFBSs.

Given our results, it is evident that even on very short
evolutionary time scales transcriptional regulation in yeast is
highly dynamic. Indeed, the selection factors we computed
for almost all TFBSs are higher (less tight) than what we might
expect from functionally essential loci (averaging around 0.5).
On average, the calculated selection seems to be weak, even if
we restrict the analysis to functionally validated sites (ChIP
targets). On the other hand, we observed a significant gap
between the amount of selection we can account for using
characterized TFBSs and the overall reported selection on
yeast promoters. Taken together, it can be hypothesized that
much of the functionality of transcriptional networks is
encoded in ways other than strong TFBSs, and that due to
high levels of redundancy, binding sites are under continuous
remodeling [22-25]. Rather than being a deterministic and
sparse network, transcriptional programs may be shaped as
dense, noisy networks that are continuously changing during
evolution.

Much of the past research on comparative methods for
noncoding regions has focused on the evolutionary dynamics
of TFBSs, as they have relatively well-defined features and a
clear functional role. In addition to conservation-based
methods for identifying TFBSs [4,5], several studies intro-
duced methods for detecting TFBS motifs using phylogeny-
based probabilistic models that distinguish between the
evolution of TFBSs and of the neutral background [26,27].
Other studies associated the evolutionary rate with the
physical strength of TF-DNA interactions [11,15,16]. These
studies strongly motivated the development of a general
model for the evolution of regulatory regions in the presence
of TFBSs.

The more general approaches for context-aware molecular
evolution were so far limited to modeling of neutral evolu-
tionary processes [28-30], or tailored to rigidly structured
protein coding regions [31], RNA coding genes [32], or CpG
dinucleotides [33]. The model we develop here is a step
toward overcoming the major computational difficulties in
handling the evolution of large regions with heterogeneous
function (many binding sites, sparsely and non-uniformly
arranged). To make the model more realistic, additional
effects will have to be considered, including binding sites with
variable affinities, chromatin structure, combinatorial regu-
lation, and more. Computationally, the adaptation of our
methods for computing likelihood and learning models to
general phylogenies will require solution of a difficult
ancestral inference problem [34]. Analysis of more than two
species will allow better understanding of the different
dynamics associated with binding site gain and loss (which
cannot be distinguished based on pairwise alignments). We
hope that further work on these challenges will open the way
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to faithful modeling of regulatory evolution in higher
eukaryotes.

Methods

Evolution under the effect of a TF recognition code. Define a TF
recognition code to be a collection of sets C;... C,, where each C, is a set
of words of length k.. C, is called the target k-mer set of the t-th TF.
Typically, C, will consist of highly similar words. We define an
indicator function P,(s,i) whose value is 1 if the i-th position in
sequence s falls inside a word from target k-mer set C, (i.e., if the
substring s[i—j,...i—j+k,-1)] € C, for some 0 < j < k), and 0 otherwise.
Every occurrence of a word from C, in the promoter sequence s is
declared a binding site of the ¢-th TF. Our model therefore assumes
that TFs recognize all loci-bearing words from their target k-mer sets,
and no other loci. It also assumes that all words from the same target
k-mer set behave identically, and that the target k-mer sets (and
therefore the DNA binding domains of the TFs) remain constant
during the evolutionary period considered. See Figure 1A for an
illustration of a TF recognition code. A word of length k, that does
not belong to any target k-mer set is called a boundary k-mer for TF ¢ if
it is one substitution away from some k-mer in C, (see Figure 1B).

Given two aligned sequences s; and so, we define a model of the
evolution of s; into so, based on the TF recognition code model
introduced above. We assume that each nucleotide in the sequence is
evolving independently with a neutral substitution rate, with the
exception that substitutions that change the regulatory role of a
nucleotide—either eliminating or introducing a TFBS—are selected
against. We model neutral evolution using a standard instantaneous
nucleotide substitution rate matrix Q,, defining Q,(c; — ¢9) as the
neutral rate of substitution from nucleotide ¢; to co. The effect of
selection on TFBSs of the ¢-th TF is formalized using a selection factor O
< o, < 1. We assume that a substitution with neutral rate p has a
reduced rate 6, p whenever it adds or removes a binding site for the
TF t. The instantaneous rate of mutation at the i-th position of a
sequence s is therefore defined by:

4 = Q(sl] =5 W) [T o
t

where s is equal to s in all positions but i.

To compute the probability of evolving from an entire sequence s
to a sequence s, we have to combine the effects of multiple TFBSs
and of the neutral process, taking into account the epistasis between
nucleotides at nearby positions that code for the same TFBS (Figure
1C). The interactions between loci make the common approach of
decomposing the sequence into independently evolving loci impos-
sible, since, for example, a mutation in one position that falls within a
TFBS may abolish binding and completely alleviate the selective
pressure on all other positions. To enable the computation in
practice, we will rely on a parsimonious assumption that we outline
below. We will show elsewhere how to derive this approximation from
an unrestricted Markov model. We also note that our model is
defined as symmetric and reversible, so the generalization to
phylogenetic trees is direct.

The parsimonious Markov model. Given two aligned sequences sy,
s9, we define the set S(sq,59) as the collection of sequences § such that
for all positions i either §[i}= si[:] or §[il= so[z]. Our simplifying
approximation is that in the evolutionary trajectory between s; and
s9, only sequences in S(s;,s9) have occurred. Those sequences are
called parsimonious with respect to s, so. Given a TF recognition code, we
say that two positions ij are epistatic if there exists a state s € S(s1,59)
and a TF ¢ such that s'[] and s [] are part of the same appearance of
a k-mer from C,, or a boundary k-mer for TF ¢. An epistatic block is
defined to be a maximum interval in the alignment in which every
two adjacent positions are epistatic. The simplest epistatic block is a
single neutral nucleotide, which does not interact with any TF in the
extant sequences or in any parsimonious trajectory between them.
The next basic case is that of an interval including exactly one TFBS
(compare Figure 1C). In general, when there are several sites
overlapping each other, the epistatic blocks define the smallest
possible units for which we can compute the model likelihood
independently. It can be shown that under the parsimonious
assumption, the probability of s; evolving into so equals the product
of the probabilities of evolution in each of the epistatic blocks.

Working inside an epistatic block, we still have to compute the
probability of evolving from s, to s, in time ¢ using only sequences in
S(s1,52). This can be done by constructing a continuous time Markov
model on all the parsimonious states of the block and an additional
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state designated OUT which absorbs all probability of transitions to
nonparsimonious states. The total probability can then be computed
using exponentiation of the model’s rate matrix [35]. In practice, we
further approximate the matrix exponential using a time-quantized
Markov model as follows: Define a time step dt as /L. where L is larger
than the number of point mutations between s; and ss. The
background mutation probabilities P, for the time step dt are
computed by exponentiation of the background rate matrix Q. We
define model states u, for times t =0 ... L—1 and sequences s € S(sy,
s9) and add the special state OUT. The transition probabilities Pr(u,
— U1 5') are defined as

P(s—s) = HP/;(SM — s[i])
+ Z H Py(s[]] — s (1 — (H IR By
S =5tk

t

if s and s’ that differ only at position k:

P(s—s") =[] Putsl — ) [T o020

if s and s’ differ in more than one position:
P(s—s')=0

We complete the transition probability from each state to 1 by
adding an appropriate transition to the state OUT. Using this model,
we can approximate the probability in one epistatic block by
standard dynamic programming in the discrete Markov model.

In summary, to compute the likelihood of a model (target k-mer
sets and selection factors) given a set of pairwise alignments, we work
in phases (see Figure 1D). First we partition the alignment into
epistatic blocks by searching for target k-mer set or boundary k-mers
in the aligned sequences and their parsimonious combinations. We
then compute the log-likelihood of each block using the discrete
Markov model, and sum the contributions. Note that in a typical
scenario, a substantial fraction of the sequence is neutral with respect
to the model, which translates to epistatic blocks of length one. When
computing the log-likelihood ratio of some model versus the null
model, we can ignore all of these single-nucleotide blocks. Note that
to compute log-likelihood ratios, we apply the time-quantized
parsimonious approximation to both the null and the target models,
thereby avoiding biases introduced by the approximation.

Model learning. To learn a maximum likelihood model given a set
of pairwise alignments, we devised a multiphase greedy algorithm.
Formally, given a set of pairwise alignments and assuming a
background neutral substitution model @, (which we compute
directly from the alignments), we wish to find target k-mer sets C;
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