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Abstract

Aims: Stroke is a leading cause of death and disability for Americans, and growing evidence 

suggests that air pollution may play an important role. To facilitate pollution control efforts, the 

National Academy of Sciences and the World Health Organization have prioritized determining 

which air pollutants are most toxic. However, evidence is limited for the simultaneous effects of 

multiple air pollutants on stroke.

Methods and results: We constructed a nationwide population-based cohort study, using the 

Medicare Chronic Conditions Warehouse (2000–2017) and high-resolution air pollution data, to 

investigate the impact of long-term exposure to ambient PM2.5, NO2, and ground-level O3 on 

incident stroke. Hazard ratios (HR) for stroke incidence were estimated using single-, bi-, and 

tri-pollutant Cox proportional hazards models. We identified ~2.2 million incident stroke cases 

among 17,443,900 fee-for-service Medicare beneficiaries. Per interquartile range (IQR) increase in 

the annual average PM2.5 (3.7 μg/m3), NO2 (12.4 ppb), and warm-season O3 (6.5 ppb) one-year 
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prior to diagnosis, the HRs were 1.022 (95% CI: 1.017–1.028), 1.060 (95% CI: 1.054–1.065), 

and 1.021 (95% CI: 1.017–1.024), respectively, from the tri-pollutant model. There was strong 

evidence of linearity in concentration-response relationships for all three air pollutants in single-

pollutant models. This linear relationship remained robust for NO2 and O3 in tri-pollutant models 

while the effect of PM2.5 attenuated at the lower end of concentrations.

Conclusion: Using a large nationwide cohort, our study suggests that long-term exposure to 

PM2.5, NO2, and O3 may independently increase the risk of stroke among the US elderly, among 

which traffic-related air pollution plays a particularly crucial role.
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Introduction

Stroke is the number one cause of long-term disability and the second leading cause of 

death worldwide [1,2]. According to the Global Burden of Disease Study (GBD), there were 

approximately 11.9 million incidents, 104.2 million prevalent, and 6.2 million fatal cases 

of stroke globally in 2017, with 132.1 million stroke-related disability-adjusted life-years 

(DALYs) [3]. Since stroke is characterized by high mortality, high morbidity, and contributes 

to severe burden disease, identifying and intervening on modifiable risk factors of stroke is 

of great significance for public health.

An increasing number of epidemiologic studies have assessed the association between air 

pollution and stroke evaluated by hospital admission incidence, and mortality [4–6]. Recent 

studies examining relationship of air pollution on nonfatal stroke have shifted their focus 

from short-term to long-term exposures [7–14]. However, the results were inconsistent, and 

the associations between exposure to air pollution and stroke have not been fully understood. 

Moreover, these studies mainly focused on particulate matter exposures (particulate matter 

with aerodynamic diameter < 2.5μm or < 10 μm [PM2.5 or PM10]) [9,10,12,14–17]; while 

investigations of gaseous air pollutants (such as nitrogen dioxide [NO2]; ground-level 

ozone [O3]) or simultaneous effects of multi-pollutants are scarce. Most of the studies that 

looked at multi-pollutants often explored a single pollutant at a time [8,11,13], and only 

a few evaluated air pollutants jointly in multi-pollutant models to investigate the potential 

independent associations between air pollution types and stroke risk [7,18–20]. To facilitate 

the targeting of pollution control efforts, the National Academy of Sciences (NAS) and the 

World Health Organization (WHO) have prioritized determining which air pollutants are 

most toxic.

To address this gap, we constructed a nationwide population-based cohort among the 

American Medicare population (aged ≥65 years), combined with high-resolution air 

pollution datasets, to examine the association of stroke incidence with annual average 

PM2.5, NO2, and warm-season O3 during the calendar year prior to diagnosis year. To better 

measure stroke incidence, we leveraged all Medicare claims across the contiguous United 

States (2000–2017) and further required a one-year “clean” period without events of interest 

to identify first diagnosis of stroke.
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Methods

Study population

Health data were obtained from the two databases, namely the Medicare denominator 

file and the Medicare Chronic Conditions Warehouse (CCW), both from the Centers 

for Medicare and Medicaid Services (CMS). The Medicare denominator file (i.e., the 

enrollment file) contains enrollment records for each Medicare beneficiary in each year, 

including age, sex, race, Medicaid eligibility (a proxy for socioeconomic status - SES), 

the date of death (if any), and ZIP code of residence. Age, Medicaid eligibility, and ZIP 

code of residence are updated annually. The CCW database provides the date of the first 

occurrence with a stroke diagnosis code across the available Medicare claims. Based on the 

Medicare denominator file and the CCW database, we constructed an open cohort including 

all Medicare beneficiaries aged 65 and over with continuous enrollment [1] in Medicare 

Fee-for-Service (FFS) program; and [2] in both Medicare Part A (hospital insurance) and 

Part B (medical insurance) in the contiguous United States between 2000 and 2017. Namely, 

we excluded those with any time in Medicare Advantage Plan (Part C) over the study 

period since claim records are not available for these beneficiaries; and excluded those only 

enrolled in Medicare Part A or Part B. These exclusions were included because the CCW 

relies on FFS, Part A, and Part B to identify cases. If we relaxed these restrictions to broaden 

the cohort, the chance of missing stroke diagnoses among those additional participants 

brought into the analysis could be high.

In addition to the above-mentioned inclusion and exclusion criteria, we further required 

a “clean” period of one year after enrollment, during which there was no diagnosis code 

for stroke. For example, a participant entering Medicare in 2000 would be required to be 

stroke-free until 2011; follow-up for disease incidence began only then. We also excluded 

the one-year “clean” period from person-time to avoid immortal time bias. By removing 

potentially prevalent cases in their first years of follow-up, a diagnosis after that “clean” 

period more likely approximates disease “incidence”. We considered that a “clean” period 

of one year represent a reasonable time window to ensure a person was stroke diagnosis 

free prior to the Medicare diagnosis [21]; however, we also explored longer clean periods 

of 2 years and 4 years in sensitivity analyses. The person-time for the corresponding 

“clean” period was also excluded from the sub-cohorts. Therefore, study subjects entered 

the cohort on January 1st of the year following the “clean” period and were followed 

until first diagnosis of the outcome of interest across all Medicare claims, death, or end 

of follow-up. Cohort sizes and summary statistics for the study population with different 

clean periods are shown in Supplementary Table S1. Our research is approved by Emory’s 

IRB (#STUDY00000316) and the Centers for Medicare & Medicaid Services (CMS) under 

the data use agreement (#RSCH-2020–55,733). The Medicare dataset was stored and 

analyzed in Emory Rollins School secure cluster environment (HPC), with Health Insurance 

Portability and Accountability Act (HIPAA) compliance.

Outcome classification

The primary outcome of interest for this study was the time to stroke. The CCW 

database includes a pre-defined indicator for stroke, which is identified using an algorithm 
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that incorporates information from all available Medicare claims (such as inpatient and 

outpatient claims, Carrier file, skilled nursing facility, and home health-care claims) 

indicating that an individual was diagnosed with stroke (Chronic condition algorithms) [22]. 

We extracted the date of the first occurrence with a stroke diagnosis code for each study 

subject from the CCW database and defined the outcome stroke as the first occurrence of 

stroke diagnosis (reoccurrences of stroke were not considered in this study).

Exposure assessment

High-resolution ambient PM2.5, NO2, and O3 concentrations for the entire contiguous 

United States were derived using spatiotemporal ensemble models that integrated three 

different machine learning algorithms, including a neural network, a random forest, and 

a gradient boosting machine [23–25]. The ensemble-based model used over one hundred 

predictors, including satellite measurements, land-use terms, meteorological variables, and 

chemical transport model predictions to estimate daily levels of the pollutants on a scale of 1 

km × 1 km [26–28]. The quality of the estimates was assessed using 10-fold cross-validation 

against monitoring measurements values from the Environmental Protection Agency (EPA), 

Air Quality Systems (AQS) across the United States. The resulting R2 values for annual 

predictions of PM2.5, NO2, and O3 were 0.89, 0.84, and 0.86, respectively, yielding strong 

model performance [26–28]. We averaged these 1-km resolution predictions for each 

pollutant at ZIP code scale, because ZIP code is the smallest level of geography in the 

Medicare data and ZIP code of residence is updated annually. We then calculated annual 

averages for PM2.5, NO2, and warm-season O3 (May 1 to October 31) concentrations in 

each ZIP code, for each calendar year and defined long-term exposure in our study as 

the annual averages of air pollutants. All Medicare beneficiary’s outcome data for each 

calendar year were linked to the annual averaged exposures one year ago (i.e., one-year lag 

exposure) according to the residential ZIP code in the previous year such that any annual 

residential mobility changes by ZIP code were considered. We also explored different lagged 

exposures, including two-year, one-year, and zero-year lag exposure, in sensitivity analyses.

Covariates

We obtained individual-level covariates, including sex, race, age at entry, and Medicaid 

eligibility, from the Medicare denominator file. Based on individual age at entry, a 

5-year age at entry group variable was created. We also included neighborhood-level 

covariates which have both been associated with ambient air pollution and implicated in 

cerebrovascular diseases into the analyses. These included ZIP code-level SES variables 

(population density, proportion of the population > 65 years of age living below the poverty 

line, proportion of the population listed as Black, median household income, proportion 

of housing units occupied by the owner, and proportion of the population > 65 years 

of age who had not graduated from high school), meteorological variables (annual mean 

temperature and annual mean relative humidity), land-use variable normalized difference 

vegetation index (NDVI) values, and county-level behavioral risk factors (mean body mass 

index and smoking rate) and health care capacity variables (number of hospitals and 

active medical doctors), as well as a geographical region (categorized as five U.S. region: 

West, Southwest, Midwest, Northeast, and Southeast). Specifically, SES variables were 

derived from the 2000 U.S. Census, 2010 U.S. Census, and the American Community 
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Survey for 2005–2012; meteorological data were acquired from the North American 

Regional Reanalysis data (NARR) for 2000–2017; NDVI values were retrieved from 

NASA’s MODIS satellite (MOD13C2) for 2000–2017; behavioral risk factors were obtained 

from the Behavioral Risk Factor Surveillance System (BRFSS) between 2000 and 2016; 

and health care capacity data were obtained from the 2010, 2015, and 2018 American 

Hospital Association Annual Survey Database. We linearly interpolated or extrapolated the 

missing values based on the data available [29]. We also obtained co-morbidity conditions 

(hypertension and diabetes) from the CCW database. These covariates have been suggested 

to associate with air pollution and stroke [30,31], and we included them as candidate 

confounders in sensitivity analyses.

Statistical analysis

We estimated the relationship between long-term exposure to PM2.5, NO2, O3, and incident 

stroke using a series of stratified Cox proportional-hazards models with a generalized 

estimating equation (GEE). The co-efficient for the exposure variable was the parameter 

of interest, and years of follow-up were the time scale. Specifically, we fitted single-

pollutant, bi-pollutant, and tri-pollutant models and estimated hazard ratios (HRs) per 

interquartile-range (IQR) increase in the annual average of PM2.5, NO2, and warm-season 

O3 concentrations in the one-year period prior to diagnosis. All three pollutants were of 

interest because some prior studies have shown associations between each of them and 

stroke [4,32–34]. GEE was used to adjust for residual autocorrelation within ZIP code 

with the use of robust standard errors (and 95% CI confidence intervals). To allow for 

flexible strata-specific baseline hazard functions, we stratified all models on four individual 

characteristics, including sex, race (white, black, other), Medicaid eligibility, and 5-year 

categories of age at study entry. We included 13 ZIP code-level and county-level time-

varying covariates, including SES, behavioral risk factors, health care capacity, land-use, and 

meteorological variables in the model to adjust for potential confounding. Potential residual 

temporal and spatial trends were controlled by respectively including indicator variables for 

calendar years and geographical regions.

To assess the shape of the concentration-response (C-R) relationship between each air 

pollutant and stroke, we respectively fitted penalized splines [35] for PM2.5, NO2, and O3, 

adjusting for all covariates included in the tri-pollutant models. We also compared the C-R 

relationship using the single-pollutant models for each air pollutant without adjustment for 

co-pollutants. To identify subpopulations who might be more vulnerable than others, we 

examined six potential effect modifiers (gender, race (white, black), Medicaid eligibility, age 

(<75, ≥75), neighborhood-level household income, and education) by stratification.

Additionally, we estimated the attributable fraction (AF) of stroke cases due to PM2.5, NO2, 

and O3 air pollution, for those in the US exposed to an additional IQR of PM2.5 (a difference 

of 3.7 μg/m3), NO2 (12.4 ppb), and O3 (6.5 ppb), beyond current levels in US cities with 

relatively low exposure (i.e., 7 μg/m3 for PM2.5, 4 ppb for NO2, and 30 ppb for O3, the 

counterfactual) [36], using results from the tri-pollutant model, and using standard AF 

calculations when the entire population is exposed (RR-1)/RR (see Steenland and Armstrong 

2006 [37]).
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We conducted a series of sensitivity analyses to test the robustness of our main findings. 

First, we assessed the alternative exposure time windows by comparing the results using 

different lags (2-, 1-, and 0-year lags), in which exposure was assigned either as the annual 

exposure at 2 years prior to case, or 1 year prior, or 0 year prior. Second, we repeated 

the analyses using a sub-cohort of a longer “clean” period of 2 years and 4 years, i.e., 

thinking that excluding cases with a diagnosis during their first 2 years or 4 years of 

enrollment would increase the probability that we are capturing the first diagnosis and thus 

more closely estimating disease incidence, albeit at the cost of a smaller number of years 

of subjects and cases. Additionally, to evaluate whether the associations we observed were 

robust to different levels of confounding adjustment, we fitted the models with different 

set of covariates and modeled the potential residual temporal trend as a linear term for 

calendar years instead of categorical year. We also tested how sensitive our models might 

be to adjusting for space with a spatial smoother and with a state-level adjustment. Lastly, 

to evaluate whether the associations we observed can be attributed to comorbidities also 

linked to air pollution, we additionally adjusted for the comorbidities (including diabetes and 

hypertension), and restricted analyses to subjects without the comorbidities.

All computational analyses were run on the Rollins High-Performance Computing (HPC) 

Cluster at Emory University. R software, version 4.0.2, was used for all analyses.

Results

Study population characteristics

Table 1 provides descriptive information on the stroke cohort for main analysis. Data 

were analyzed for Medicare beneficiaries who were 65 years and older between Jan 1, 

2000, and Dec 31, 2017, and met the inclusion and exclusion criteria (see Methods). The 

cohort was followed requiring a one-year “clean” period without stroke events to better 

capture stroke incidence. A total of 2,240,586 incident stroke cases were identified in 2001–

2017 (as we applied a one-year “clean” period) among 17,443,900 studied subjects with 

144,611,520 person-years of follow-up (Table 1). Most of the participants (88.2%) entered 

the cohort between ages 65 and 74, and the mean age at entry was 69.1 years (SD 4.8). 

The median follow-up was 8 years. Supplementary Table S2 summarized the new study 

subjects that entered the cohort serially over time and the mean age of the cohort increased 

gradually from 73.3 to 75.8 years. There were slightly more women than men, and most 

participants were white. More than 90% were not Medicaid-eligible, indicating that most 

participants were above the poverty level. Most of the observations came from the southern 

and midwestern regions of the contiguous United States.

Air pollution levels

The annual average levels of PM2.5 and NO2 were 9.4 μg/m3 and 17.5 ppb across 

the contiguous United States from 2000 to 2016, which were both below the U.S. 

Environmental Protection Agency (EPA) annual standards of 12 μg/m3 and 53 ppb. About 

66% and 99% of the participants were always exposed to annual PM2.5 and NO2 below 

the national standards over the follow-up period. The annual warm-season (May–October) 

average O3 was 42.8 ppb. We examined warm-season O3 because O3 is a temperature-
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dependent variable (i.e. the level of O3 rises significantly as the weather warms) and 

warm-season O3 is often used in epidemiological studies for assessing long-term health 

effects [38]. While the EPA does not have an annual standard for ozone, the daily 8-h 

period standard for ozone is 70 ppb [39], indicating the warm-season O3 levels in the 

cohort were generally below the EPA daily standard. Fig. 1 showed the distribution of the 

three air pollutants across the contiguous United States over the study period, estimated 

by the exposure models used in our analysis. PM2.5 was the highest in the eastern region 

and West Coast of the United States, primarily reflected pollution transported over large 

distances. Warm-season O3 was highest in the western region. High NO2 was concentrated 

in urban centers, suggesting it mainly indicated local fossil fuel combustion sources, 

especially motorized traffic. Supplementary Table S3 shows the detailed distribution of the 

exposure levels. The three pollutants in this cohort were modestly correlated with the highest 

correlation observed between PM2.5 and NO2. The Spearman’s rank correlations between 

pollutants (average annual exposure at ZIP code level) were PM2.5 and NO2 0.38, PM2.5 and 

O3 0.28, NO2 and O3 0.21.

Health effect estimates

Fig. 2 provides our main analysis results from the Cox proportional hazards models stratified 

by individual characteristics, adjusting for neighborhood-level socioeconomic status (SES), 

behavioral risk factors, health care capacity variables, land-use variables, and residual 

temporal and spatial trends (see Methods). Long-term exposure to PM2.5, NO2, and warm-

season O3 was associated with an increased risk of incident stroke in all models with or 

without adjusting for co-pollutants. An interquartile range (IQR) increase in the annual 

average NO2 (12.4 ppb) preceding one-year diagnosis was associated with an increased risk 

of stroke (HR = 1.073, 95% CI: 1.068–1.079) in the single pollutant model, with effect 

sizes changing little in models adjusting for other pollutants. An IQR increase in annual 

average PM2.5 (3.7 μg/m3) was associated with an HR of 1.056 (95% CI: 1.051–1.061) in 

the single pollutant model, dropping to 1.022 (1.017–1.028) in the tri-pollutant model. An 

IQR increase in annual average warm-season O3 (6.5 ppb) was associated with an HR of 

1.035 (95% CI: 1.031–1.039) in the single-pollutant model, dropping to 1.021 (1.017–1.024) 

in the tri-pollutant model.

Concentration-response relationships

Fig. 3 showed the concentration-response (C-R) relationships between long-term PM2.5, 

NO2, and warm-season O3 exposures and stroke incidence derived from the single-pollutant 

and the tri-pollutant models and the distribution of each pollutant in the cohort. The C-R 

relationships of NO2 for stroke were approximately linear across the exposure distribution 

from both the single- and tri-pollutant models (Fig. 3, a2 and b2), although a slightly 

steeper slope was observed in the single-pollutant model. For PM2.5, the C-R curve from 

the single-pollutant model showed a linear relationship for increasing annual mean PM2.5 

concentrations (Fig. 3, a1). When controlling for multi-pollutants, however, we observed a 

positive linear relationship for PM2.5 and stroke incidence HR at concentrations above 11 

μg/m3 with an attenuated slope (Fig. 3, a2). For concentrations below 11 μg/m3 (representing 

75% of the distribution of the PM2.5), the C-R curve from the tri-pollutant model is close 

to the null (Fig. 3, a2). The C-R relationship of O3 for stroke from the single-pollutant 
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model showed a linear relationship across the exposure distribution and the associations 

level off at higher concentrations (Fig. 3, a3). This C-R relationship of O3 persisted when 

controlling for multi-pollutants (Fig. 3, b3). Across the 0.1th to 99.9th percentile of the 

exposure distribution, NO2 showed the strongest and most robust effect on stroke among 

all pollutants. The C-R relationship of NO2 for stroke was almost linear, with no signal of 

threshold down to 4 ppb (1st percentile) in both single- and tri-pollutant models.

Effect modifications

We examined six potential effect modifiers [gender, race (white, black), Medicaid eligibility, 

age (<75, ≥75), neighborhood-level household income, and education]. Fig. 4 showed 

subgroup-specific hazard ratios for each pollutant from the tri-pollutant model, based on 

stratification of the potential effect modifiers. The same analyses derived from the single-

pollutant models are shown in Fig. S1. Overall, the magnitude of HR differences between 

subgroups was small. We observed an increased hazard of stroke for women vs. men, Blacks 

vs. Whites, and Medicaid eligible vs. Medicaid ineligible in relation to NO2. At the same 

time, those living in areas with lower median household incomes and lower education were 

found to have a higher association between stroke and NO2. All these effect modifiers except 

race were robust to both the tri-pollutant and single-pollutant modeling (Fig. S1). We did not 

observe such effect modification patterns in relation to PM2.5 or O3. Regarding differences 

in HR by gender, although non-significant for PM2.5 and O3 in both the tri-pollutant and 

single-pollutant models, females had a general stronger association between stroke for all air 

pollutant exposures than males. Finally, we found little evidence of an interaction between 

air pollutant exposures and age in relation to stroke.

Attributable fraction

The strongest relationship we found with stroke was for NO2 among the three pollutants. If 

the U.S. NO2 levels could be lowered by 12.4 ppb, which is the IQR, then the attributable 

fraction (AF) for stroke due to current exposure levels, based on our main results from 

tri-pollutant models assuming a linear relationship, would be 6%. Namely, assuming there 

is a causal relationship, an estimated 6% of stroke cases would be avoided if NO2 levels 

decreased by 12.4 ppb, which is approximately the difference between our large cities like 

Los Angeles and New York, and smaller cities like Portland and New Haven [36]. Likewise, 

if the U.S. PM2.5 and O3 levels could be reduced by 3.7 μg/m3 (IQR) and 6.5 ppb (IQR), an 

estimated 2% and 2% of stroke cases would be avoided assuming a causal relationship.

Sensitivity analyses

Associations between long-term exposure to PM2.5, NO2, O3, and stroke were robust to 

a series of sensitivity analyses. First, the use of alternative exposure windows (annual 

exposure 2, 1, or 0 years prior to stroke diagnosis, i.e., lags 2, 1, or 0) all supported 

a positive association with PM2.5, NO2, and O3, though HRs varied in magnitude 

and attenuated with increasing lag periods (Supplementary Table S4). Second, two sub-

cohorts with more stringent “clean” periods were constructed by excluding anyone who 

had a diagnosis for stroke in their first 2 years or 4 years of follow-up. Descriptive 

information of the sub-cohorts is summarized in Supplementary Table S1 and these new sub-

cohorts yielded similar results to the main analyses (Supplementary Table S4). Third, the 
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observed associations with stroke were robust to different levels of confounding adjustment 

(Supplementary Table S5). Except for O3, the association with stroke became negative when 

the model did not adjust for meteorological variables, including ZIP code level annual 

temperature, and relative humidity. Lastly, the additional adjustment for comorbidities such 

as diabetes and hypertension attenuated the associations between air pollutants and stroke 

to some extent, while the effects of PM2.5, NO2, O3 remained robust in the single- and 

multi-pollutant models (Supplementary Table S6). However, these pollutants have been 

associated with hypertension and diabetes, so this may be controlling for a mediator.

Discussion

In this large, national population-based Medicare cohort, we found long-term exposure to 

PM2.5, NO2, and warm-season O3 were associated with an increased risk of first incident 

stroke, in both single-pollutant models and models adjusting for co-pollutants. Among the 

three air pollutants studied, NO2 had a larger effect on stroke risk than PM2.5 or O3 at the 

scale of interquartile range increase in concentrations in all models. NO2 also had the most 

robust association with an increased risk of stroke, while the effect estimates of both PM2.5 

and O3 attenuated after adjustment for co-pollutants.

The shapes of the concentration-response relationship between air pollutant exposure and 

stroke were investigated in both single- and tri-pollutant models. In the single-pollutant 

models, risks of first diagnosis with stroke linearly increased with increasing PM2.5, 

NO2, and O3 concentrations, suggesting no safe threshold for harmful pollution. The 

concentration-response (C-R) shapes remained robust for NO2 and O3 in the tri-pollutant 

models while the effect of PM2.5 attenuated at the lower end of concentrations. Similar 

results about the C-R shapes of PM2.5 and NO2 were observed in a pooled analysis of 

six European cohorts within the ELAPSE (the multicenter study Effects of Low-level Air 

Pollution: A study in Europe) project [40]. The reduction of the PM2.5 hazard ratio at low 

concentrations did not imply that particles had no effect, as adjustment for NO2 might also 

have adjusted for particles co-emitted with NO2, including those from motorized traffic 

and other fossil fuel combustion sources [40,41]. While for the robust association for NO2, 

this may reflect the direct effects of NO2 or correlated combustion-related particles such as 

ultrafine particles [40,41]. The study population had low annual NO2 exposures relative to 

the current national standard (53 ppb) and low warm-season O3 exposures relative to the 

daily 8-h period standard (70 ppb). Nevertheless, our data suggest that lowering levels of 

pollution would have substantial public health benefits. In the subgroup analyses, female, 

black people, lower-income, and lower educated populations were susceptible subgroups 

for the effect of NO2, reflecting a general pattern of increased susceptibility among those 

of lower SES [19,20]. In single-pollutant models, females had a higher risk of stroke to 

PM2.5 and O3, consistent with previous studies suggesting that the association between air 

pollution and cardiovascular diseases are stronger in women than in men [42,43]. Since the 

magnitude of HR differences between subgroups were relatively small, the subgroup health 

effects should be interpreted cautiously.

Most of the evidence on the effects of air pollution on stroke comes from time-series and 

case-crossover studies of cerebrovascular mortality [4–6,34]. Previous studies on the long-
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term health effects have reported mixed results. Two prior Medicare population-specific 

studies of air pollutant exposure and cardiovascular outcomes are generally consistent 

with our results. Danesh Yazdi et al. (2019) [20] focused on the Medicare beneficiaries 

in the southeastern region of the United States and found both PM2.5 and O3 to be risk 

factors for stroke hospitalizations on the multiplicative scale, reporting a HR of 1.031 

(95%CI: 1.030–1.032) and 1.012 (1.012–1.013) per unit increase in annual PM2.5 and O3 

in the bi-pollutant models. A more recent study that expanded the study population to the 

entire Medicare cohort across the contiguous United States and studied the simultaneous 

effects for PM2.5, NO2, and O3 found only PM2.5 and NO2 to be positive for ischemic 

stroke risk on an additive scale [19]. The discrepancies about the effect of O3 on stroke 

could be due to the difference in cohort construction and outcome assessments. Our study 

included hospitalizations, physician’s visits, and nursing home data to better ascertain stroke 

incidence, while the previous study only used hospital admission data [19]. In addition, 

that study only examined ischemic stroke, whereas we examined all strokes. A national 

sample cohort study in South Korea also found a significantly increased risk of stroke with 

long-term exposure to PM2.5 and NO2, in both single and multi-pollutant models [44]. 

A pooled analysis of six population-based European cohort studies within ELAPSE also 

found incidence of stroke was associated with PM2.5 and NO2 [40]. Conversely, the South 

Korea study [44] found a significant negative relationship between O3 and stroke incidence 

while the ELAPSE study [40] found no association with O3, in contrast with our results 

that found O3 to be harmful. But we noticed that the study population in both the South 

Korean cohort [44] and the pooled European cohort [40] are younger, the mean age at 

baseline (SD) was 42(SD 15) and 54 (SD 9), respectively. Researchers looking at long-term 

exposure to ambient air pollutants and cerebrovascular disease within the European Study of 

Cohorts of Air Pollution Effects (ESCAPE) data found marginally significant associations 

between exposure to PM2.5 and the incidence of stroke, with a significant relationship seen 

for those 60 or above [13]. Although they found non-significant associations for NO2 in 

their single-pollutant models, a study in the Danish, Diet, Cancer and Health cohort that 

was included in the ESCAPE study found a borderline significant association between 

NO2 and incident stroke [45]. Last, three meta-analyses reported per 10-μg/m3 increase in 

long-term exposure to PM2.5 levels were associated with 5% (95% CI: 2–8%) [4], 13% 

(11–15%) [5], and 23% (10–26%) [6] increase in the hazard of stroke incidence, which are 

comparable to our effect estimates of 6% (5–8%) increased hazard per 10-μg/m3 increase 

in PM2.5. One meta-analysis evaluated the effect for NO2 and found a significant but much 

smaller increased hazard of stroke incidence per 10 ppb increases in NO2 compared with 

our results (0.4% (95% CI: 0.0–0.6%) vs. 4.8% (4.3–5.2%)) [4]. Furthermore, they did not 

find a significant association between O3 and stroke incidence [4]. These inconsistent results 

compared to our study might be due to the relatively limited number of studies focusing 

on the health effects of gaseous air pollutants (NO2 and O3) [7,8,11,13,18,45] compared to 

particulate matter [9,10,12,14–17].

Air pollution has been shown to harm respiratory and cardiovascular systems through 

mechanisms including systemic inflammation, oxidative stress, and altered cardiac 

autonomic and vascular function [46–49]. However, the effects of exposure to multiple air 

pollutants on cerebral vessels are more uncertain and the mechanism by which any effect 
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on cerebrovascular disease is mediated is yet to be elucidated. Postmortem examination 

has reported evidence of particle-associated inflammation in the brain [50,51]. Although 

subclinical outcomes could not be examined in our Medicare cohort, these mechanisms 

underscore the biological plausibility of our finding that long-term exposure to PM2.5, 

NO2, and O3 is independently associated with incident stroke. Hypertension and diabetes, 

established risk factors for stroke and also linked to air pollution, are hypothesized to be on a 

biological pathway of the air pollution effects leading to stroke, with systemic inflammation 

providing a common link [30,31]. In our study, diabetes and hypertension attenuated the 

associations between air pollutants and stroke to some extent while the effects of PM2.5, 

NO2, O3 remained positive in the single- and multi-pollutant models (Table S5), suggesting 

hypertension and diabetes could be mediators. However, a formal mediation analysis would 

be important to confirm these findings.

Our study has several strengths. First, our study accounted for multiple air pollutants (PM2.5, 

NO2, and O3), which were estimated from prediction models on a final scale [26–28], 

allowing us to compare the dependent and independent associations between stroke and air 

pollutant groups. Second, the population-based Medicare cohort has a large sample size 

that gave us ample statistical power to detect effects even though they are small, which 

is often the case in environmental studies. The use of all available Medicare claims not 

restricting to hospital admissions is likely to capture cases better and reduce the chance for 

outcome misclassification. In addition, we used a conservative method by requiring a one-

year “clean” period and restricting the analysis to Medicare beneficiaries with continuous 

enrollment in Medicare FFS, and Part A (hospital insurance) and Part B (medical insurance) 

programs throughout the study period. We also excluded those who enrolled in the Medicare 

Part C plan since claims in Part C were inaccessible for us [52]. These stringent inclusion 

and exclusion criteria can increase the possibility that the cases were newly diagnosed 

and thus better approximate disease incidence. Lastly, we were able to control for a 

comprehensive set of individual- and neighborhood-level covariates. We controlled potential 

residual temporal trends by including indicator variables for calendar years to better account 

for the potential nonlinear trends in cerebrovascular disease incidences [53–55].

Our study also had several limitations. The first limitation is the potential for exposure 

error since we assessed only ambient outdoor air pollution concentrations based on 

participants’ ZIP code of residence, individual-level exposure was not feasible. However, 

the exposure prediction model we used has excellent predictive accuracy, which may reduce 

the exposure error [26–28]. Furthermore, a possible exposure misclassification is likely 

to be non-differential with respect to stroke incidence and have a net bias towards the 

null [56–58]. Second, our study is subject to unmeasured and residual confounding. We 

could not control for risk factors for cardiovascular diseases at the individual level such as 

smoking, physical activity, socioeconomic deprivation, and education, which may confound 

the association between air pollution and stroke [33]. However, individual smoking and 

other predictors have been shown in personal exposure studies [59] to be uncorrelated with 

ambient exposure levels, and are only correlated through neighborhood level covariates, 

and we believe we have controlled for a rich set of those covariates. Third, outcome 

misclassification is possible because Medicare is an administrative claims database primarily 

collected for payment purposes [52]. We expect this misclassification to be non-differential 
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and should bias the results to the null because such errors are unlikely to be related to 

air pollution exposure. Fourth, we assessed overall stroke only and were not able to study 

stroke further in its subtypes, such as ischemic stroke and hemorrhagic stroke. In sensitivity 

analyses, we controlled two common stroke risk factors (hypertension and diabetes) and 

observed attenuation in effect estimates, but we neglected that the risk factors profiles 

for stroke subtypes can be different [60,61]. Epidemiological studies that evaluated the 

heterogeneous effects of air pollution on stroke subtypes are still limited [62–65]. Given 

the etiological heterogeneity in stroke, future study of subtype-specific effects would be 

warranted. Furthermore, we did not consider the possible impact of loss to follow-up due to 

dropout or death on our findings. Air pollution exposure is an established cause of mortality 

[66,67], so that older participants are likely to represent a population that is “selected” 

for characteristics that place them at lower risk for stroke, resulting in underestimation 

of the relation of exposure with stroke risk [13]. Finally, we only studied the Medicare 

FFS population who continuously enrolled in both Part A and Part B programs, and never 

enrolled in Part C program. Some population characteristics differences were observed 

between our cohort and other Medicare cohorts with different inclusion and exclusion 

criteria (Supplementary Table S7), suggesting our results may not be generalizable to 

the entire US Medicare population and further work is needed to determine how study 

population composition can impact the association [68].

Conclusion

In conclusion, our study provides strong epidemiological evidence that long-term exposure 

to PM2.5, NO2, and O3 are independently associated with a higher risk of incident stroke 

among the US elderly population. The strongest relationship we found with incident stroke 

was for NO2 among the three pollutants, suggesting that traffic-related air pollution may 

play a particularly significant role in increased risks of stroke.
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Fig. 1. 
Average concentrations of (a) annual PM2.5 (μg/m3), (b) annual NO2 (ppb), and (c) warm-

season O3 (ppb) across the contiguous United States over the study period (2000–2016).
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Fig. 2. 
Hazard ratios of stroke incidence associated with annual PM2.5 (a), or annual NO2 (b), or 

warm-season O3 (c) concentration expressed per IQR increment. The estimated hazard ratios 

were obtained using single-pollutant, bi-pollutant, and tri-pollutant models, respectively. 

IQR, interquartile range. HR, hazard ratio.
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Fig. 3. 
Concentration–response relationships between long-term PM2.5, NO2, and O3 exposures 

and stroke incidence from (a) single pollutant models and (b) tri-pollutant models, and 

(c) probability distribution functions (PDF) of long-term PM2.5, NO2, and O3 exposures. 

(a, b) The concentration-response curves, derived from the single-pollutant or tri-pollutant 

models, are shown for the concentration ranges between 0.1th to 99.9th percentiles of the 

pollutants, i.e. with 0.2% poorly constrained extreme values excluded. (c) The PDF shows 

the distribution of each exposure in the cohort and the shading areas (from the darkest to the 

lightest) represent pollutant concentration ranges of the IQR (i.e., 25th to 75th percentiles), 

95% (2.5th to 97.5th), and 99.8% (0.1th to 99.9th), respectively. IQR, interquartile range. 

HR, hazard ratio.
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Fig. 4. 
Hazard ratios of stroke incidence associated with an IQR increase in annual PM2.5, annual 

NO2, and warm-season O3 concentration by study subgroups. All results were derived 

from the tri-pollutant models. The grey shades indicate the 95% CIs of the overall effect 

estimates. “Household income” denotes median household income at zip-code level, “Low 

household income” represents the subgroup with median household income lower than the 

population median while “High household income” represents the subgroup with median 

household income higher than the population median. “Education” denotes the proportion of 

the population > 65 years of age who had not graduated from high school at zip-code level, 

“Low education” represents the subgroup with the proportion of less educated people higher 

than the population proportion median while “High education” represents the subgroup with 

the proportion of less educated people lower than the population proportion median. IQR, 

interquartile range. HR, hazard ratio. CI, confidence interval.
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Table 1

Descriptive statistics for the study population.

Variables Full cohort

Number %

Years of clean period 1

Total population 17,443,900 100

Total Stroke cases 2,240,586 12.8

Total person-years 144,611,520

Median follow-up year 8

Age at entry (years)

 65–74 15,378,824 88.2

 75–115 2,065,076 11.8

 Mean (SD) 69.1 (4.8)

Sex

 Male 7,291,664 41.8

 Female 10,152,236 58.2

Race

 White 15,405,416 88.3

 Black 1,039,110 6.0

 Other
a 999,374 5.7

Medicaid eligibility

 Dual-eligible 1,177,587 6.8

 Non-dual eligible 16,266,313 93.2

Region

 Northeast 3,672,246 21.1

 Southeast 4,781,586 27.4

 Midwest 4,130,490 23.7

 West 2,934,175 16.8

 Southwest 1,921,509 11.0

Body-mass index (kg/m2) 27.5 (1.0)

Ever smoked (%) 46.2 (7.4)

Below poverty level (%) 12.4 (7.3)

Not graduated from high school (%) 13.8 (8.2)

Median household income (US$1000) 57.1 (23.7)

Air pollutants
b

 Annual PM2.5 (μg/m3) 9.4 (3.7)

 Annual NO2 (ppb) 17.5 (12.4)

 Warm-season O3 (ppb) 42.8 (6.5)

Note: Data are n (%) or mean (SD), except otherwise specified.

a
Other included Asian, Hispanic, American Indian or Alaskan Native, and unknown.
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b
Presented as mean concentration (interquartile range) over the study period.
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