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Protein engineering strategies for rational immunogen design
Timothy M. Caradonna 1✉ and Aaron G. Schmidt 1,2✉

Antibody immunodominance refers to the preferential and asymmetric elicitation of antibodies against specific epitopes on a
complex protein antigen. Traditional vaccination approaches for rapidly evolving pathogens have had limited success in part
because of this phenomenon, as elicited antibodies preferentially target highly variable regions of antigens, and thus do not confer
long lasting protection. While antibodies targeting functionally conserved epitopes have the potential to be broadly protective,
they often make up a minority of the overall repertoire. Here, we discuss recent protein engineering strategies used to favorably
alter patterns of immunodominance, and selectively focus antibody responses toward broadly protective epitopes in the pursuit of
next-generation vaccines for rapidly evolving pathogens.
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B CELL IMMUNODOMINANCE
Antibody (Ab) responses raised against complex protein antigens
can preferentially target particular epitopes in a reproducible
hierarchy, a phenomenon known as immunodominance. These
primary targets of Ab responses are often immunologically
dominant, while those engaged by minor portions of the overall
response are considered immunologically subdominant. This
asymmetry contributes to the host-pathogen ‘arms race’, where
particular regions of surface-exposed antigens experience the
most immune pressure, and are subsequently key sites of
antigenic variation1,2. Viral antigens like influenza hemagglutinin
(HA) or HIV envelope protein (Env), have conserved structural or
functional regions. Abs targeting these epitopes are often broadly
neutralizing (bnAbs) or protective (bpAbs), the latter through Fc-
mediated effector functions3. However, such antibodies are
generally immunologically subdominant, and make up a minority
of the overall repertoire. Next-generation vaccines for rapidly
evolving pathogens aim to alter patterns of dominance to elicit
higher levels of broadly neutralizing or protective responses.
While B cell immunodominance is an incompletely understood

phenomenon, there are several key aspects influencing inter-
clonal competition in the germinal center (GC) reaction that can
be leveraged for rational immunogen design4. (1) Precursor
frequency, the number of naïve B cells that engage a specific
epitope, is a key limiting factor; if fewer B cells engage an epitope,
the greater the likelihood that the subdominant-directed popula-
tion will be outcompeted by more abundant B cell clones. This is a
limiting factor for many bnAb precursors such as VRC01-class Abs
targeting the HIV Env CD4 binding site (CD4bs), which are present
at very low frequencies in human repertoires5. Precursor
frequency may also be influenced by central tolerance as is the
case for certain autoreactive HA-stem antibodies; negative
selection attempts to remove these autoreactive B cells from the
naïve repertoire6,7. The accessibility of a given epitope can also
contribute, as an epitope must be accessible to BCRs in order to
trigger an antibody response. (2) Precursor affinity for the antigen
drives GC establishment or entry, as high affinity for antigen is
linked with increased acquisition of antigen and increased density
of surface pMHC8. The relationship between precursor frequency
and affinity in GC B cells is nonlinear, but even when precursor

frequencies are low, B cells can be recruited to GCs if they have
sufficiently high affinity9–11. (3) The degree of T cell help during
the GC reaction is a limiting factor on GC B cell proliferation and
maturation12,13. Increasing the number of T follicular helper (Tfh)
cells specific to epitopes on an immunogen may allow B cells into
the GC that would otherwise not gain entry14. The modification of
even a few helper T cell epitopes to relieve competition between
B cell clones can have a marked impact on overall patterns of
dominance15.
The structure of a B cell epitope as seen by the BCR likely also

plays a role in immunodominance, possibly with subdominant
epitopes requiring stringent or stereotyped contacts, but currently
there is little experimental evidence directly addressing this topic.
Computational analyses of antigen structures has focused
primarily on identifying likely B cell epitopes, rather than
establishing their relative immunodominance16–18. While immu-
nodominance hierarchies for antigens such as HA and hepatitis C
virus E2 have been experimentally mapped, the importance of
epitope structure and how it might impact the trajectory of the
affinity maturing B cell repertoire remains relatively
undefined1,19,20.
In this review, we discuss various protein engineering strategies

used to develop immunogens against rapidly evolving pathogens,
and how they influence these three rather well-characterized
elements of B cell immunodominance to preferentially elicit
antibodies to subdominant epitopes.

CONSOLIDATING PROTEIN ENGINEERING STRATEGIES INTO
GENERAL APPROACHES
The following sections focus on three general approaches of
immunogen design. We discuss recent developments in strategies
to (1) magnify the overall humoral response, (2) prevent or reduce
the elicitation of ‘off-target’ antibody responses, and (3) specifi-
cally amplify responses targeting preferred epitopes. Discussion of
these strategies focuses on influenza and HIV viral glycoproteins
but extend to other viruses including respiratory syncytial virus
(RSV), dengue, and Zika. Importantly, the strategies discussed here
are not mutually exclusive, and many immunogens will likely
influence immunodominance through multiple mechanisms.
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MAGNIFICATION OF THE OVERALL HUMORAL RESPONSE
Multimeric display
The repetitive presentation of viral antigens, sensed by the degree
of surface Ig-crosslinking, is a key factor to increasing the
robustness of B cell responses21. Historically, multimeric display
was accomplished using virus-like particles (VLPs) derived from
human, insect, or plant viruses such as hepatitis B, flock house
virus, and tobacco mosaic virus22–28. This multivalent display
mimics the natural presentation of viral epitopes, and can elicit
protective responses29–32. However, many of these display plat-
forms are limited to presenting relatively small, linear peptides,
and cannot readily present complex conformationally specific
epitopes26.
In a key study, ferritin-based nanoparticles were engineered at

the three-fold axis to display trimeric influenza HA antigens as
genetic fusions. These immunogens elicited higher antigen-
specific titers with increased breadth and protection relative to
recombinant trimeric HAs33. Importantly, nanoparticle-immunized
cohorts had more broadly reactive hemagglutinin inhibition (HAI),
neutralization, and higher stem-directed titers, indicating that
multimeric display can impact patterns of dominance in favor of
cross reactive and subdominant responses33,34. More recently, the
use of genetic fusion-based protein nanoparticle immunogens has
extended beyond influenza HA; protein scaffolds displaying
prefusion stabilized RSV F or HIV Env glycoproteins elicit robust
neutralizing titers underscoring the utility of nanoparticle-based
display as a general design strategy35,36. Next-generation protein-
based nanoparticles involve multi-component constructs that
allow for stoichiometrically precise display of multiple
antigens37–42. Further computational and rational protein engi-
neering led to the development of nanoparticles with tetrahedral,
octahedral, and icosahedral symmetry; allowing for a greater
degree of customizable antigen display based on the desired
geometry43–45.
Additional multivalent assemblies allow for display of antigens

when genetic fusions are not possible or if mixed species are
required. Lipid nanoparticles or synthetic liposomes, for example,
can be engineered to present multiple antigens, resulting in
similar amplification of serum titers relative to recombinant
protein46,47. Additionally, recombinantly expressed antigens can
be enzymatically ‘clicked’ onto nanoparticle scaffolds (e.g.,
carbohydrate-based oligomers and VLPs) using the sortase
transpeptidase from Staphylococcus aureus48–53. A more recent
approach for conjugating antigen to nanoparticle scaffolds
involves SpyTag-SpyCatcher54. This technology uses a split
fibronectin-binding protein subdomain from Streptococcus pyo-
genes with a linear peptide tag appended on to the antigen and
the remaining protein to the nanoparticle; when combined in vitro

a spontaneous covalent linkage occurs via an isopeptide bond54.
As a short peptide sequence (13 amino acids), SpyTag is readily
appended to nearly any antigen of interest. This platform allows
for an easily modifiable ‘plug and display’ approach, where
heterologous display can be optimized to present a variety of
antigens. Proof of concept studies have used diverse betacor-
onavirus receptor binding domains (RBDs) as well as influenza
HAs55–58.
Despite the significant benefits of these multivalent display

strategies, they are not without drawbacks. A caveat of protein-
based nanoparticles and assembly domains like SpyCatcher-
SpyTag is the lack of precise stoichiometric control of multiple
antigens and their own innate immunogenicity. Their use
introduces additional epitopes and expands the degree of
interclonal competition, potentially skewing the immunodomi-
nance hierarchy away from subdominant epitopes of interest.
Masking (i.e., hyperglycosylation) of such ‘scaffold’ epitopes may
be necessary to limit off-target reactivity. Furthermore, multivalent
antigen display on a nanoparticle may result in steric occlusion of
desired epitopes due to antigen spacing and overall density; this
may ultimately restrict access of potential BCRs from engaging
these epitopes leading to a reduction in response despite being
presented in greater number than soluble wild-type antigen59.

RESTRICTING ‘OFF-TARGET’ RESPONSES
Complex protein antigens elicit diverse GCs containing B cells that
recognize a range of epitopes60,61. In addition to magnifying the
overall humoral response, immunogen design approaches are
leveraged to modulate responses to target different epitopes on a
given antigen. The many epitopes present on a single immunogen
result in inter-clonal competition between B cells targeting both
conserved epitopes of interest, and those engaging ‘off-target’
epitopes. Decreasing the size of the competing B cell pool can
influence patterns of immunodominance and is accomplished in
two major ways: the outright removal or steric occlusion of
undesired epitopes.

Removal of undesired epitopes
The physical removal of undesired epitopes precludes the
elicitation of responses against them, in effect modulating
precursor frequency by reducing the overall number of competing
B cells (Fig. 1). Many conserved epitopes recognized by B cells are
conformation specific, composed of multiple segments proximal
in structural space but separated in sequence space that are
difficult to selectively present62. However, many viral proteins such
as influenza HA, RSV F protein, or HIV Env can be truncated into
domain-based constructs in order to minimize the inclusion of

Fig. 1 Modulating precursor repertoire with various immunogen design strategies. Schematic representation of how precursor frequency
may be altered using different protein engineering strategies to remove ‘off-target’ competing clones using influenza hemagglutinin (HA) as a
representative example. Colors refer to theoretical epitopes on full length HA; shades of blue and purple correspond to head-directed
epitopes; shades of yellow, orange, and red correspond to stem-directed epitopes. For orthogonal grafting, a hypothetical scaffold is shown in
gray with purple region illustrating a grafted HA head epitope. All images created in PyMol using PDB 5UGY.
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off-target epitopes while still maintaining the integrity of the
target epitope63–72. Subsequent iterations of these constructs,
such as the headless, stem-only domain ‘mini-HAs’, or the
‘engineered outer domain’ (eOD) Env constructs continue to
expand the available repertoire of truncated immunogens73,74.

Occlusion of off-target epitopes
Complementary to removing undesired epitopes is the steric
occlusion of off-target ones, which can be done in a reversible or
irreversible manner. The formation of immune complexes
between antibodies and an antigen can mask epitopes; subse-
quent immunization with these immune complexes can sterically
shield epitopes and thus bias antibody responses. This was shown
for flavivirus, influenza, and HIV glycoproteins75–78. Recent
refinement of this approach has both decreased the size of the
shielding to a single chain variable fragment (scFv), or generated
covalently stabilized complexes through chemical cross-linking or
expression of an antigen-antibody genetic fusion79–81. Analogous
to epitope removal, the steric shielding of off-target epitopes
reduces the size of the precursor B cell pool able to bind the
antigen, thus reducing the pool of potential competitors.
A commonly used method to restrict off-target responses is to

introduce novel predicted N-linked glycosylation (PNG) sites on
viral surface proteins to “shield” or occlude undesired epitopes.
Glycans are naturally present on viral envelope proteins and play
key roles in stability, pathogenicity, and immunogenicity, as well
as escape from immune surveillance82–90. Overall glycosylation
patterns can affect antigen processing, delivery into GCs, and
breadth of elicited responses91–101. The variation in these natural
glycosylation patterns in response to immune pressure provides a
guide to introduce glycans on rationally designed
immunogens100,102,103.
Recent work has underscored the effectiveness of glycan

masking to restrict off-target responses across a variety of viral
glycoproteins including Zika and dengue E, hepatitis C E2,
influenza HA, HIV Env, and RSV F protein36,103–107. For flavivirus-
based immunogens (e.g., Zika, dengue E), glycan shielding is
critical to reduce the likelihood of antibody-dependent enhance-
ment (ADE) mediated by cross-reactive yet non-neutralizing
antibodies104. For influenza HA and HIV Env, the glycosylated
immunogens focus responses to broadly cross reactive, yet
relatively subdominant epitopes such as the HA head interface,
the HA stem region, and the Env CD4bs103,106,107. This serum
focusing is likely due to an increased proportion of the serum
repertoire targeting the epitope of interest; hyperglycosylation
generally does not impact overall serum titer, even for heavily
glycosylated immunogens103,107,108. More recently, the combina-
tion of hyperglycosylation and covalent stabilization of HA trimers,
where only the RBS epitope remains exposed, decreased overall
serum titers without focusing to the subdominant RBS108. Thus,
while hyperglycosylation can enrich antibody responses against
desired epitopes, it is not always successful in altering
immunodominance.

AMPLIFICATION OF ‘ON-TARGET’ RESPONSES
In contrast to the occlusion or removal of off-target epitopes,
alternative immunogen design strategies aim to expand
responses towards desired epitopes. These approaches manip-
ulate both precursor frequency and affinity, as well as epitope
accessibility to preferentially target broadly conserved or protec-
tive epitopes of interest. General approaches involve the
stabilization of preferred antigen conformations, glycan ‘unmask-
ing’ of shielded epitopes, computationally inferred consensus
antigens, germline targeting, and epitope resurfacing.

Stabilization of prefusion conformation
Viral envelope glycoproteins undergo significant conformational
rearrangements between their prefusion and post-fusion states.
To elicit immune responses that specifically recognize the
prefusion state present on the invading virus, the glycoproteins
are stabilized to prevent spontaneous structural rearrangement.
This general concept was first demonstrated for influenza HA to
characterize its conformational rearrangements necessary for
membrane fusion either through introducing prolines or non-
native cysteines to stabilize or covalently “staple” the prefusion
state (Fig. 2a)109,110. Subsequent application of these principles for
HIV Env led to the development of stabilized ‘SOSIP’ trimers
through inter-subunit disulfides and conformation-locking iso-
leucine to proline mutations111,112. The initial successes with this
stabilization approach has resulted in broadly applicable guide-
lines and even automated the design of prefusion stabilized Env
antigens across viral clades113–115. These stabilized constructs
have been instrumental in the study of HIV, and form the basis of
many current Env immunogens in clinical trials116–118. The general
strategy of prefusion stabilization has been widely implemented
for other viral antigens and has informed diverse vaccine
development efforts119,120. Specifically, the introduction of stabi-
lizing proline residues was effective for RSV F, hMPV F, Lassa virus
glycoprotein complex, ebola and Marburg glycoproteins, and
several coronavirus spike proteins121–127. For the latter, several
new iterations including ‘S-2P’ and ‘HexaPro’ in SARS-CoV-2 spike
have improved efficacy and form the basis of the currently
approved vaccines127. Such stabilization approaches help limit the
overall size of the precursor pool by ensuring the prefusion
conformation is dominant, and limit responses against epitopes
displayed less frequently on the circulating virus.

‘Un-masking’ of normally occluded epitopes
The removal of naturally occurring glycans introduces new targets
for antibody responses (Fig. 2b). For HIV Env and influenza HA,
viral proteins with extensive surface glycosylation, selective
removal of glycosylation sites around the CD4bs or HA stem
epitope modulated responses to these epitopes and increased the
overall breadth of elicited antibodies128,129. However, in some
cases, glycan removal to expose neoepitopes was not sufficient to
elicit broader responses, indicating that other factors influencing
immunodominance are present130. Even if a glycan is not sterically
occluding the epitope itself, it can impact the elicitation of
antibodies against adjacent epitopes, as demonstrated by the
increased breadth of serum responses raised against selectively
de-glycosylated Env and HA antigens106,128,129,131.

Computationally optimized broadly reactive antigens
While many immunogen design strategies are designed to target
a single epitope, computationally optimized broadly reactive
antigens (COBRAs) use a consensus sequence-based approach to
optimize the entire antigen to simultaneously present multiple
cross-reactive epitopes (Fig. 2c). First developed for H5 influenza
HAs, COBRAs improved upon previous classes of consensus-based
immunogens by removing biases from overrepresentation of
certain sequence clades due to uneven sequence availability132.
Iterative rounds of consensus sequence generation within, and
then between, clades yielded HA immunogens that conferred
higher HAI titers and protection against diverse H5 isolates even
relative to cocktail immunizations of members from multiple H5
clades133,134. The COBRA approach translates to other human (e.g.,
H1, H2, H3), avian (e.g., H7), and swine (e.g., H1) HAs, as well as
other viral antigens such as dengue virus E protein. Importantly
these immunogens work in both naïve animal models and in the
setting of preexisting immunity135–147. The exact mechanism of
enhanced breadth elicited by COBRA immunogens is unknown;
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one possibility is increased recruitment of B cells against antigenic
sites with greater cross-reactive potential leads to the enhanced
diversity and breadth of responses148,149.

Germline-targeting antigens
Germline biases for specific epitopes may be observed if the
amino acids encoded by the naïve sequence has a threshold
affinity for the antigen such that it results in a competitive
advantage. For influenza HA, stem-binding antibodies are
predominantly enriched for VH1–69, but VH6-1, VH1–18, and
VH3–30 have also been observed; sialic acid-mimicking HA
receptor binding site (RBS)-directed Abs are enriched for JH6
genes150–158. Similar gene enrichment is seen in responses to
other viral glycoproteins, including Zika E (e.g., VH3–23/VK1–5),
hepatitis C virus E2 (e.g., VH1–69), and SARS-CoV-2 spike (e.g.,
VH3–53, VH1–2, VH3–9, and VH3–30)159–163. While germline-
encoded affinity can dramatically alter patterns of dominance if
the precursor B cells are present with high enough frequency, this
natural advantage is often insufficient in the setting of rare
precursors164. For example, high-affinity VRC01-class precursors
that target the HIV Env CD4bs are predicted to have a frequency
of 1 in 0.9 million naïve B cells, and despite nanomolar affinity for

rationally designed immunogens targeting these precursors, they
remained minor components of the overall repertoire when
present in animal models at these levels5.
Germline-targeting immunogens are used to preferentially bias

responses towards these rare high-affinity clones (Fig. 2d). In initial
studies, nanoparticles were multimerized with HIV Env eOD
antigens designed to engage inferred germline precursors for
VRC01-class antibodies; these immunogens activated both germ-
line and mature VRC01 expressing cell lines74. Studies using VRC01
germline knock-in mice showed that elicited antibodies have
VRC01-class characteristics, with varying affinity and breadth for
native HIV Envs165,166. Subsequent generations of VRC01-class
germline-targeting nanoparticles allowed for isolation and char-
acterization of human VRC01 precursors present in naïve
individuals167. Applying similar principles led to the development
of immunogens able to engage germline-precursors for HIV Env
targeting PGT121- and CH235-like broadly neutralizing antibodies,
as well as those from cross-group stem-reactive influenza HA
antibodies168–170.
Recently, germline targeting designs have been generalized to

target larger pools of B cell precursors making CDRH3-mediated
contacts with a given epitope171. This represents a conceptual
shift in the approach: rather than attempting to engage the exact

Fig. 2 Design strategies to enhance ‘on-target’ epitope responses. a Stem- and head-only HAs indicating locations of engineered prolines
(left, red spheres) and inter-HA cysteines (right, yellow spheres) to stabilize the prefusion conformation. b Selective removal of native glycans
to expose neoepitopes (red circle). c Computational design of HA antigens based on overall subtype diversity increases cross-reactive
responses. To illustrate the COBRA approach, HA is arbitrarily colored in gray shading to show variation in amino acid identity that ultimately
contributes to the consensus sequence; for a complete description see Huang et al.131. d Optimization of a single epitope for a specific class of
B cell precursors increases initial antigen affinity. HA receptor binding site (RBS) is shown in green as an example. e Resurfacing of a complex
conformational-specific epitope allows for heterologous boosting of subdominant responses within memory. S1–S4 segments of the grafted
RBS shown in red, orange, green, and blue, respectively. f Chimeric HAs where head domain (purple) of an antigenically distinct non-
circulating HA is transplanted onto a conserved circulating stem domain (gray) to preferentially target stem-directed responses. All images
created in PyMol using PDB 5UGY.
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precursors within the repertoire, immunogens now engage a
wider set of precursors that have the potential to mature breadth
over the course of multiple immunizations. However, key
questions remain about how to ‘guide’ BCR maturation along
the desired evolutionary path, and what are the key structural
characteristics of immunogens necessary for eliciting antibodies
with the desired breadth172,173. Performing these studies in the
context of adoptively transferred germline-presenting B cells,
rather than a complete knock-in model, will also be necessary to
understand the effects of inter-clonal competition on the ability of
a rationally designed immunogen to selectively enrich for desired
responses174.

Epitope grafting or resurfacing
For antigenically diverse, yet structurally similar antigens, epitope
‘grafting’ or ‘resurfacing’ can be used to target subdominant
responses from immunologic memory. Desired epitopes can be
transplanted onto antigenically distinct scaffolds (Fig. 2e)175. These
resurfaced constructs are thought to increase responses towards
the grafted epitope due to preferential recall of memory
responses against the graft versus de novo responses against
the scaffold. Recently the H1 HA RBS, a complex conformationally
specific epitope, was grafted onto the non-circulating avian H4
and H14 HAs. Binding to a panel of H1 RBS-directed antibodies
confirmed the successful recapitulation of the grafted epitope175.
Immunization with the resurfaced HA in mice primed with H1 HA
increased the breadth of RBS-directed B cells against historical H1
isolates175.
A similar grafting approach was used for the HA stem region to

create chimeric HAs (cHAs) whereby antigenically distinct and
often non-circulating HA heads have been swapped onto stems of
circulating HA subtypes (Fig. 2f)176. Prime-boost immunizations
with these cHAs presenting head domains to which there is no
preexisting immunity, but with conserved stem domains, elicited
cross-reactive stem-directed antibodies capable of protecting via
Fc-effector functions177–184. In clinical trials, cHAs show evidence
of eliciting cross-reactive serum antibodies that target the HA
stem in human subjects185. More recently, an analogous approach
was used to design chimeric coronavirus spike immunogens186.
A complementary type of epitope resurfacing involves mutating

‘off-target’ regions to disrupt recognition of undesired epitopes.
This approach has been used as a screening tool to isolate HIV Env
CD4bs-directed antibodies, and flavivirus E immunogens with
lower cross-reactive but non-neutralizing titers187–189. For exam-
ple, resurfaced dengue E domain III (EDIII) immunogens preserved
the broadly neutralizing 4E11 epitope while peripheral epitopes
were mutated to disrupt recall responses against these
regions188,189. Similar to masking off-target EDIII epitopes with
glycans, resurfacing off-target epitopes may help prevent
antibody-dependent enhancement as cross-reactive yet non-
neutralizing responses are limited.
A further extension of this approach is the grafting of desired

epitopes onto orthogonal protein scaffolds that lack structural
homology with the wild-type antigen. In initial studies, multiple
neutralizing epitopes of RSV F protein were transplanted onto
orthogonal protein scaffolds. The antibody responses elicited by
orthogonally-scaffolded immunogens were specific to the grafted
epitopes, and had increased titers against the grafted sites despite
lower titers to RSV F protein overall190,191. While the difficulty in
designing orthogonal scaffolds significantly increases with the
complexity of the target epitope, this approach completely avoids
eliciting antigen-specific off-target responses.
A primary drawback of epitope resurfacing is the introduction of

a significant number of neoepitopes. For example, grafting the H1
HA RBS onto an H4 full length soluble ectodomain (FLsE) HA
scaffold, or grafting an antigenically distinct HA head onto a
conserved HA stem domain, expands inter-clonal competition via

the introduction of novel immunodominant HA head epi-
topes175,176. Likewise, while orthogonal grafting does not present
any epitopes shared by that class of antigens (e.g., RSV F protein),
it still presents neoepitopes which will have their own intrinsic
immunodominance hierarchy. Overall, while resurfaced immuno-
gens can elicit antibodies against desired epitopes with increased
frequency or breadth, current iterations do not optimally alter
patterns of dominance. The combination of epitope grafting with
other design strategies is likely needed to fully realize the epitope
immune-focusing potential of such constructs.

Increasing the breadth of antibody responses
The development of next-generation vaccines is further compli-
cated by the fact that engagement of a conserved epitope does
not guarantee breadth192. Additional steps are therefore needed
to ensure broad reactivity even if elicited antibodies engage the
desired epitope. Immunogen design strategies to increase the
breadth of responses can be broadly classified as single- or multi-
step approaches.

Prime and boost formulations to focus from within memory
Initial exposures to a pathogen can influence subsequent
responses, a phenomenon termed “original antigenic sin”193,194.
Inferred germline antibodies or unmutated common ancestors
(UCAs) of broadly neutralizing influenza HA antibodies isolated
from human donors show high affinity for strains circulating
during the donor’s early childhood, suggesting that early
exposures imprint responses that are subsequently matured and
refined upon re-exposure195–197. Repeated exposure in the form of
seasonal vaccination against influenza does not appear to alter the
patterns of dominance established towards particular HA sub-
types175,198–200. However, recall and maturation of HA stem-
directed responses has been observed following immunization
with divergent wild-type or chimeric strains, where the stem
region is the conserved epitope between exposures201–205. Even if
overall patterns of dominance are not altered, subdominant
antibodies can show increased breadth upon re-exposure to
antigenically similar epitopes175.
Computational studies suggest that there are optimal antigenic

distances between primary and secondary immunogens that will
help direct responses toward conserved and broadly protective
epitopes206–209. Too little antigenic distance, and memory
responses against variable epitopes will dominate the repertoire;
too great a distance, and de novo responses against variable
epitopes dominate. Understanding how antigenic distance
impacts preferential recall of imprinted responses will be critical
for designing optimized immunogens capable of expanding
subdominant populations from within the memory compartment.

Eliciting cross-reactive responses from single immunizations
Immunization with a cocktail of HA homotypic nanoparticles has
been shown to elicit broader serum titers than individual
nanoparticles34. However, the breadth of these serum responses
is due to the summation of individual strain-specific responses
rather than broad reactivity from specific antibodies. The
simultaneous presentation of multiple antigens within a single
immunogen, however, elicits broader antibodies, and in certain
cases focuses antibody responses on conserved epitopes40,41,55,56.
While the precise mechanism of how heterologous display focuses
responses to cross-reactive epitopes has not yet been determined,
evidence suggests that such an immunogen confers a competitive
avidity advantage to cross-reactive B cells40,41.
However, with heterologous display, especially when present-

ing an array of wild-type antigens, there is often a gradient of
epitope conservation that ranges from unique, to partially
conserved, to fully conserved across the set of antigens being
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displayed. Thus, there appears to be a ‘sliding scale’ of benefit to
all antigen-specific B cells that is combined with the preexisting
immunodominance hierarchy to determine the overall epitope
distribution (Fig. 3). If a goal is to focus antibody responses to a
specific epitope, heterologous display could be optimized such
that only a single epitope is present multiple times, while all other
epitopes are present only once. This ‘epitope-enriched’ immuno-
gen would, in theory, confer an avidity advantage specifically to B
cells engaging the desired epitope, and thus maximize their
relative competitive advantage. Heterologous display of epitope-
resurfaced antigens, where antigenically distinct scaffolds present
a common grafted epitope, would likely result in enhanced
immune focusing.

FUTURE QUESTIONS
Despite significant advancements in recent years, understanding
immunodominance and what is required to create a vaccine with
long-term efficacy against a rapidly evolving pathogen is
necessary. Some key fundamental questions that remain include,
but are not limited to:

(1) If immunodominance hierarchies are altered by next-
generation vaccines, will previously conserved subdominant
epitope(s) nevertheless remain conserved in response to
significant immune pressure? In other words, by focusing
immune responses to a conserved epitope, will escape (i.e.,
mutation) occur? While many conserved regions on viral
glycoproteins play important functional roles (e.g., receptor
binding, membrane fusion), key residues are often a fraction
of the entire eptiope210–212.

(2) Can B cell populations targeting a particular conserved
epitope be guided towards breadth through serial immu-
nizations with rationally designed constructs, or is the
potential for breadth intrinsic to a specific subset of clones?
This has significant implications for pathogens such as HIV,
where many bnAbs have structural features (e.g., CDR
length) that greatly restrict the size of precursor populations.

(3) Are there structural, epitope-specific factors that influence
immunodominance hierarchies? The major components of
precursor frequency and affinity, T cell help, and epitope
accessibility do not account for the impact of the epitope
itself as a substrate during affinity maturation. For example,

an HA receptor-mimicking RBS-directed antibody makes
contacts within the sialic acid binding pocket, a recessed
epitope surrounded by a highly variable periphery, where
acquired mutations in CDRs can affect or completely
abrogate binding154. In contrast, an HA lateral patch-
binding antibody makes contacts with a mostly continuous
hydrophilic surface, where the similar CDR mutations are
less likely to disrupt binding213. In effect, the affinity
maturing antibodies may follow evolutionary paths, deter-
mined by the targeted epitope. Over time, the relative
frequency of beneficial, neutral, or deleterious mutations
impact the size of competing clonal B cell pools, and thus
the trajectory of inter-clonal competition.

CONCLUSION
Current protein engineering strategies, like those described above,
allow tailoring of an immunogen to elicit the desired antibody
response. Importantly, many of the described approaches take
orthogonal and therefore complementary approaches to immune-
focusing. For example, a germline-targeting immunogen, with
hyperglycosylated periphery, displayed on a nanoparticle
leverages three different strategies: (1) the multimeric display,
(2) steric shielding of ‘off-target’ and nanoparticle scaffold
epitopes, and (3) epitope optimization to engage a set of
precursor B cells. Multimeric display increases the overall size of
the precursor B cell pool and the avidity of antigen interactions,
steric shielding of undesired responses leads to the reduction of
inter-clonal competition from undesired clones, and germline
targeting ensures a select set of precursors have increased affinity
and thus a competitive edge in the GC reaction. While the intrinsic
immunodominance hierarchies for specific antigens will likely
determine the optimal approach needed to expand broadly
protective responses, the above strategies allow for selective
manipulation of the major contributing factors to
immunodominance.
These protein engineering approaches can be similarly used to

generate probes to deconvolute the GC reaction. Selective
resurfacing or occlusion of epitopes, the modulation of endogen-
ous/exogenous T cell epitopes, display on oligomeric scaffolds,
and other rational design strategies, provide an opportunity to
perform mechanistic experiments investigating underlying
B-cell biology. Simultaneous basic and translational advancements

Fig. 3 Proposed use of heterologous antigen display to focus responses toward desired epitopes. A proposed spectrum of epitope
focusing immunogens incorporating various multimeric or heterologous display strategies is shown; unique colors represent antigenically
distinct components. As the relative overall enrichment of the target epitope increases, so does the degree of epitope focusing. Heterologous
display within a subtype presents a wider gradient of conserved epitopes due to the smaller antigenic distance between presented
components. Heterologous display of antigenically distinct antigens enriches for conserved epitopes, but there are still other epitopes that are
conserved between various combinations of component antigens. The endpoint of this spectrum is an epitope-enriched immunogen, where
a single epitope is presented as multiple copies with all other epitopes presented once. All images created in PyMol using PDBs 5UGY
and 3BVE.
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will allow for iterative improvement of pre-clinical vaccine
candidates in the pursuit of next-generation viral vaccines for
rapidly evolving pathogens.
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