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Abstract

Acute rejection is a major complication of solid organ transplantation that prevents the long-term assimilation of the
allograft. Various populations of lymphocytes are principal mediators of this process, infiltrating graft tissues and driving
cell-mediated cytotoxicity. Understanding the lymphocyte-specific biology associated with rejection is therefore critical.
Measuring genome-wide changes in transcript abundance in peripheral whole blood cells can deliver a comprehensive view
of the status of the immune system. The heterogeneous nature of the tissue significantly affects the sensitivity and
interpretability of traditional analyses, however. Experimental separation of cell types is an obvious solution, but is often
impractical and, more worrying, may affect expression, leading to spurious results. Statistical deconvolution of the cell type-
specific signal is an attractive alternative, but existing approaches still present some challenges, particularly in a clinical
research setting. Obtaining time-matched sample composition to biologically interesting, phenotypically homogeneous cell
sub-populations is costly and adds significant complexity to study design. We used a two-stage, in silico deconvolution
approach that first predicts sample composition to biologically meaningful and homogeneous leukocyte sub-populations,
and then performs cell type-specific differential expression analysis in these same sub-populations, from peripheral whole
blood expression data. We applied this approach to a peripheral whole blood expression study of kidney allograft rejection.
The patterns of differential composition uncovered are consistent with previous studies carried out using flow cytometry
and provide a relevant biological context when interpreting cell type-specific differential expression results. We identified
cell type-specific differential expression in a variety of leukocyte sub-populations at the time of rejection. The tissue-
specificity of these differentially expressed probe-set lists is consistent with the originating tissue and their functional
enrichment consistent with allograft rejection. Finally, we demonstrate that the strategy described here can be used to
derive useful hypotheses by validating a cell type-specific ratio in an independent cohort using the nanoString nCounter
assay.

Citation: Shannon CP, Balshaw R, Ng RT, Wilson-McManus JE, Keown P, et al. (2014) Two-Stage, In Silico Deconvolution of the Lymphocyte Compartment of the
Peripheral Whole Blood Transcriptome in the Context of Acute Kidney Allograft Rejection. PLoS ONE 9(4): e95224. doi:10.1371/journal.pone.0095224

Editor: Gualtiero I. Colombo, Centro Cardiologico Monzino IRCCS, Italy

Received November 12, 2013; Accepted March 24, 2014; Published April 14, 2014

Copyright: � 2014 Shannon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding for this work was provided by Genome Canada, Novartis Pharma AG, IBM, Genome British Columbia, and the NCE CECR PROOF Centre of
Excellence. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Funding for this work was provided by Genome Canada, Genome British Columbia, and the NCE CECR Program. The following
commercial partners also provided funding: Novartis Pharma AG and IBM. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript. There is no intellectual property related to the work presented in this manuscript. This does not alter the authors’
adherence to PLOS ONE policies on sharing data and materials.

* E-mail: scott.tebbutt@hli.ubc.camailto

Introduction

Acute rejection is a major complication of solid organ

transplantation that prevents the long-term assimilation of the

allograft. It is caused by an immune response, with both innate

and adaptive components, mounted by the host against alloantigen

in the donor tissue. Various lymphocyte sub-populations are

known to be principal mediators of this immune response,

infiltrating graft tissues and driving cell-mediated cytotoxicity

[1,2]. Understanding the immune response, and lymphocyte-

specific biology, associated with rejection is critical if we are to

prevent irreversible damage to the graft and may lead to the

development of more targeted and successful tolerance strategies

[3].
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Measuring genome-wide changes in transcript abundance in

circulating blood cells (hereafter peripheral whole blood gene

expression) can deliver a comprehensive view of the status of the

immune system and has been useful in studying the pathobiology

of many diseases, including kidney allograft rejection [4–6].

Interpreting the results of gene expression studies carried out in

peripheral whole blood cells, however, is complicated by the

heterogeneous nature of this tissue. Traditional microarray

analysis methods do not take into account sample cell type

composition. When considering the results of such analyses, we

cannot distinguish between variations in gene expression resulting

from actual changes in transcript abundance within one or more

of the cell types in the sample under study and differences in cell

type frequency [7]. In fact, both of these sources of expression

variation are significant contributors to the overall variation seen

in peripheral whole blood expression data [8]. Sample heteroge-

neity necessarily affects our ability to detect differential gene

expression in peripheral whole blood studies. More importantly, it

makes drawing meaningful inference from the data difficult. The

problem is not limited to peripheral whole blood [9], and is seldom

addressed in a rigorous manner. This is both a problem and a

missed opportunity. Both sample composition and cell type-

specific gene expression are biologically pertinent. The ability to

study changes in the composition of complex tissue samples over

time or under various experimental conditions in a very granular

manner via genome-wide expression profiling is appealing. In

peripheral whole blood, leukocyte populations are already

routinely used in monitoring and diagnostics [10–12]. On the

other hand, the ability to assess cell type-specific gene expression

within a heterogeneous sample would allow for a better

understanding of the molecular processes involved in health and

disease, particularly in less abundant cell type compartments (e.g.;

eosinophils, Tregs), whose signal might otherwise be drowned out

by the more abundant cell type compartments (e.g.; neutrophils).

An ability to study both of these systems and their interplay all

within the same sample would be very useful.

Experimental separation of the component cell types of complex

tissue samples is an obvious solution. Following isolation and

quantification, one could perform between-group differential

expression analysis for each of the cell types in a tissue to assess

cell type-specific gene expression changes in the experimental

context. However, experimental methods for isolating cell type

subsets from complex tissues, such as fluorescence-activated cell

sorting (FACS) or enrichment columns, are expensive and the

need to process additional gene expression assays for each cell type

of interest further exacerbates the problem. Ignoring the

additional costs incurred, such isolation methods rely on the

availability of unique cell-surface markers and appropriate

antibodies that may or may not exist for all cell types of interest

[13]. In the case of clinical research, the limitations of clinical

laboratories should also be considered. Collecting and preparing

peripheral whole blood for gene expression studies is relatively

straightforward, but many clinical laboratories may not be

equipped to perform FACS/enrichment protocols on site.

Translational research should be mindful of the limitations that

exist in the clinical laboratory and, if at all possible, simplicity in

sample collection and preparation is preferred. Finally, and

perhaps most troubling from a scientific point of view, these

isolation techniques may alter the gene expression of the cells

under study [14,15].

The cell-composition-dependent signal and cell-function-depen-

dent signal in complex tissue gene expression data may, however,

be statistically deconvolved. Lu et al. [16] pioneered statistical

deconvolution of microarray data to study the proportions of cells

in different phases of the cell cycle in cultures of the yeast S.

Cerevisiae. Other groups subsequently demonstrated that micro-

array expression deconvolution can reasonably quantify the

constituents of peripheral whole blood [17,18]. Concurrently,

Shen-Orr et al. demonstrated that cell-specific gene expression may

be inferred from peripheral whole blood expression data using

total leukocyte differentials (cell-specific significance analysis of

microarrays [csSAM]) [7]. In each of these cases the measured

transcript abundance in peripheral whole blood for each gene, in

each sample, is modeled as a linear combination of the transcript

abundance of that gene in each of the cells comprising that sample.

Provided we can estimate one of these two unknown quantities,

multiple linear regression can provide an approximate solution for

the other [7,16–18]. A number of approaches have been

developed more recently [19,20], including applications to next

generation sequencing [21].

For simplicity, inferring cell type-specific expression from the

peripheral whole blood sample expression data can be referred to

as the forward case of deconvolution, while inferring composition

from the peripheral whole blood sample expression data can be

referred to as the reverse case of deconvolution.

These approaches are complementary. While total leukocyte

differentials have been proposed as a readily available source of

composition information to enable forward deconvolution ap-

proaches in a clinical setting, they offer insufficient granularity,

most obviously within the lymphocyte (lymphoid) compartment.

Flow cytometry can provide much higher granularity, but at

higher cost and increased complexity. The use of reverse

deconvolution addresses these issues directly by providing more

granular composition data without incurring any additional costs

or requiring additional data collection. More generally, the use of

whole genome expression data to infer cell type composition could

theoretically allow for quantification and study of otherwise non-

trivially isolatable cell types in situ. Finally, we have previously

hypothesized that the sensitivity of forward deconvolution may be

poor when phenotypically heterogeneous compartments are used

in the model (e.g.; lymphocyte compartment when using total

leukocyte differentials) [22,23]. In this case, the ability to infer the

composition of a complex tissue to an arbitrarily granular level,

thus ensuring phenotypically homogeneous component cell types,

could result in additional discovery when performing forward

deconvolution. This is the main motivation for a combinatorial

deconvolution approach.

We describe below the implementation of a two-stage, in silico

deconvolution strategy and its application to the study of the

lymphocyte compartment of peripheral whole blood during acute

kidney allograft rejection to highlight its utility. First, we detail the

construction of a suitable basis matrix: an estimate of the cell type-

specific expression profiles of the various components of peripheral

whole blood that allows us to infer the fractions of these

components in each sample from the observed expression in

peripheral whole blood (reverse deconvolution), and we establish

its performance in three separate cohorts of transplant recipients.

Next, we demonstrate that including lymphocyte sub-populations

may yield additional discovery when performing cell type-specific

differential expression analysis in peripheral whole blood and

provide a more relevant biological context for this discovery. We

establish the plausibility of the cell type-specific probe-sets

identified by this approach. Finally, we apply this two-stage, in

silico deconvolution approach to a timecourse study of acute kidney

allograft rejection, including samples and time points for which no

independent composition data was available, to highlight its utility

when attempting to derive value from existing clinical samples.

Two-Stage Deconvolution Whole Blood Transcriptome
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Methods

Ethics Statement
This prospective observational study was conducted at 4 renal

transplant centres (including St. Paul’s Hospital and Vancouver

General Hospital (Vancouver, BC, Canada) between January

2005 and September 2009, and expanding to include The Ottawa

Hospital (Ottawa, ON, Canada) and Princess Alexandra Hospital

(Brisbane, Queensland,Australia) between September 2009 and

May 2012) and was approved by the UBC Providence Health

Care Research Ethics Board (UBC-PHC REB; St. Paul’s Hospital,

Vancouver, BC), UBC Clinical Research Ethics Board (UBC

CREB; Vancouver General Hospital, Vancouver, BC), Ottawa

Hospital Research Ethics Board (Ottawa Hospital, Ottawa, ON),

and Metro South Health District Human Research Ethics

Committee (Princess Alexandra Hospital, Brisbane, Australia),

respectively. All eligible patients undergoing a kidney transplant

were invited to participate in the study. Recipients eligible for the

study were .18 years of age and able to provide informed consent.

Recipients who were under 18 years of age, received multiple,

different solid organ transplants, HIV positive, or received organs

from donors who tested positive for HIV were excluded. All study

participants provided informed written consent.

Kidney Rejection Timecourse Cohort
Recruited patients received a standardized treatment protocol

including basiliximab 20 mg i.v. on days 0 and 4, methylprednis-

olone 125 mg i.v. on the day of transplantation tapering to zero by

day 3 post-transplant, tacrolimus 0.075 mg/kg b.i.d. and myco-

phenolate 1000 mg b.i.d. Tacrolimus concentrations were mea-

sured by tandem mass spectrometry, and the dose was adjusted to

achieve 12-hour trough levels of 8–12 ng/mL in month 1, 6–

9 ng/ml in month 2, and 4–8 ng/ml thereafter. Allograft rejection

was diagnosed by normal clinical and laboratory parameters,

confirmed by biopsy, and graded according to the Banff 97

working classification of renal allograft pathology [24]. Banff

categories 2 and 4 (antibody-mediated or acute/active cellular

rejection) were considered significant. Subjects with borderline

changes (category 3) are not considered in the current study. There

was no patient loss to follow-up during the study. Blood samples

were obtained in PAXgene tubes (BD Diagnostics, Franklin Lakes,

NJ, USA) immediately prior to transplantation, at 0.5, 1, 2, 3, 4, 8,

12, 26, and 52 weeks post-transplant, and at the time of suspected

rejection. Graft tissue was obtained pre-transplant and at the time

of all biopsies performed for clinical purposes post-transplant. All

samples were stored in a biolibrary until required for analysis.

We employed a case-control design [25] to compare peripheral

whole blood composition, peripheral whole blood gene expression

and cell-type specific gene expression in subjects with (AR) or

without (NR) treatable acute rejection. To ensure precise

homogeneous phenotypes, patients were considered eligible for

analysis if they were less than 75 years of age; did not have pre-

transplant immunosuppression or immunological desensitization;

received an AHG-CDC crossmatch negative kidney transplant

from a deceased or non-HLA identical living donor; did not

receive depleting antibody induction therapy; were able to receive

oral immunosuppression, and had no evidence of infection, disease

recurrence, and other major co-morbid events. Cases with AR

diagnosed during the first 12 months post-transplant were

matched as closely as possible for age, sex, degree of sensitization,

organ source and date of transplantation with controls (NR) that

had no evidence of clinical or acute rejection during the period of

follow-up.

This selection process yielded 48 suitable subjects (24 AR, 24

NR, matched) from a primary cohort (kidney transplant recipients

from the St. Paul’s Hospital and Vancouver General Hospital

sites, enrolled between January 2005 and September 2009),

described in previous work by our group [5,6]. Demographics for

these subjects are summarized in Table S1. Peripheral whole

blood gene expression was assayed on Affymetrix U133 Plus 2.0

microarray pre-transplant (baseline), at the time of rejection

(rejection) and at the first available time point at least 7 days

following rejection (post-rejection). Total leukocyte differentials

time-matched to the RNA extraction blood draw (within 24 hours)

were available for 41 subjects (18AR, 23 NR), only at the rejection

time point.

A secondary cohort of 44 subjects (13 AR, 31 NR) was

assembled by applying the same selection process to kidney

transplant recipients enrolled between September 2009 and May

2012 across all four sites. Peripheral whole blood gene expression

was assayed on the nCounter GX Human Immunology Assay

(NanoString Technologies, Seattle, WA, USA) at the time of

rejection only. Total leukocyte differentials time-matched to the

RNA extraction blood draw were not available for these subjects.

This secondary cohort was used to test a cell type-specific

hypothesis formulated at the rejection time point in the primary

cohort.

Additional Datasets
The statistical model used to infer the cellular composition of

peripheral whole blood samples was constructed, and preliminary

validation on it performed, using two aggregate datasets of the

expression profiles of leukocyte sub-populations isolated from

peripheral whole blood, obtained from the Gene Expression

Omnibus (GEO; GSE28490 and GSE28491) website. Two

additional groups of patients were used to train and validate the

statistical model used to infer the composition of peripheral whole

blood samples. The first group, our training set, is an aggregate

of two previously described cohorts of heart (n = 26) [22,26] and

kidney (GSE20300; n = 24) [7] transplant recipients. Peripheral

whole blood gene expression and time-matched total leukocyte

differential data was available for all subjects. The second group,

an independent cohort of adult kidney transplant recipients

(n = 41, a subset of the kidney rejection timecourse cohort

described above for which total leukocyte differentials time-

matched to the RNA blood draw were available), acted as an

independent test set to assess the performance of our deconvolu-

tion model. The various datasets used in this analysis are tabulated

in Table 1.

RNA extraction and microarray processing
Blood samples for all subjects and time points were collected in

PAXgene tubes and stored at 280uC until analysis. Total RNA

was extracted using PAXgene Blood RNA Kits (QIAGEN Inc.,

Germantown, MD, USA), and integrity and concentration

determined using an Agilent 2100 BioAnalyzer (Agilent Technol-

ogies Inc., Santa Clara, CA, USA). Affymetrix Human Genome

U133 Plus 2.0 (Affymetrix, Inc., Santa Clara, CA, USA)

microarrays were processed at the Microarray Core Laboratory

at Children’s Hospital, Los Angeles in order to assess whole

genome expression. The microarrays were checked for quality

using the ‘‘affy’’ (version 1.16.0) and ‘‘affyPLM’’ (version 1.14.0)

libraries, part of the BioConductor project, as well as ‘‘mdqc’’

(Mahalanobis Distance quality control) [27], an internally

developed method. All microarrays that passed quality control

were background corrected and normalized using quantile

normalization (as in RMA) [28] and summarized using a factor

Two-Stage Deconvolution Whole Blood Transcriptome
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analysis model (factor analysis for robust microarray summariza-

tion [FARMS]) [29], via the ‘‘farms’’ library. Finally, we employed

the informative/non-informative (I/NI) calls of FARMS to limit

our discovery space to internally consistent (at the probe level)

probe-sets. The resulting 7820 probe-sets were used as a starting

point for all subsequent analyses. Expression datasets obtained

from GEO were similarly processed, however FARMS I/NI calls

were not applied.

Two-stage, in silico deconvolution analysis
Statistical analysis tools. All statistical analyses were

performed using the R Statistical Programming Language [30]

and a number of packages for the analysis of microarray data

included in the Bioconductor project [31]. Feature selection and

classification relied on the ‘‘glmnet’’ [32] library, while we inferred

cell type proportions using a quadratic programming approach

(‘‘limSolve’’ library) [18]. Plots were created with the excellent

‘‘ggplot2’’ library [33]. The code used to perform the two-stage

deconvolution analysis described below will be provided upon

request.

Modeling mixed expression data. Peripheral whole blood

expression was modeled as follows: assume observed expression

values Xij for sample i = 1, 2, …, n and genes j = 1, 2, …, p

measured cell-type proportions wik for samples i = 1, 2, …, n and

cell types k = 1, 2, …, K, cell type-specific contribution to the

observed gene expression hkj for cell-types k and gene j, and a

random error term eij yields the following equation:

Xij~
XK

k~1

wikhkjzeij

Let X, W, H be matrices with entries Xij (sample observed

expression), wik (sample composition), and hkj (sample cell type-

specific contribution to the observed expression) respectively.

Having measured X, the convolved peripheral whole blood

expression, we wish to study W and H in isolation; that is, we

wish to deconvolve X.

If W, the sample composition, is known, then H, the cell type-

specific contribution to the observed expression, can be inferred by

fitting the above model by regression of each column of X on W, to

yield the coefficients in the corresponding column of H, as in

csSAM [7]. Fitting the model separately in each group, allows us

to interpret the estimated hkj as the average gene expression for

cell-type k in the group of samples. The coefficients can then be

compared across groups to assess cell type-specific differential

expression. Statistical testing employs a permutation scheme to

estimate false discovery rate cut-offs. We refer to this as the

forward case of deconvolution.

Similarly, W can be inferred by fitting the above model by

regression of each column of X on H, to yield the coefficients in the

corresponding column of W. In this case the cell type-specific

contribution to the observed expression, H, can be estimated from

the expression profiles of isolated cell populations, at least for a

minimal subset of genes that exhibit cell type-specific expression.

We can then use this estimate of H, termed the basis matrix, to

deconvolve. The approach was first demonstrated by Lu et al.,

studying cell-cycle regulation of the yeast S. Cerevisiae [16]. Other

groups subsequently demonstrated that microarray expression

deconvolution can be used to reasonably quantify the constituents

of peripheral whole blood [17,18]. The application of such a

computational approach eliminates concerns over collection

protocols and time-matching and provides us with a potentially

highly granular means of estimating the composition of peripheral

whole blood samples. We refer to this as the reverse case of

deconvolution.

Identifying a dataset suitable for basis matrix

construction. The basis matrix for deconvolution is an estimate

of the cell type-specific contribution to the observed expression, H,

for a subset of cell type-specific genes. In the case of peripheral

whole blood, this estimate can be obtained from a collection of

expression profiles of leukocyte populations isolated from blood.

We identified a suitable dataset (GSE28490) on our target

platform (Affymetrix U133 plus 2.0) via the Gene Expression

Omnibus [34] and chose to include isolated expression profiles for

seven relevant leukocyte sub-populations: neutrophils (CD16+
CD66b+), eosinophils (CD16-CD66b+), monocytes (CD14+), T

cells (CD4+), T cells (CD8+), NK cells (CD56+), and B cells

(CD19+).

Feature selection, optimal basis matrix construction and

prediction of sample composition. Identifying a minimal

subset of cell type-specific genes from this collection of isolated

leukocyte expression profiles can be framed as a multinomial

classification problem with feature selection. Feature selection is

necessary because we expect most genes to be non-informative

with respect to discriminating between cell types [17]. We

assembled a matrix of 54613 probe-sets by seven cell types

(neutrophils, eosinophils, monocytes, CD4+ T cells, CD8+ T cells,

NK cells and B cells) using the quantile normalized (RMA [28]),

log2-transformed expression obtained from GSE28490 and fit a

multinomial elastic net model [35] (via the ‘‘glmnet’’ library).

Probe-sets not present in the kidney rejection timecourse cohort

(due to FARMS I/NI calls) were excluded from our feature space

using the ‘‘exclude’’ parameter. We similarly excluded probe-sets

with low log2 fold change between any two cell types by using

Table 1. Datasets and applications

Dataset Tissue Type Platform Application Figures

GSE28490 Blood Isolated leukocyte sub-populations Affymetrix U133 Plus 2.0 Basis matrix construction Fig.1A,S1

GSE28491 Blood Isolated leukocyte sub-populations Affymetrix U133 Plus 2.0 Basis matrix performance in leukocyte isolates Fig.S2

GSE20300 Blood Peripheral whole blood (PAXgene) Affymetrix U133 Plus 2.0 Elastic net alpha parameter tuning Fig.1A

Heart [22,26] Blood Peripheral whole blood (PAXgene) Affymetrix U133 Plus 2.0 Elastic net alpha parameter tuning Fig.1A

Kidney [5] Blood Peripheral whole blood (PAXgene) Affymetrix U133 Plus 2.0 Two-stage, in silico deconvolution analysis Fig.1B,2,3

Benita et al. [38] Blood Various Affymetrix U133A Tissue-specific enrichment of candidate lists Fig.3

Validation Blood Peripheral whole blood (PAXgene) nanoString nCounter
Immunology Assay

Testing lymphocyte-specific ratio hypothesis Fig.4

doi:10.1371/journal.pone.0095224.t001
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‘‘limma’’ [36]. Probe-sets that did not appear in the top 5% in at

least one contrast between cell types were added to the ‘‘exclude’’

list. This procedure excluded 53300 probe-sets, leaving 1313

probe-sets eligible for inclusion in the basis matrix. The final

number of features to be included was varied by using the elastic

net’s regularization capabilities. Alpha – the elastic net mixing

parameter – was varied between 0 and 1. For each alpha, lambda

– the elastic net shrinkage parameter – was set using 10-fold cross-

validation via ‘‘cv.glmnet’’ (default) function (‘‘exclude’’ parameter

was set as described above, all other parameters were set to the

default value). We selected the largest value of lambda such that

the multinomial deviance of the model was within 1 standard error

of the minimum. The multinomial deviance was very low across all

alphas (0.07–0.09). For all alphas, we obtained the list of features

kept in the corresponding model, constructed a basis matrix from

their isolated expression profiles and inferred the composition of

each sample in our training set by reverse deconvolution. We

employed a quadratic programming approach (via the ‘‘limSolve’’

library), as in [18] in order to enforce equality/inequality

constraints on the model coefficients. Prediction performance

was determined by comparing the predicted proportions of

neutrophils, lymphocytes, monocytes, and eosinophils to the

measured proportions from total leukocyte differentials in this

training set. Predicted lymphocytes proportions are the sum of

the predicted proportions for B cells, CD4+, CD8+ T cells and

NK cells. The final basis matrix was that constructed from the

largest alpha parameter value (corresponding to a minimal basis

matrix) that minimized the root mean squared error (RMSE) in

lymphocytes. Performance of the selected matrix was then

validated in an independent test set.

Peripheral whole blood and cell type-specific differential

expression analysis. Traditional, two-class differential expres-

sion analysis in peripheral whole blood was carried out using

Significance Analysis of Microarrays (SAM; via the ‘‘samr’’ library)

[37]. Cell type-specific differential expression analysis was

performed using csSAM [7], and sample composition either

obtained from total leukocyte differentials, or inferred as described

above, as input in the non log2-transformed expression data, per

[38]. Cell types not detectable in more than 75% of subjects at any

given time point were omitted. We use a permissive FDR cutoff of

30% as recommended in [7]. This cell type-specific differential

expression analysis was repeated for both a pre-transplant (23 AR,

20 NR; baseline) and post-rejection time point (20 AR, 19 NR)

when expression data was available.

Peripheral whole blood and cell type-specific gene

enrichment analysis. We lacked suitable biological starting

material to carry out direct experimental validation of the putative

cell type-specific differentially expressed probe-sets identified by

csSAM (FDR #0.30) in this analysis. In order to establish their

plausibility, we assessed both their tissue-specificity and functional

enrichment in the context of acute allograft rejection.

The tissue-specificity of all cell type-specific probe-set lists was

evaluated in three ways. First, we visualized the median tissue-

specific enrichment score (obtained from the Gene Enrichment

Profiler database [39]) across the probe-sets that composed each

cell type-specific list. Next, tissue specific gene sets were generated

from the Gene Enrichment Profiler database. The 99th percentile

of the enrichment data across all tissues was used as a threshold.

For each tissue, the corresponding gene set was composed of

probe-sets with enrichment greater than the threshold value. The

tissue-specific enrichment of the candidate cell type-specific gene

lists was assessed via a hypergeometric test of their overlap.

This approach was repeated using the MSigDB C7 collection of

immunologic signatures and Gene Set Enrichment Analysis

(GSEA, [40]). Finally, the functional enrichment of each candidate

cell type-specific gene list was similarly assessed using the MSigDB

C2 collection of canonical pathway gene sets. For each cell type

with detectable cell type-specific differential expression, a cell type-

specific ranked list of all probe-sets was generated and submitted to

Pre-ranked GSEA. The ranking statistic used is analogous to the

‘‘Signal to Noise Ratio’’ measure that GSEA uses by default and

was computed as follows. Recall our model for the convolved

mixed expression data:

Xij~
XK

k~1

wikhkjzeij

The cell type-specific contribution to the observed expression in

the mixed sample expression data, H, can be inferred by fitting the

above model by regression of each column of X on W. Fitting the

model separately in each group, allows us to interpret the

estimated hkj as the average gene expression for cell-type k in the

group of samples. The ranking statistic can then be expressed as:

X
k

ĥh2
kj{ĥh1

kj

ŝsekj

" #2

In which ŝsekj is the estimated standard error of the

corresponding difference.

Lymphocyte-specific ratio construction. Finally, for all

lymphocyte sub-populations where cell type-specific differential

expression was present, we mapped the top twenty probe-sets to

the nCounter GX Human Immunology Assay. Probe-sets that

could be mapped were used to produce a lymphocyte-specific

ratio, constructed so as to maximize the difference between AR

and NR subjects and overcome the issue of convolution: mean

expression of lymphocyte-specific DE genes up-regulated in AR

subjects was divided by the mean expression of lymphocyte-

specific DE genes down-regulated in AR subjects. This ratio was

first evaluated in peripheral whole blood microarray data to

determine whether we could, in fact overcome the convolution

issue in this manner and, subsequently, tested in samples from an

independent cohort whose gene expression was assessed using the

nCounter GX Human Immunology Assay.

Results

The neutrophil and lymphocyte proportions of
peripheral whole blood can be predicted from whole
genome expression data using a minimal subset of
informative probe-sets

For the selected basis matrix, predicted vs. measured propor-

tions (obtained from total leukocyte differentials), were plotted for

neutrophils, lymphocytes and monocytes (which account for .

90% of total peripheral whole blood leukocytes) for both our

training (Figure 1A) and independent test set (Figure 1B) of

peripheral whole blood samples. The adjusted R2 and root mean

squared error (RMSE) are reported. Prediction accuracy was very

good in lymphocytes (training: R2 = 0.70; RMSE = 0.081; test:
R2 = 0.86; RMSE = 0.054), but generally poor in neutrophils

(training: R2 = 0.61, RMSE = 0.235; test: R2 = 0.58; RMSE

= 0.257) and monocytes (training: R2 = 0.16; RMSE = 0.268;

test: R2 = 0.07; RMSE = 0.304) and eosinophils (training:

R2 = -0.02; RMSE = 0.032; test: R2 = 0.29; RMSE = 0.032;
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not shown), which are included, but not plotted, in all subsequent

analyses.

Deconvolution of the lymphocyte cellular compartment
provides additional insights into the biology of acute
kidney allograft rejection

Predicted lymphocyte subtype proportions recapitulate

the patterns observed in the leukocyte differential data and

provide additional information. Having established predic-

tion performance, we next applied reverse deconvolution with the

selected basis matrix to a cohort of 48 kidney transplant recipients

(24AR, 24NR; described above) at the time of a treatable acute

rejection episode. The cell type composition of each peripheral

whole blood sample was inferred by reverse deconvolution of the

mixed expression data to all seven cell types present in the basis

matrix (neutrophils, B, CD4+ T, CD8+ T, NK cells, monocytes,

and eosinophils; Figure 2B - monocytes and eosinophils not

shown) and compared to that obtained by total leukocyte

differentials (available for 41 subjects, 18AR, 23NR; Figure 2A)

for AR and NR subjects. Predicted neutrophil and lymphocyte

proportions recapitulate the patterns observed in total leukocyte

differential data. Predicted neutrophil proportions are lower than

expected across all subjects, as previously shown in Figure 1B. In

both predicted and actual cell type proportion data, lymphocyte

proportions are significantly lower in AR compared to NR subjects

at the time of rejection. Furthermore, predicted composition data

suggests this difference is due to significantly lower CD4+ T-cells

and NK-cells in AR compared to NR subjects (Wilcoxon rank-sum

test; * p#0.05; ** p#0.01, respectively).

Cell type-specific differential expression analysis using

predicted lymphocyte subtype proportions identifies many

B, CD4+ T and NK cell-specific genes associated with acute

rejection. Next, cell type-specific differential expression analysis

(csSAM[7]) was carried out on peripheral whole blood expression

data using compositional data input either obtained from total

leukocyte differentials alone (Figure 2C; n = 41; 18AR, 23NR) or

inferred directly from the peripheral whole blood expression by

reverse deconvolution (in a superset of the 41 subjects above;

Figure 2D; n = 48; 24AR, 24NR). Once again, composition was

inferred to all seven cell types present in the basis matrix, but

monocyte and eosinophil results are not shown. In each case, the

number of probe-sets called as differentially expressed at various

false discovery rate (FDR) cutoffs is plotted for the one-tailed up

and one-tailed down hypotheses (red and blue lines, respectively).

A cutoff FDR #30% was selected for discovery purposes

(indicated by the dashed line; per recommendation in [7]). There

was no statistically significant cell type-specific differential

Figure 1. The neutrophil and lymphocyte proportions of peripheral whole blood can be predicted from whole genome expression
data using a minimal subset of informative probe-sets. The performance of reverse deconvolution using the optimal basis matrix is assessed
by visualizing measured and predicted cell type proportions for neutrophils, lymphocytes and monocytes in training (pediatric kidney [n = 24] and
heart [n = 26] allograft recipients) and test (kidney allograft recipients [n = 41]) sets of subjects. Predicted lymphocytes proportions are the sum of the
predicted proportions for B cells, CD4+, CD8+ T cells and NK cells. Measured and predicted proportions are plotted and the adjusted coefficient of
determination (adj. R2) and root mean squared error (RMSE) reported in both the training (n = 50; A) and test sets (n = 41; B).
doi:10.1371/journal.pone.0095224.g001
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expression between AR and NR subjects when carrying out

deconvolution using cell type proportions obtained from total

leukocyte differentials (i.e., using neutrophil, lymphocyte, mono-

cyte, and eosinophil proportions as input to csSAM). Repeating

the experiment, but substituting in the predicted and summed

lymphocyte proportions yielded similar results (not shown). Using

the predicted composition data resulted in the identification of 456

probe-sets down-regulated in neutrophils, five probe-sets up- and

445 probe-sets down-regulated in B cells, 221 probe-sets up-

regulated in CD4+ T cells and 221 probe-sets up-regulated in NK

cells.

Enrichment analysis of cell type-specific differential
expression

In order to evaluate the plausibility of the cell type-specific

differentially expressed probe-sets identified by csSAM (FDR #

0.30) using predicted cell type proportions at the time of a

treatable acute rejection episode, we assessed their tissue specificity

across a broad range of tissue types[39], and in a more targeted

collection of gene sets representing cell states and perturbations

within the immune system (Molecular Signatures Database

[MSigDB] Collection C7) [40]. We first visualized the relative

enrichment [39] of these cell type-specific probe-set lists across a

variety of tissues (Figure 3A). For each list (neutrophil, B, CD4+
T and NK cell), the median enrichment score across all probe-sets

deemed differentially expressed is visualized in a heatmap. The

cell type-specific, differentially expressed probe-set lists were

generally enriched across all blood tissues compared to CNS in

the Benita et al. dataset [39]. In addition, the median enrichment

was highest in the target tissue for the neutrophil and CD4+ T cell

probe-set lists. Differentially expressed probe-sets in B and NK

cells were only modestly enriched in the appropriate tissue. Very

few of the identified probe-sets had negative enrichment in the

appropriate tissue (not shown). Next, we attempted to quantify

whether the lists were significantly enriched for any particular

tissue by hypergeometric test of their intersection with a collection

of tissue-specific gene sets created from the Benita et al. dataset (see

Methods). The adjusted p-values for these tests (Benjamini-

Hochberg FDR [41]) are visualized in a heatmap (Figure 3B)

and significantly enriched tissues are tabulated in Table 2. For the

neutrophil, CD4+ T and NK cell lists, the target tissue was

significantly enriched (adjusted p = 4.1e-07, 7.2e-05, and 1.8e-02,

respectively). Both the neutrophil and NK cell lists appeared to be

highly specific, only showing significant enrichment in a few

related tissues (neutrophils: blood, myeloid CD33+, monocyte

CD14+ and neutrophils; NK cells: blood, T cells gamma-delta,

peripheral CD8+ T cells and NK CD56+). Conversely, the B and

CD4+ T cell lists were broadly enriched across the B and T

lymphocyte tissue types. We note, however, that mature peripheral

lymphocyte tissue types were preferentially enriched compared to

the immature tissue types (immature, thymic or spleen derived).

Finally, the csSAM output was used to create a cell type-specific

ranking statistic analogous to the Signal to Noise Ratio employed

by GSEA, as described previously by our group.[16] For each cell

type, all 7820 probe-sets were ranked using this statistic and the

resulting cell type-specific probe-set lists submitted to Pre-ranked

GSEA using the desktop Java application. This was first performed

against the C7 immunologic signatures collection to confirm the

tissue specificity results shown above (Table 3). It was then

repeated with the C2 curated gene set collection’s KEGG

canonical pathways (Table 4). Only gene sets that were

significantly enriched (FDR q-value#0.05), or the top ranking

gene sets, are shown for each of the cell type-specific probe-set lists.

Few C7 gene sets reached statistical significance in this analysis.

For all cell type-specific lists, significantly enriched gene sets (or the

top ranked gene set, if none reached significance) were consistent

with the inferred cell type origin. Enrichment results in the C2

(REACTOME) gene set analysis were consistent with acute

allograft rejection.

Validating a cell type-specific hypothesis in an
independent cohort

Peripheral whole blood samples suitable for flow cytometry

were never collected for the subjects used in the current study. As a

result, experimental validation of the intermediate lymphocyte

composition predictions was impossible. Instead, a lymphocyte-

specific hypothesis was formulated based on the two-stage

deconvolution results (see Methods) and tested in samples from

an independent cohort, using a different gene expression assay. A

similar approach was recently used to identify a patient’s risk of

active tuberculosis infection from peripheral whole blood expres-

sion data [42]. This lymphocyte specific ratio was significantly up-

regulated in AR subjects in the microarray data (Figure 4A;

Wilcoxon rank-sum test; p = 0.01). We tested our hypothesis in an

independent set of subjects using the nCounter technology

(Figure 4B; Wilcoxon rank-sum test; p = 0.001).

Kidney acute allograft rejection timecourse
Finally, we wished to demonstrate the power of this approach in

enriching existing clinical datasets, by allowing the exploration of

cell specific biology without the need for previously collected, time-

matched composition information. To this end, we applied

deconvolution to study the peripheral whole blood cell type

composition (reverse deconvolution) and cell type-specific biology

(forward deconvolution) of kidney rejection. For the 48 subjects

(24AR, 24NR) from Figure 2 above, additional PAXgene RNA

was available just prior to transplantation (baseline) and after

treatable acute rejection (first available time point .seven days

after treatable acute rejection; time variable between subjects). We

wished to study both cell type composition and cell type-specific

expression in these subjects at pre-transplant (baseline), at the time

Figure 2. Deconvolution of the lymphocyte cellular compartment provides additional insights into the biology of acute kidney
allograft rejection. The cellular composition of peripheral whole blood is plotted for 48 kidney transplant recipients (24AR, 24NR) at the time of a
treatable acute rejection episode. Actual cell type proportions were obtained from total leukocyte differentials (time-matched to the RNA collection
for the rejection episode), only available for a subset of the 48 subjects (A; n = 41, 18AR, 23NR), while predicted cell type proportions were inferred
from peripheral whole blood microarray data using the basis matrix from Figure 1 (B; n = 48, 24AR, 24NR). The proportions of all seven cell-types
included in the basis matrix are predicted, but only neutrophils and lymphocyte sub-types are shown. Significant differences between groups are
labeled (Wilcoxon rank-sum test; p#0.05 *, p#0.01 **). Cell type-specific differential expression is assessed using csSAM for 48 kidney transplant
recipients (24AR, 24NR) using either actual cell type proportions alone (C), or predicted cell type proportions (inferred from peripheral whole blood
microarray data) alone (D). Cell type-specific differential expression was assessed for all seven cell-types included in the basis matrix, but results are
shown only for neutrophils, B cells, CD4+, CD8+ T cells and NK cells (no signal in monocytes, eosinophils). The number of probe-sets called
significantly differentially expressed at various false discovery rate (FDR) values is plotted for the one-tailed up and one-tailed down hypotheses (red
and blue lines, respectively). A cutoff FDR = 0.30 was selected for discovery purposes (dashed line).
doi:10.1371/journal.pone.0095224.g002
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of a treatable acute rejection episode and post-rejection in a simple

timecourse experiment.
Deconvolution of the lymphocyte compartment of

peripheral whole blood elucidates patterns of differential

cell type composition of peripheral whole blood between AR

and NR subjects before, during and after an episode of

treatable acute kidney allograft rejection. The composition

of the peripheral whole blood samples was inferred from mixed

expression data [16,17] for all 48 subjects (24 AR, 24 NR) at the

time of a treatable acute rejection episode, as well as at baseline (23

AR, 20 NR) and after rejection had resolved (20 AR, 19 NR) when

expression data was available (Figure 5A). The mean (and

bootstrapped confidence intervals) of the proportions of neutro-

phils, B cells, CD4+, CD8+ T cells, and NK cells are plotted for

each group, at each time point. Significant differences between

groups are labeled (Wilcoxon rank-sum test; p#0.05 *, p#0.01 **).

Statistically significant differences in the mean proportions

between groups were observed in the following cell types, at the

following time points: at baseline, NK cells were depressed in AR

subjects; at the time of rejection, CD4+ T cells and NK cells were

depressed in AR subjects; post-rejection, CD8+ T cells were

elevated in AR subjects, while CD4+ T cells and NK cells

remained depressed.
Deconvolution of the lymphocyte compartment of

peripheral whole blood elucidates patterns of differential

cell type-specific transcriptional activity between AR and

NR subjects before, during and after an episode of treatable

acute kidney allograft rejection. Next, cell type-specific

differential expression analysis was performed using the inferred

sample composition obtained above for all 48 subjects (24 AR, 24

NR) at the time of a treatable acute rejection episode, as well as at

baseline (23 AR, 20 NR) and after rejection had resolved (20 AR,

19 NR) when expression data was available. The number of

probe-sets called differentially expressed at various FDR cutoffs is

plotted for the one-tailed up and one-tailed down hypotheses (red

and blue lines, respectively; Figure 5B). A cutoff FDR #30% was

selected for discovery purposes (indicated by the dashed line). Cell

types not detectable in more than 75% of subjects at a given time

point were omitted. In peripheral whole blood, 40 probe-sets were

identified as differentially expressed at baseline (all up-regulated in

AR), 506 probe-sets (mostly up-regulated in AR) were identified at

the time of rejection and 735 probe-sets (up- and down-regulated

in AR) post-rejection. As expected, there was no statistically

significant cell type-specific signal at baseline. Hundreds of probe-

sets were identified as differentially expressed both at rejection and

post-rejection in various cell sub-populations. At the time of

rejection, 456 probe-sets were down-regulated in neutrophils and

445 in B cells in ARs, while 221 probe-sets were up-regulated in

CD4+ T cells and 221 in NK cells in ARs. Cell type-specific signal

in neutrophils and NK cells resolved post-rejection, but persisted

in CD4+ T cells (243 probe-sets up-regulated, 83 in common with

the rejection time point; Chi-Square Test: p,2.2e-16). The signal

in B cells was radically modified: from nearly 500 probe-sets being

Figure 3. Enrichment analysis of cell type-specific differentially expressed probe-sets establishes their plausibility. The tissue
specificity of the cell type-specific gene lists identified in Figure 2 is assessed by visualizing their median enrichment across a wide range of tissues
(A). Significance of enrichment of each cell type-specific gene list in each tissue is assessed by hypergeometric test (B).
doi:10.1371/journal.pone.0095224.g003
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down-regulated at the time of rejection to 70 probe-sets being up-

regulated in AR subjects post-rejection (2 probe-sets in common,

both mapping to WD repeat domain 45; Chi-Square Test:

p = 0.4892). In addition, nearly 1200 probe-sets were down-

regulated in CD8+ T cells in ARs.

Discussion

Clearly, cell type-specific expression is of interest when studying

complex tissues. Experimental separation techniques that could

facilitate study of the various components of complex tissues exist,

but practical considerations limit their use in clinical or

translational research settings. Statistical forward deconvolution

is an alternative [7], but requires that relevant composition

information be available for every sample: time-matched to the

RNA collection, sufficiently granular and accurate. This limits its

utility. Retrospective study of existing expression data by this

approach will be unfeasible in most cases. In a clinical setting, total

leukocyte differentials have been proposed as an affordable source

of composition information [7], however they offer insufficient

granularity in practice. Flow cytometry can provide much higher

granularity, but significantly increases the complexity of sample

collection and processing protocols and results in additional costs.

Statistical reverse deconvolution may be used to infer the

composition of complex tissue samples from their expression data

by using isolated expression profiles of a subset of informative

genes [16218]. The purpose of this study was to demonstrate both

the feasibility of, and the additional utility provided by, a two-

stage, in silico deconvolution of the lymphocyte compartment of

peripheral whole blood expression data to study both the

composition of, and the diverse cell type-specific expression

programs at play in, this complex tissue.

Basis matrix construction and composition prediction
performance

We first evaluated the previously published Abbas et al. basis

matrix [17], but found its performance inadequate in our data (not

shown). The reasons for this were unclear, but might be related to

platform scaling issues (both basis matrix and deconvolved samples

from Abbas et al. were processed on the U133A platform and

applying our own basis matrix in GeneST1.1 data resulted in poor

prediction performance; not shown). We therefore elected to

construct our own U133 plus 2.0-based basis matrix, in order to

study the cell types we deemed interesting in this context. A

suitable collection of the isolated expression profiles of various

leukocyte sub-populations was identified on the GEO website and

an optimal basis matrix constructed by fitting a multinomial elastic

net model to the isolated expression profiles of seven leukocyte

sub-populations. This was performed in the RMA normalized,

log2-transformed data (the effect of normalization and log2-

transformation of the raw expression data on prediction perfor-

mance were explored; see Figures S3 and S4). The size of the

resultant basis matrix was tuned to maximize prediction perfor-

mance of reverse deconvolution for lymphocytes in a training set

of 50 heart and pediatric kidney allograft recipients for which total

leukocyte differentials time-matched to the RNA blood draw were

available. We observed no bias in prediction performance between

subjects either undergoing acute allograft rejection or not (data not

shown). The selected basis matrix was then used to predict the

blood leukocyte composition of samples from 48 kidney allograft

recipients using reverse deconvolution. We confirmed our ability

to predict lymphocyte proportions in a subset of these 48 subjects

for which total leukocyte differentials time-matched to the RNA

blood draw were available. These 41 subjects acted as an
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independent test set to assess the prediction performance of the

selected basis matrix.

Prediction performance in lymphocytes was comparable to

current state of the art total error rate for lymphocyte measure-

ment by total leukocyte differentials (Prediction RMSE = 5.4–

8.1%; total leukocyte differential lymphocyte measurement error:

4.0–11.9% [43]). Performance in neutrophils was worse, with a

marked increase in bias at higher measured neutrophil propor-

tions. Performance in monocytes was poor, but no worse than the

typical measurement error rate of total leukocyte differentials

when quantifying these cell sub-populations (13.4–58.7%, respec-

tively [43]). We note that monocyte prediction performance bias

mirrored that observed in neutrophils. To test whether this was a

result of the conditional negative correlation between cell type

proportions, we ranked samples by their absolute error in

neutrophils and monocytes, compared these lists and found no

statistically significant difference between them (Wilcoxon rank-

sum test; p = 0.10). This suggests that the basis matrix as

constructed may be misattributing neutrophil- and monocyte-

specific signals. Storage conditions (room temperature or refrig-

erated), precise collection time and time elapsed from blood draw

to processing for each sample have been shown to result in

changes in peripheral whole blood composition [44]. Differences

in the collection time and time to process blood drawn for

hematology analysis and that destined for RNA extraction could

contribute to the observed bias, for example. The use of PAXgene

blood tubes enabled cellular RNA to be rapidly protected from

degradation, post blood-draw, for the peripheral whole blood

expression profiles. The cellular RNA of the isolated leukocyte

profiles that form the basis matrix (GSE28490) were not similarly

protected. That neutrophils are affected is perhaps unsurprising:

they are fragile, autolytic and cannot be preserved [45].

Varying the composition of the basis matrix did not negatively

affect prediction accuracy in lymphocytes (Figure S1). The elastic

net alpha parameter was tuned from 1 to 0 and RMSE of the

predicted lymphocyte proportion was computed as the number of

genes included in the basis matrix increased. We observed that, for

most values of alpha (0.2#a#0.8; 442$ number of genes $94),

the RMSE was #10%. Predicted neutrophil proportions were

similarly robust (not shown). An initial concern was that basis

matrix genes might be under differential regulation in the

perturbed state of interest. The similar (and robust to gene

membership) prediction performance in both AR and NR subjects

in both our training and test cohort suggests that the feature

selection strategy we adopted resulted in an unbiased basis matrix.

Predicted lymphocyte subtype proportions during acute
kidney allograft rejection

Having selected an optimally performing basis matrix, we

wished to demonstrate the utility of this approach in studying a

complex biological process. We studied the proportions of various

lymphocyte sub-populations during kidney allograft rejection in

the inferred composition data. Our results were consistent with a

previously published flow cytometry analysis of the peripheral

blood of kidney transplant recipients by Sagoo et al. [46] In that

study, both B and NK cell proportions were found to be elevated

in the peripheral whole blood of tolerant kidney transplant

recipients. While CD4+ T cells were found to be relatively less

abundant in the peripheral blood of NR subjects in the Sagoo et al.

study, these were activated CD3+CD4+ T cells and not strictly

comparable to the un-activated sub-population quantified here. It

is conceivable that both observations are measuring the same

phenomenon, namely increased activation of CD4+ T cells in AR

subjects. This should result in comparatively lower activated
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CD3+CD4+ T cells proportions in NR subjects and, conversely,

higher proportions of un-activated CD4+ T cells in these same

subjects when compared to ARs. Functionally, the lower

peripheral blood (marginal) B, CD4+ T and NK cell proportions

in AR subjects could be the result of increased infiltration of these

cell types into the allograft, which would be consistent with our

current understanding of solid organ rejection, in which NK cells

act as facilitators of solid organ rejection, amplifying early graft

inflammation and supporting the activity of alloreactive T cells

[47–49]. The results of GSEA carried out on the ranked CD4+ T

and NK cell-specific probe-set lists are consistent with this

hypothesis: the KEGG leukocyte transendothelial migration gene

set, as well as many inflammatory gene sets, were enriched in

circulating CD4+ T and NK cells. No other statistically significant

differences in the relative cell type abundances were observed.

Cell type-specific differential gene expression during
acute kidney allograft rejection

The inferred composition estimates were then used as input to

csSAM. The inclusion of phenotypically homogeneous and

biologically relevant lymphocyte sub-populations provides more

useful context when interpreting cell type-specific differential

expression results. More importantly, deconvolving to more

phenotypically homogeneous components should improve the

sensitivity of the approach (by satisfying the model’s underlying

assumption of phenotypically homogeneous linear components).

Validating the results of statistically powered cell type-specific

differential expression analysis is generally challenging because

experimental separation protocols are known to result in modified

gene expression [14,15]. In addition, we lacked the necessary

biological material to carry out true experimental validation

(FACS and separate expression profiling in each of the separated

cell type isolates). Consequently, we were unable to study precisely

how the use of computationally derived cell composition estimates

affected the sensitivity of the cell type-specific differential

expression analysis. Because csSAM does not explicitly account

for errors in the composition estimates used as input, or control for

these errors when estimating FDR cutoffs, demonstrating plausi-

bility of the cell type-specific differentially expressed probe-set lists

was crucial. This is a concern for cell type-specific differential

expression results derived from any compositional estimate

(including, e.g., total leukocyte differentials).

To evaluate the plausibility of the derived cell type-specific

probe-set lists, we turned to tissue and functional enrichment

Figure 4. Validating a cell type-specific hypothesis in an independent cohort. The peripheral whole blood expression of top-ranked, cell
type-specific differentially expressed genes in B, CD4+ T, and NK cells are plotted for two independent sets of kidney transplant subjects (A; 24AR,
24NR; microarray; B; 13AR, 31NR; nCounter). A ratio score computed so as to maximize signal between AR and NR subjects, and overcome the
convolution issue (see Methods), is also shown. Significant differences between groups are labeled (Wilcoxon rank-sum test; p#0.05 *, p#0.01 **).
doi:10.1371/journal.pone.0095224.g004
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strategies, as well as the literature. We first observed that the cell

type-specific probe-set lists are distinct, though some lists exhibit

significant overlap (Figure S5). Lists that overlap significantly

between cell types with opposite directionality (e.g., down in

neutrophils and up in NK cells), serve to highlight the issue of

convolution in peripheral whole expression data. Tissue specific

enrichment results, using both the Benita et al. and the MSigDB

C7 collection of immunologic gene sets, were consistent with the

cell type origin. Hypergeometric test of the overlaps between tissue

specific gene sets and the cell type-specific probe-set lists in the

Benita et al. data suggest that both the neutrophil and NK cell lists

were very cell type-specific, while the B and CD4+ T cell lists were

more broadly representative of mature, circulating B or T

lymphocytes. While no C7 gene sets were significantly enriched

in the B cell list, the CD4+ T cell list was highly specific for CD4+
T cell states and perturbations. Tissue-specific enrichment results

thus suggest that our two-stage, in silico deconvolution strategy is

yielding truly cell type-specific probe-sets.

Furthermore, functional enrichment results using the MSigDB

C2 (REACTOME) collection of gene sets were consistent with our

current understanding of solid organ rejection, in which NK cells

act as facilitators, amplifying early graft inflammation and

supporting the activity of alloreactive T cells [47–49]. Many

pathways related to immune signaling were either significantly

enriched (FDR#0.05) or trending in these cell populations,

including platelet-mediated activation pathways, which have been

implicated in recruitment of T lymphocytes in allograft rejection

[50]. Interestingly, while enriched in both CD4+ T and NK cells,

the genes contributing to this enrichment were distinct (not

shown). In addition, the IL2 signaling pathway, a regulatory hub

of allograft rejection and target of many immunosuppressive

therapies [51], as well as many pathways related to RNA and

protein metabolism (transcription, translation) and antigen pro-

cessing and presentation (immunoproteosome) were enriched in

CD4+ T cells only. Conversely, RNA metabolism (transcription,

translation) and immune signaling are depressed in neutrophils.

This highlights the issue of convolution of signal in peripheral

whole blood expression data. No C2 (REACTOME) gene sets

reached significance in B cells. However, our results at the gene

level are consistent with the Sagoo et al. study: six of the ten most

significant differentially expressed genes in that study were

identified post facto as B cell specific and down-regulated in AR

subjects. That study also found that B cells from NR subjects

(tolerant) had skewed cytokine response, with a higher propensity

for TGF-b production than B cells from AR subjects. TGF-b was

found to be down-regulated in B cell in AR subjects and TGF-b
signaling was one of the most negatively enriched gene sets in these

subjects, though it did not reach statistical significance.

Having established plausibility, we attempted to validate some

of these cell type-specific results in an independent patient cohort

using the nCounter GX Human Immunology Assay. A lympho-

cyte-specific ratio for each patient was computed by taking the

mean expression of probe-sets up-regulated in CD4+ T and NK

cells in AR subjects at the time of rejection and dividing it by the

mean expression of probe-sets down-regulated in B cells in AR

subjects at the time of rejection, for probe-sets that could be

mapped to the nCounter assay. The ratio was constructed so as to

maximize the difference between AR and NR subjects. It was

significantly different between AR and NR subjects when

computed from the peripheral whole blood microarray data

(24AR, 24NR), demonstrating it could overcome the convolution

issue in peripheral whole blood expression data, and this result was

replicated on the nCounter platform, in independent samples.

While it is likely that the cell type-specific lists generated by this

two-stage deconvolution approach include false positives, this

replication result demonstrates that it can be a fruitful strategy,

particularly if the goal is hypothesis generation.

Two-stage, in silico deconvolution of the lymphocyte
compartment applied to a timecourse study of acute
kidney allograft rejection

Finally, we wished to demonstrate the utility of this approach by

applying it to a timecourse study of acute kidney allograft

rejection. Such a study would have been extremely challenging

to implement had we been reliant on the availability of time-

matching of the RNA blood draw (PAXgene tube) to total

leukocyte differentials (EDTA whole blood tube) to assess sample

composition. It is presented below as an illustrative example of the

kind of retrospective analysis that a two-stage, in silico deconvolu-

tion strategy enables using existing clinical samples.

The pre-transplant time point (baseline) is included as a control.

We expect both groups to be similar at this time. The

identification of approximately 50 differentially expressed probe-

sets in the peripheral whole blood analysis, including eight at FDR

#10% and three probe-sets at FDR #5%, serves to reinforce that

peripheral whole blood expression data can be convolved by

differences in composition across subjects. Conversely, no statis-

tically significant, cell type-specific, differential expression is

identified between AR and NR subjects at this pre-transplant

time point. The composition of peripheral whole blood from AR

and NR subjects is also comparable pre-transplant, with the

exception of NK cell proportions, which are significantly lower in

AR subjects. Though this may simply be an artefact of inaccurate

prediction, NK cells have been previously reported to facilitate the

induction of tolerance [47]. It is plausible that low circulating NK

cell proportions may result in disrupted induction of tolerance in

AR subjects.

Post-rejection, the cell type-specific signal seen at the time of

rejection resolves in neutrophils and NK cells. It is interesting that

these cell types, both involved with the early, innate immune

response [47], appeared to resolve rapidly post-rejection. Con-

versely, the rejection time point signal persisted, at both the probe-

Figure 5. Deconvolution of the lymphocyte compartment of peripheral whole blood elucidates patterns of differential
composition, and differential cell type-specific gene expression, between AR and NR subjects before, during and after an episode
of treatable acute kidney allograft rejection. The composition of the peripheral whole blood samples was inferred from mixed expression data
for all 48 subjects (24 AR, 24 NR) at the time of a treatable acute rejection episode, as well as at baseline (23 AR, 20 NR) and after rejection had
resolved (20 AR, 19 NR) when expression data was available (A). The mean (and bootstrapped confidence intervals) of the proportions of neutrophils,
B cells, CD4+, CD8+ T cells and NK cells are plotted for each group, at each time point. Significant differences between groups are labeled (Wilcoxon
rank-sum test; p#0.05 *, p#0.01 **). Cell type specific differential expression analysis (csSAM) was performed using the sample composition
information inferred above (B). Cell type-specific differential expression was assessed for all seven cell-types included in the basis matrix, but results
are shown only for neutrophils, B cells, CD4+, CD8+ T cells and NK cells (no signal in monocytes, eosinophils). Cell types not detectable in more than
75% of subjects at a given time point were omitted from the model. For each time point, the number of probe-sets called significantly differentially
expressed at various false discovery rate (FDR) values is plotted for the one-tailed up and one-tailed down hypotheses (red and blue lines,
respectively). A cutoff FDR #0.30 was selected for discovery purposes (dashed line).
doi:10.1371/journal.pone.0095224.g005
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set (83 up-regulated are in common with the rejection time point;

Chi-Square Test: p,2.2e-16) and gene set level (not shown), in

CD4+ T cells. This is accompanied by lower CD4+ T cell

proportions in circulating blood, possibly as a result of continued

infiltration of these cells into the allograft, or as a result of

increased immunosuppressive load in AR subjects. The elevated

CD8+ T cell proportions observed in AR subjects post-rejection is

accompanied by down-regulation of nearly 1200 probe-sets in

these same cells. No clear enrichment signal arises, however

(KEGG ribosome and amyotrophic lateral sclerosis gene sets are

enriched in AR subjects). The drastic changes in the B cell

compartment are similarly difficult to interpret. This may be due

to the majority of the signal at this time point being treatment-,

rather than disease-, driven and thus poorly summarized by gene

sets in the KEGG pathways collection.

Limitations
The current study has two main limitations. First, while

neutrophil and monocyte prediction performance can be directly

validated using total leukocyte differential data, predictions for the

various lymphocyte sub populations cannot. The validity of

applying reverse deconvolution using the selected basis matrix to

peripheral whole blood was assessed by experimenting with

expression profiles obtained from leukocyte sub populations

isolated from peripheral whole blood (distinct from those used to

construct the basis matrix; GSE28491). These profiles were

appropriately deconvolved (Figure S2), confirming that our

selected basis matrix can accurately predict the proportions of

pure leukocyte populations isolated from peripheral whole blood.

However, absent more granular independent measurement of

composition we are unable to assess the prediction accuracy at the

lymphocyte sub-population level (B cells, NK cells and CD4+ and

CD8+ T cells) in mixtures. This is an important limitation of the

current work, which we hope to address in future studies (e.g.; by

using flow cytometry to quantify the sub-populations of interest).

Unfortunately, the required biological materials were not available

for the subjects used in this study. Sample composition was not,

however, the primary focus of the current work. Rather we wished

to study cell type-specific differential expression in lymphocyte

sub-populations before, during and after acute rejection of a renal

allograft. Prediction error in the composition estimates used as

input for this analysis, though undesirable, is carried forward into

the cell type-specific differential expression results, potentially

leading to an inflated rate of false positives. We also note that the

csSAM procedure does not account for errors in the composition

estimates used as input when estimating FDR cutoffs. Ultimately,

any specific hypotheses based on the cell type-specific differentially

expressed gene lists would need to be validated in independent

samples and using a different technology to assay gene expression.

Second, validation of the cell type-specific differentially

expressed probe-sets identified by csSAM is challenging in practice

because it is likely that experimental separation affects expression

[14,15]. Instead of direct validation, we attempted to establish

plausibility for the various cell type-specific gene lists produced

using various tissue and functional enrichment strategies, and

existing literature on kidney allograft rejection. In addition, we

were able to validate a small subset of these lymphocyte-specific

differentially expressed genes in independent samples using the

nCounter assay. This was achieved by computing a ratio designed

to overcome the convolution issue and demonstrates that

computational approaches such as the one described here can

provide valuable insights, particularly when the goal is hypothesis

generation. Forward deconvolution in peripheral whole blood

could be validated in general, for example by separating and

quantifying the components cell types of peripheral whole blood

samples (e.g.; using fluorescence-activated cell sorting) under

different experimental conditions and assessing expression in these

isolated components, as well a reconstituted, equal volumes

mixture of these components. The cell type-specific expression

can then be obtained by deconvolution of the reconstituted

mixture expression data using the measured proportions of the

components in the original sample and compared to that observed

in the isolated components. This is analogous to the in silico proof

of concept originally presented by Shen-Orr et al. [7] Implement-

ing such a scheme in the context of a large, multi-centre, clinical

trial is daunting and presents serious practical challenges, which

only serves to highlight the importance of continued research into

statistical deconvolution approaches.

Conclusion
The two-stage, in silico deconvolution approach described here

has allowed us to deconvolve the lymphocyte compartment of

peripheral whole blood and study both the cell type composition

of, and cell type-specific expression in, existing clinical samples.

This did not require the collection of time-matched sample

composition information. The inferred composition data provided

a more informative context for interpretation of the cell type-

specific differential expression results. The predicted cell type

proportion and cell type-specific differential expression results at

the time of rejection were consistent with the experimental

context, consistent with previously published work, and suitable

for exploratory analysis and hypothesis generation. Finally, we

demonstrated the power of this approach in allowing us to gain

additional insight from existing clinical samples for which only

peripheral whole blood expression data is available. While we

focused on acute allograft rejection in kidney transplantation, this

two-stage, in silico deconvolution approach should allow for similar

studies to be carried out in any peripheral whole blood expression

datasets on the Affymetrix U133 Plus 2.0 platform, allowing for re-

examination of more than 80000 arrays, comprising nearly 3000

experiments on GEO alone. The approach should be broadly

applicable to the study of any complex tissue for which isolated

component expression profiles exist on the same technology

platform, including next generation sequencing, and may prove a

fruitful strategy in many contexts.

Supporting Information

Figure S1 Robustness of the basis matrix. The condition

number (kappa) of the basis matrix and root mean squared error

(RMSE) of the predicted lymphocyte proportion in AR and NR

subjects is plotted as alpha, the elastic net tuning parameter, is

adjusted between 1 and 0. Corresponding number of genes

included in the basis matrix thus constructed is indicated.

(TIFF)

Figure S2 Performance of expression deconvolution on
purified leukocytes supports using it on peripheral
whole blood. Reverse deconvolution of an independent test set

of leukocytes isolated from peripheral whole blood (GSE28491)

demonstrates that various cell types are accurately deconvolved.

Plotted data is the predicted proportion of that cell type in the

whole sample produced by reverse deconvolution of each of seven

purified cell type expression profiles. Data points are from

independent subject samples.

(TIFF)

Figure S3 Reverse deconvolution is more accurate when
data is quantile normalized. The performance of reverse
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deconvolution using the optimal basis matrix is assessed by

visualizing measured and predicted cell type proportions for

neutrophils, lymphocytes and monocytes in the training set

(pediatric kidney [n = 24] and heart [n = 26] allograft recipients),

either quantile normalized (A) or not (B). Predicted lymphocyte

proportions are the sum of the predicted proportions for B cells,

CD4+, CD8+ T cells and NK cells. Measured and predicted

proportions are plotted and the adjusted coefficient of determina-

tion (adj. R2) and root mean squared error (RMSE) reported.

(TIFF)

Figure S4 Reverse deconvolution is more accurate when
data is log2-transformed. The performance of reverse

deconvolution using the optimal basis matrix is assessed by

visualizing measured and predicted cell type proportions for

neutrophils, lymphocytes and monocytes in both the training
(pediatric kidney [n = 24] and heart [n = 26] allograft recipients)

and test (kidney allograft recipients [n = 41]) sets, either log2-

transformed (top) or not (bottom). Predicted lymphocyte propor-

tions are the sum of the predicted proportions for B cells, CD4+,

CD8+ T cells and NK cells. Measured and predicted proportions

are plotted and the adjusted coefficient of determination (adj. R2)

and root mean squared error (RMSE) reported.

(TIFF)

Figure S5 Overlap between the various cell type-specific
differentially expressed probe-set lists at the time of

rejection. A Venn diagram showing the overlap between the

various cell type-specific differentially expressed probe-set lists

obtained in Figure 2.

(TIFF)

Table S1 Subject Demographics.

(XLS)
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