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Abstract

Focusing gaze on a target helps stabilize upright posture. We investigated how this
visual stabilization can be affected by observing a target presented under different
gaze and viewing angles. In a series of 10-second trials, participants (N = 20, 29.3 ±
9 years of age) stood on a force plate and fixed their gaze on a figure presented on
a screen at a distance of 1 m. The figure changed position (gaze angle: eye level
(0◦), 25◦ up or down), vertical body orientation (viewing angle: at eye level but
rotated 25◦ as if leaning toward or away from the participant), or both (gaze and
viewing angle: 25◦ up or down with the rotation equivalent of a natural visual
perspective). Amplitude of participants’ sagittal displacement, surface area, and
angular position of the center of gravity (COG) were compared. Results showed
decreased COG velocity and amplitude for up and down gaze angles. Changes in
viewing angles resulted in altered body alignment and increased amplitude of COG
displacement. No significant changes in postural stability were observed when both
gaze and viewing angles were altered. Results suggest that both the gaze angle and
viewing perspective may be essential variables of the visuomotor system modulating
postural responses.

Introduction

Focusing gaze on a stationary target during standing helps
minimize body oscillations and increase stability of upright
posture. This mechanism is helpful in many situations, for
example standing in a moving environment or on an uneven
surface, or when in environments with conflicting sensory
inputs. The efficiency of visual stabilization depends on many
factors such as target size and location, viewing distance,
visual acuity, and eye vergence (Paulus et al. 1984; Stoffregen
1985; Paulus et al. 1989; Previc and Neel 1995; Piponnier
et al. 2009). What is less known is whether postural stability
can be affected by viewing a target under different angular
perspectives.

Indeed, the angle under which we observe our environ-
ment and objects located in it plays an essential role in
motor performance. In literature, this angle is defined by
two vectors, the first connecting the eye with the observed
target, and the second formed by the line projected hori-
zontally and straight ahead at eye level (Schmidt et al. 1993;
Vaillancourt et al. 2006; Shieh and Lee 2007). Viewing a target
under different angular perspectives modulates neural signal

processing in multiple brain areas involved in planning and
preparing movement (Baker et al. 1999; DeSouza et al. 2000;
Bédard et al. 2008) and affects various parameters of postural
and motor tasks performance. For example, standing and fo-
cusing gaze on a target presented above and below horizontal
eye level has been reported to reduce oscillations of upright
posture (Kapoula and Lê 2006). Similar to findings of postu-
ral control research, it has been shown that altering the visual
angle affects a participant’s estimation of distance to an ob-
ject (Levin and Haber 1993; Gardner and Mon–Williams
2001) and the ability to apply a constant level of force
to a load cell using feedback presented at different angles
(Vaillancourt et al. 2006). Selecting a particular visual angle
for a task has been shown to facilitate reading a book (Schmidt
et al. 1993; Shieh and Lee 2007) and “improve task perfor-
mance” (Sommerich et al. 2001). Thus, there is considerable
evidence that altering the visual angle can influence postural
and voluntary movement control. However, the mechanism
of this effect is unclear.

As people move their eyes and bodies during normal daily
activities they alter the position of their eyes in the orbits (gaze
angle), the image projection on the eye retina as observed
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from different points of view (viewing angles), and head
position—if viewing of an object requires eye movement
amplitude beyond that achieved with eye movement alone.
The contribution of each specific factor to the motor control
and specifically to the visual stabilization of upright posture
is unclear. Investigation of this question is important and can
help our understanding of the mechanism underlying the
visuomotor transformation for postural control.

In this study, we attempted to dissociate the components
of the visual angle to allow investigation of the effect of gaze
versus viewing angle on postural stability during quiet stance.
Previous research (Ustinova et al. 2010) showed that manipu-
lating the viewing angle in a virtual environment without eye
movement altered participants’ performance of functional
reaching for a target while standing. This leads us to hypoth-
esize that viewing a target under different perspectives could
influence postural stability as well.

From a practical standpoint, the results of the study could
be used in simulated environments such as gaming, virtual
rehabilitation for balance, and teleoperator training. In these
environments, usually presented to participants on a screen
or via “head-mounted display,” natural eye movements are
limited (Sandor and Leger 1991; Ukai et al. 2001). Con-
sequently, participants experience a conflict between visual
information, perception, and eye position signals (Stoffregen

et al. 2008). Thus, it is important to determine the best view-
ing perspective for postural stability or other accurate motor
performance in these virtual environments.

Methods

Participants

Twenty females with age range of 23–52 years (29.3± 9 years),
were recruited from the university community. The project
received approval from the university Institutional Review
Board (IRB). Participants had no known balance or motor
impairments, perceptual problems, or other orthopedic and
neurological conditions that would interfere with their ability
to perform the experimental task. Visual acuity was assessed
with a Snellen chart placed at 20 feet. All participants demon-
strated adequate performance for the test with results ranging
from 20/10 to 20/50 for the left and right eyes. Six participants
used glasses or contact lenses for visual acuity correction.

Experimental task

The experimental task consisted of standing quietly on bilat-
eral force plate (Neurocom International Inc., Oregon, USA)
in front of a 91×122 cm flat screen and viewing a target
presented on this screen (Fig. 1). The screen was placed at
1-m distance from the participant’s eyes. The target was the

Figure 1. Participant standing in front of the screen and looking at the target presented at +25◦ gaze angle.
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Figure 2. The target character “Mia” presented at 0◦ (left panel) and +25◦ (right panel) viewing angles.

computer-generated character “Mia” standing in T-stance
(upright with arms stretched out to the side). The charac-
ter was created with the use of Autodesk MotionBuilder 7.0
software.

In baseline trials (0◦), the character was presented so that
the cross formed by her arms and body in T-stance was at
the participant’s eye level. In other trials, the character was
presented in a randomized order in a manner that required
the participant to alter gaze angle, or viewing angle or both
(Fig. 2). To change a gaze angle, the character was shifted
vertically up or down on the screen (to create gaze angles
of approximately +25◦ or −25◦ above and below eye level),
while keeping the visual image constant. The viewing angle
was manipulated by rotating the figure, thereby altering the
character’s apparent vertical body orientation, while main-
taining its location in the middle of the screen (Fig. 2B). The
character was presented as if leaning toward the participant
(+25◦) or away from the participant (−25◦). In other trials,
the character changed both position on the screen and vertical
orientation simultaneously (gaze and viewing angle +25◦ or
−25◦), thereby creating a naturalistic visual perspective sim-
ilar to the real-world situation of looking at a person from
above or below. In addition to the character-manipulation,
a set of trials was done without a character, and participants
were asked to stand quietly looking at the gray screen in front
of them.

Participants were asked to watch the character body with-
out moving their head during the different experimental gaze
and viewing angle conditions. Physiologically, viewing a tar-
get deviated from the eye level up to 25◦ does not require
head movements. Each trial lasted 10 seconds and was re-
peated three times in each of the eight conditions for a total
number of 24 trials.

Data collection and analysis

Kinetic data from the bilateral force plate were collected,
and the parameters of center of gravity (COG) displace-
ment were analyzed. These parameters included the am-
plitude of the COG sagittal displacement, the surface area
of the COG excursion, and maximum forward and back-
ward angular displacements of the COG. The amplitude
was computed as a deviation between maximum and min-
imum COG shifts. The surface area of the COG was
calculated so that 95% of the COG displacements were
inside the ellipsoid, formed by sagittal and frontal COG
displacements. Angular displacement was calculated accord-
ing to the following equation (Neurocom, Operator Manual,
2000):

σ = arcsin
FCOG

HCOG
,

where FCOG is the sagittal displacement of the COG from the
vertical line formed by lateral malleoli and the point equal to
approximately 55% of participant’s total height (HCOG).The
COG oscillations in the frontal plane were not analyzed as
they are “less meaningful” for postural control during quiet
stance in healthy individuals (e.g., Winter 1995). Overall, an
increase of the COG oscillations was considered as reduc-
ing postural stability, while decreased COG oscillations were
evidence of postural stabilization, or improved postural sta-
bility.

A mixed two-way Analysis of Variance (ANOVA) with ap-
propriate t-test was used to analyze the influence of experi-
mental condition (viewing, gaze, or gaze/viewing) and angle
(0◦, 25◦, or −25◦) on the COG parameters.
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Results

Manipulating the gaze, viewing, and both gaze and viewing
conditions influenced upright postural stability in all partic-
ipants with significant overall ANOVA effect (F(4,114) = 4.25;
P = 0.003). The averaged means (±SE) of the parameters
characterizing the COG oscillations are presented in Fig. 3.
There was a significant effect of experimental condition on
amplitude of the COG displacement (F(2,57) = 5.05; P =
0.009), surface area (F(2,57) = 4.62; P = 0.014), and maxi-
mum forward COG shift (F(2,57) = 3.04; P = 0.01). However,
no differences between conditions were found in the maxi-
mum backward shift of the COG. Overall, the amplitude of
the COG oscillations was decreased by 32% (from 1.09 to
0.82 cm, P = 0.012) when participants stood with gaze fix-
ated on a target, presented at the neutral position (00), with
no difference found in the COG surface area, or forward and
backward body alignment.

Altering angular presentation of the target did not result
in any significant overall effects on COG parameters (e.g.,
amplitude of the COG displacement F(2,114) = 0,69; P =
0.501).When gaze angle deviated from the neutral position,
the following significant changes were found (Fig. 3A–D,
open circles). Observing the character located below eye level
(angle −25◦) resulted in reducing the amplitude by 21%
(from 0.82 to 0.64 cm, P = 0.031) and surface area by 27%
(from 1.2 to 0.87cm2, P = 0.041) of the COG displacement.
The same parameters had a nonsignificant tendency to reduce
under gaze angle +25◦. No difference was found in maximum
forward and backward angular displacement with either gaze
deviation.

Altering the viewing angle (Fig. 3A–D, black circles) in-
creased the amplitude of postural oscillations by 34% (from
0.82 to 1.10 cm, P = 0.012) when participants viewed the
character oriented under +25◦, with a tendency for increased
amplitude when the character was oriented in the opposite

Figure 3. The averaged means (±SE) of the COG parameters: amplitude of displacement (A); surface area (B); maximum angular shift forward (C);
and backward (D). The means identify the parameter in neutral condition (dashed circle) and their changes due to manipulation with gaze angle (open
circles), viewing angle (black circles), and both gaze and viewing angle (gray circles) from −25◦ to +25◦.
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−25◦ down position. There was a significant increase in sur-
face area by 42% (from 1.2 to 1.62cm2, P = 0.035) in the −25◦

viewing position, however. One finding of interest was that
altering the viewing angle changed body alignment. When the
character was viewed in the -25◦ presentation participants
shifted their body backwards, with significantly decreased
maximum forward displacement by 8% (from 3.03◦ to 2.78◦,
P = 0.013). Although not significant, a similar tendency was
revealed when watching the character in +25◦. Participants
slightly leaned forward increasing the maximum forward and
decreasing the maximum backward angular displacements,
respectively.

Altering both gaze and viewing angles did not result in
any significant changes in COG parameters. However a ten-
dency for increased amplitude of the COG oscillations was
observed.

Discussion

Basic findings

Overall results demonstrated that visual stabilization of up-
right posture was influenced by altering either gaze or viewing
angles. Changing the gaze angle, so eyes either looked up or
down, reduced the surface area and amplitude of postural
oscillations. In contrast, presenting the character in different
viewing angles, as if leaning toward or away from the par-
ticipant, destabilized posture by altering the body alignment
and increasing the amplitude and surface area of the COG
displacement. No significant differences in parameters of the
COG oscillations were observed when both gaze and viewing
angles were altered together, although there was a tendency
noted for an increase in postural oscillations, similar to that
seen with changing viewing angle alone.

Effect of gaze angle

An effect of gaze angle on postural stabilization was antici-
pated and consistent with the work of Kapoula and Lê (2006).
They showed that depression or the elevation of the eyes of 15◦

up or down to watch a target placed at 2-m distance increased
postural stability as compared with looking straight ahead.
Physiologically, when looking straight ahead, the extraocular
muscles that move the eyes in the orbits in the vertical plane
are relaxed. Looking either up or down increases their activ-
ity. Proprioceptive feedback from these extraocular muscles
modifies activity of the neck muscles through a chain of brain-
stem reflexes even when head is not moving (Andre´–Deshays
et al. 1988; Andre´–Deshays et al. 1991; Corneil et al. 2004).
Neck muscle activity is thought to be a powerful mediator of
postural control (Kogler et al. 2000; Vuillerme and Rougier
2005), and could reduce body oscillations in our participants.

Postural reorganization could also be mediated by changes
in the visual signal processing in the eye retina and particu-

larly the peripheral part. Peripheral vision plays an important
role in control of quiet standing in a relatively stationary or
moving environment (Previc and Neel 1995; Berencsi et al.
2005). When swaying slightly in quiet stance, an individual
observes the environment through a coherent available optic
array (Gibson 1954; Lee and Lishman 1975). The velocity
and structure of this optic array are not the same everywhere
and are accommodated differently by central and peripheral
parts of the eye retina (Brandt et al. 1973; Berthoz et al. 1975;
Stoffregen 1985, 1986). When gaze is directed straight ahead,
the velocity of optic flow increases with eccentricity, that is,
angular deviation from the line corresponding to the direc-
tion of sway. The highest velocity optical transformations
are found in the extreme visual periphery and this veloc-
ity increases as the visual stimulus approaches the observer.
Higher velocity optical transformations are both more de-
tectable and useful than the lower velocity transformations.
Therefore, the peripheral retina appears to be more efficient
than the central part in detection of posture-related stimuli
in the optic flow, for example, those generated by supporting
surface, (Stoffregen 1985). When our participants directed
their gaze downward, a visible supporting surface (floor) ap-
peared in their visual periphery, and the distance between eye
and support was decreased compared to when they looked
straight ahead. This induced sensitivity to the most infor-
mative optical transformations and could reduce postural
oscillations. Although data collection was conducted in a rel-
atively “dimly lit” environment, this effect of this peripheral
visual effect could not be excluded.

It is also important to mention that an alternative point
of view on the contribution of peripheral and central visual
systems to postural control exists. Several studies showed an
equal importance of both systems in maintenance of upright
posture (Straube et al. 1994; Piponnier et al. 2009). If this
is the case, postural sway reduction in gaze up and down
conditions could be partially explained by head stabilization
in our subjects. In healthy adults, postural control during
standing and walking (Assaiante et al. 2005) can be organized
in top-to-down manner, where the head serves as a frame of
reference for upright stance. When looking up or down, our
participants consciously minimized head motion. This head
stabilization could simply cause stabilization of the entire
body functioning as a closed kinetic chain, and as a result
could reduce the amount of postural oscillations.

Effect of viewing angle

The effect of altering the viewing angle on postural stability
has not been investigated previously in a systematic way. This
finding is consistent with the results of our previous study.
That work showed that viewing a target under mid-range
angles in a virtual environment increased involvement of
the trunk and leg segments in arm transport during reaching
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while standing (Ustinova et al. 2010). As a result, participants
reached further. This suggests that viewing perspective can
be a variable influencing visual signals transformation not
only for control of voluntary movements, but for postural
control as well. There are a few potential mechanisms that
can modify such transformation.

Induced postural oscillations, when seeing the character
apparently leaning forward or away, might be altered per-
ception of vertical position. Distortion of the visual envi-
ronment alters perception of the body’s vertical orientation
within it (Carriot et al. 2008; Keshner and Kenyon 2009).
Consequently, it results in postural reorganization and shift-
ing of the body away from a natural vertical to maintain a
correct presentation of the visual image on the eye retina.
In our study, the environment remained relatively unper-
turbed. However, the incorrectly oriented body character on
the screen might be perceived as an environmental reference
triggering reorganization of the participant’s body alignment
to fit with the frame. Deviation from a stability comfort zone
due to the body shifting forward or backward could then
destabilize posture.

Postural destabilization observed in altered viewing condi-
tions could also be due to the conflict between the perceived
proximity of the figure and the angle of actual optic axes. Cor-
tical cells responsible for visual motion detection are sensitive
to a specific axis of optic signal orientation (Movshon 1990).
Distorted vertical presentation of the stimulus (the Mia char-
acter) could reduce sensitivity of these neurons and impair
their ability to utilize visual stimulus for postural stabiliza-
tion. This could then result in increased postural oscillations
in viewing up and down conditions.

Surprisingly our results revealed only a modest and non-
significant effect on the COG parameters when viewing and
gaze angles were altered together. We were unable to replicate
the findings of Buckley et al. (2005) and Fukushima et al.
(2008), who showed that coordination of eye–head move-
ments to view a target presented above or below eye level
changed stance ground reaction forces. In our study the an-
gular shifts of 25◦ were smaller than theirs, and so did not
require a head movement. Indeed, our participants were in-
structed to keep their head still. Another possible explanation
is that the combination of the effects of altering of gaze and
viewing angles together resulted in a mutually compensating
effect.

Limitations of the study

This study has some limitations. Although we tried to disso-
ciate the effects of gaze and viewing angles, no eye movements
were recorded. We assumed that participants in our study fol-
lowed instructions and altered eye position in different gaze
conditions rather than use head movements. We also studied
postural stability in relatively young healthy participants who

had small-amplitude body oscillations during quiet stance.
Altering the gaze and viewing angle may not have the same
effect in individuals with postural control problems. We also
studied a stationary rather than a moving target, so conclu-
sions are limited to this. The effects could have been different
with a moving, rather than stationary character. These issues
will be addressed in further studies.

Conclusion

Many neural mechanisms may be involved in postural reor-
ganization due to changes in gaze and viewing angles. Those
include proprioceptive feedback from extraocular muscles
as they adjust eye position in the orbit and alterations in
the output signal from the retina. The contribution of each
of these mechanisms deserves systematic investigation. This
study does not seek to these mechanisms, but instead provides
evidence that viewing and gaze angles play different roles in
the visual stabilization of upright posture. More research is
needed to test whether similar mechanisms of visuomotor
transformation are used when planning and executing pos-
tural other tasks as well voluntary goal-directed movements.
Results of such research have potential uses in designing sim-
ulated environments to facilitate motor performance in such
activities as teleoperation and functional rehabilitation.
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