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Adenosine is an ancient extracellular signaling molecule that regulates various biological
functions via activating four G-protein-coupled receptors, A1, A2A, A2B, and A3

adenosine receptors. As such, several studies have highlighted a role for adenosine
signaling in affecting the T cell development in the thymus. Recent studies indicate
that adenosine is produced in the context of apoptotic thymocyte clearance. This
review critically discusses the involvement of adenosine and its receptors in the
complex interplay that exists between the developing thymocytes and the thymic
macrophages which engulf the apoptotic cells. This crosstalk contributes to the effective
and immunologically silent removal of apoptotic thymocytes, as well as affects the
TCR-driven T-cell selection processes.
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INTRODUCTION

Generation of immunocompetent T lymphocytes from bone marrow-derived CD4−CD8− double
negative progenitors takes place in the thymus. This process occurs through a series of
differentiation and selection steps (Bommhardt et al., 2004) leading via apoptosis to the removal of
95% of thymocytes produced with improper TCR. T-cell differentiation is unique in a sense that it
is not a cell-autonomous process, but depends on signals provided by fibroblasts, thymic epithelial
cells, macrophages, dendritic cells, and endothelial cells that surround the developing thymocytes
(Petrie and Zuniga-Pflucker, 2007). Among these cells thymic epithelial cells play the major role in
shaping the T cell repertoire by presenting self-antigens on their cell surface (Alexandropoulos and
Danzi, 2012), while thymic F4/80+ macrophages are the main cleaners of the constantly produced
dying cells (Surh and Sprent, 1994). While generally tissue resident macrophages are originated
from the yolk sac (Gomez et al., 2015), part of the thymic macrophages seem to be differentiated
from the hematopoietic stem cells (Haymaker et al., 2012) or even from T cell progenitors (Esashi
et al., 2004) in the bone marrow.

At the beginning of differentiation, CD4−CD8− progenitor cells rearrange their TCR β

gene locus to produce a pre-TCR complex. Subsequently, thymocytes divide rapidly, become
CD4+CD8+ DP thymocytes, then they rearrange their TCRα chain as well. Those thymocytes,
which successfully generate a functional α chain replace the pre-TCR with mature TCRαβ and
continue to differentiate CD4+CD8+ TCRαβlow cells (Hernandez et al., 2010). The TCR of these
thymocytes is able to interact with self-peptides presented on major histocompatibility complex
molecules of thymic non-lymphoid cells. Their destiny will be decided by the strength of the TCRαβ

Abbreviations: ADA, adenosine deaminase; ADO, adenosine; AR, adenosine receptor; CO, carbon monoxide; DP, double
positive; MAPK, mitogen-activated protein kinase; NPP, nucleotide pyrophosphatase/phosphodiesterase; NECA, N-ethyl-
carboxamidoadenosine; 8-PT, 8-phenyl-theophylline; PGE2, prostaglandin E2; TCR, T-cell receptor; TG2, transglutaminase
2; TGF-β, transforming growth factor-β; Treg, regulatory T cell; tTreg, thymic regulatory T cell.
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signal generated during this interaction. Cells receiving a
TCRαβ signal of intermediate strength continue to differentiate
into CD4+ or CD8+ TCRαβhigh single positive thymocytes,
leave the thymic cortex and complete their maturation in the
thymic medulla, while those, which are exposed to a strong
TCRαβ signal, are eliminated by activation-induced apoptosis,
a major mechanism for generating self-tolerance (Kisielow and
von Boehmer, 1995). A few percent of thymocytes that have
TCR specificities for higher affinity ligands than that of the
conventional CD4+ T cells (Moran et al., 2011) are diverted into
CD4+CD25+FoxP3+ tTreg, which induce peripheral tolerance by
silencing excessive peripheral immune responses, thus prevent
autoimmunity (Benoist and Mathis, 2012). The remaining 90%
of the DP thymocytes express TCRs, which cannot interact with
peptide-loaded self-major histocompatibility molecules, thus in
the absence of TCR-driven cell survival signals they undergo a
default apoptosis cell death pathway named “death by neglect.”

Increasing evidence indicate that molecules produced by
macrophages during the constant engulfment of apoptotic
cells generate a thymic milieu for the developing thymocytes
that affect the TCR-determined cell selection processes. These
molecules are produced primarily not to regulate thymic
selection processes, rather they are needed for the macrophages
themselves. Thus, in response to the chemotactic signals
produced by dying thymocytes, macrophages release ATP that
contributes to their migration to the apoptotic site (Kronlage
et al., 2010). Following apoptotic cell phagocytosis, they
release TGF-β and prostaglandin E2 (PGE2) to prevent their
pro-inflammatory cytokine production in an autocrine manner
(Fadok et al., 1998). During degrading hem containing proteins,
they also produce CO as a result of hem oxygenase-I action
(Gemsa et al., 1973). And finally, macrophages also produce
retinoids in an engulfment-dependent manner (Garabuczi et al.,
2013) that regulate their own phagocytic capacity (Sarang
et al., 2014). However, DP thymocytes express receptors for
the macrophage-released molecules, such as ATP, PGE2, TGF-
β, CO or retinoids (Cillie et al., 1983; Suzuki et al., 1991;
Szondy et al., 1997; Levéen et al., 2005; Tsukimoto et al.,
2006; Dzhagalov et al., 2007), and respond to them with an
outcome that depends on the simultaneous TCR signaling.
Thus, all these molecules were shown to induce or enhance
thymocyte death in the absence of TCR signaling (Szondy
et al., 2012). Macrophage-derived retinoids and TGF-β also
synergize in the induction of TG2 (Fésüs and Szondy, 2005)
in apoptotic thymocytes (Garabuczi et al., 2013). TG2 in dying
cells contributes to the formation of a chemotactic signal for
macrophage recruitment (Nishiura et al., 1998), prevents the
leakage of the harmful cell content (Piredda et al., 1997)
and facilitates the exposure of phosphatidylserine, the main
important apoptotic cell recognition signal for macrophages
(Sarang et al., 2007). On the other hand, in the presence of
TCR signaling retinoids inhibit TCR-mediated cell death in a
dose-dependent manner, thus regulate the threshold of negative
selection (Szondy et al., 1998; Szegezdi et al., 2003; Sarang et al.,
2013), while TGF-βplays such a determining role in the formation
of tTreg cells, that no tTreg cells can be detected in the thymus until
apoptosis and the consequent engulfment-dependent TGF-β

production is induced (Liu et al., 2008; Konkel et al., 2014; Chen
and Konkel, 2015).

The fact that adenosine is also produced in the thymus and
affects thymic selection processes was discovered after it was
found that ADA deficiency leads to adenosine accumulation and
severe T cell deficiency (Apasov et al., 2000).

ADENOSINE

Adenosine is an intra- and extracellularly produced purine
nucleoside, which concentration is strictly controlled due to
its intense and diverse biological effects. Intracellularly, it can
be produced by three main pathways: (a) decomposition of
adenine nucleotides (ATP, ADP, AMP) by ATPases, ATPase and
cellular 5′ nucleotidase (c5′-NT); (b) hydrolysis of S-Adenosyl-L-
homocysteine by its hydrolase; (c) phosphodiesterase-mediated
degradation of cAMP (Park and Gupta, 2012). Intracellularly
ADO can be converted to inosine by ADA and later on to
uric acid (da Rocha Lapa et al., 2014). It also can be shifted
back to the nucleotide pool in the form of AMP by ADO
kinase (Ramakers et al., 2011). Finally, it can be transported
to the extracellular space by specific transporters (Antonioli
et al., 2014). The extracellular ADO concentration is lower than
1 µM (30–200 nM) under physiological conditions, but it can
reach extremely high levels (>100 µM) during inflammation
and hypoxia (Haskó and Cronstein, 2004). The waste majority
of extracellular ADO is formed extracellularly from ATP, which
is transported out from various cells via exocytosis, co-release
or ion channels (Chen et al., 2013; Antonioli et al., 2014).
Extracellular ATP then undergoes a two-step hydrolysis. The
rate limiting step in extracellular ADO formation is catalyzed
by either ecto-nucleoside triphosphate diphosphohydrolases,
such as CD39 that phosphohydrolyses ATP, and less efficiently
ADP, in a Ca2+- and Mg2+-dependent fashion, to yield AMP
(Heine et al., 2001), or by members of the ecto-nucleotide
pyrophosphatase/phosphodiesterase family, such as NPP1 and
3, which are also located on the cell surface, but produce
AMP directly (Stefan et al., 2006). AMP in turn, is rapidly
degraded to ADO by soluble or membrane-bound ecto-5′-
nucleotidases, such as CD73 (da Rocha Lapa et al., 2014). The
effect of extracellular ADO is terminated by the decomposition
of ADO by ecto-ADA or by the uptake into the surrounding
cells through equilibrative nucleoside transporters (Liu and Xia,
2015).

THE DIFFERENT ADENOSINE
RECEPTORS

The regulatory effects of ADO, are almost exclusively mediated
by the activation of its plasma membrane-associated receptors
(ADO receptors) (Fredholm et al., 2001) which are expressed
in a cell type specific manner. All of the four ARs (A1R, A2AR,
A2BR, A3R) belong to the large family of seven-transmembrane
receptors, also known as G-protein-coupled receptors (Fredholm
et al., 2001). Physiological ADO levels activate A1R, A2AR, and
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A3R receptor subtypes (Ki = 100–300 nM for human receptors).
A2BRs (Ki = 15 µM for human A2BR) are activated only during
pathological conditions (e.g., hypoxia, inflammation) (Haskó
et al., 2007; Eltzschig, 2009; Dubyak, 2012). The duration and
magnitude of the ADO’s effect are influenced by a number
of processes including intra- and extracellular production of
ADO, transport, cellular uptake, degradation, receptor density,
as well as the activity of receptors and signaling molecules
(Eltzschig, 2009; Chen et al., 2013). In general, ARs affecting
intracellular cAMP levels are involved in the regulation of
a large scale of biological processes (Liu and Xia, 2015). In
addition, all of the four ARs can activate different types of
MAPKs (p38, ERK1/2, JNK) (Antonioli et al., 2014). Further
AR downstream effectors include phospholipase C, ion channels,
phosphoinositide 3-kinase and protein kinase B, nitric oxide,
reactive oxygen species, and lipid mediators (Liu and Xia, 2015).
Like other G-protein-coupled receptors, ARs tend to form homo-
and heterodimers as well as oligomers (Chen et al., 2013). With
the formation of such complexes, the range of signaling pathways
and biological processes controlled by ARs is further broadened.

ADENOSINE METABOLISM AND
ADENOSINE RECEPTORS IN THE
THYMUS

Studies in our laboratory have found that neither macrophages
nor apoptotic thymocytes produce detectable amount of ADO,
if they are cultured alone, but ADO is produced during the
apoptotic cell engulfment indicating that ADO is an additional
molecule which appears in the thymic milieu in an engulfment-
dependent manner (Köröskényi et al., 2011). Apoptotic cells
release adenine nucleotides via pannexin channels (Chekeni et al.,
2010; Yamaguchi et al., 2014), which open in a caspase-dependent
manner (Sandilos et al., 2012). In addition, thymocytes release
ATP also via a pannexin channel-independent manner, when
they undergo secondary necrosis (Sándor et al., 2017). CD39 is
constitutively expressed in the thymus and is associated primarily
with macrophages and tTreg cells (Antonioli et al., 2013), while
thymocytes express NPP1 (Petersen et al., 2007). Thus in the
thymic cortex, where apoptotic thymocytes and macrophages are
present in close proximity, both cell types can contribute to the
extracellular degradation of ATP to AMP. In accordance, high
amount of AMP was detected in the culture of dying thymocytes
(Yamaguchi et al., 2014). However, while CD73 and prostatic acid
phosphatase are expressed by macrophages (Eichin et al., 2015),
in thymocytes CD73 expression is differentiation-dependent: it is
virtually absent in cortical thymocytes, but becomes upregulated
in the medullary ones (Resta et al., 1997, 1998). Thus in the
thymic cortex, where the majority of improper thymocytes die,
ADO formation must be fully dependent on the CD73 activity
of macrophages. Indeed, in the context of dying thymocytes and
engulfing macrophages ADO production was confirmed in vitro
to be fully dependent on the CD73 activity of macrophages
(Yamaguchi et al., 2014; Sándor et al., 2017). The endogenous
CD73 activity of macrophages is so high in the thymus that
even if CD73 expression is artificially upregulated in thymocytes,

FIGURE 1 | Suggested crosstalk between developing thymocytes and
engulfing macrophages in the thymus involving adenosine. Dying thymocytes
release ATP via caspase-regulated pannexin channels. ATP is then fast
degraded to AMP by cell surface ATP degrading enzymes of thymocytes and
macrophages, and to adenosine by CD73 expressed on the macrophage cell
surface. ADO acting on thymocyte adenosine A2A receptors induces “death
by neglect” alone or promotes the glucocorticoid-induced death of DP
thymocytes. In addition, it interferes with the negative selection of thymocytes
that have TCR specificities with intermediate affinity for self-antigens, thus
promote positive selection. ADO is also required for the tTreg formation. In
dying thymocytes ADO enhances the intracellular expression of TG2, an
apoptosis-related protein that promotes fast recognition of apoptotic cells by
macrophages. In macrophages ADO activates adenosine A2A receptors, the
expression of which is strongly induced following apoptotic cell uptake. The
mechanism involves both hem oxygenase and the lipid sensing peroxisome
proliferator activating receptor δand liver X receptor that are triggered by the
fatty acid and oxysterol content of the engulfed apoptotic cells, respectively.
A2A adenosine receptor signaling in macrophages prevents neutrophil
chemokine formation and might also contribute to the apoptotic cell lipid
content-induced upregulation of cell surface TG2. TG2 in macrophages acts
as a phagocyte coreceptor for the proper phagocytosis of apoptotic cells, and
contributes to the activation of latent TGF-β, an anti-inflammatory cytokine
released by the engulfing macrophages.

the in vivo thymic ADO levels do not change (Resta et al.,
1997). The extracellular ADO concentrations in the thymus,
however, are determined by the thymocyte ADA activities as
well, and ADA activity was found to be extraordinarily high
in cortical thymocytes, while to be strongly downregulated in
the medullary ones (Chechik et al., 1981; Ma et al., 1982).
These observations indicate that either ADO concentrations are
kept lower in the cortical zone, where most of the positive
selection takes place, while are higher in the medullary zone,
where selected thymocytes mature further and also undergo
negative selection. Alternatively, since in the medullary zone
the rate of apoptosis, consequently the rate of ATP release is
lower, thymocyte cell surface CD73 expression and the low
thymocyte surface ADA activity together maintain the sufficient
ADO levels around the thymocyte ARs. Loss of ADA activity
in ADA deficient patients is associated with increased ADO
levels in the thymus, which thus affect primarily the cortical
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thymocytes (Resta and Thompson, 1997). ADA, however, is
responsible for the degradation of deoxyadenosine as well, thus
low ADA activities in the cortex might promote formation of
the intracellular dATP and consequently proliferation of cortical
thymocytes (Sandberg, 1983). ARs are expressed already by
the T-lymphopoietic and monocytopoietic cells as well, and
both of them express all the four ARs. While, however, in the
T-lymphopoietic lineage the expression of A2ARs dominates, in
the monocytopoietic cells all the A2A, A2B, and A3 receptors
are highly expressed subtypes (Streitová et al., 2010). However,
as thymic apoptosis is initiated in the developing thymus and
phagocytosis follows, engulfing macrophages upregulate their
A2ARs (Köröskényi et al., 2011), while downregulate the A3 ones
(Duró et al., 2014). Upregulation of the A2ARs is engulfment-
dependent in macrophages, and involves both lipid sensing
transcription factors and CO produced via the hem oxygenase
reaction (Haschemi et al., 2007; Köröskényi et al., 2011).

EFFECT OF ADENOSINE ON THE T CELL
DEVELOPMENT

Early studies on fetal thymic organ cultures conducted
in the presence of the ADO agonist 5′-(N-ethyl)-
carboxamidoadenosine, and the AR antagonist
8-phenyl-theophylline (8-PT) indicated that ARs influence
the development of thymocytes, since administration of both
compounds resulted in a decreased thymocyte cell number
(Hamad, 1997). Results obtained with 8-PT were concluded in
a way that ADO is required for proper thymocyte development,
while results obtained with NECA indicated that higher
concentrations of it induce thymocyte death. 8-PT is, however,
not only an AR antagonist, but acts also as a potent inhibitor of
cAMP phosphodiesterase. Thus, it can induce elevations in the
intracellular cAMP levels (Nicholson and Wilke, 1989), and a
consequent loss of thymocyte cell number due to cAMP-induced
thymocyte death (McConkey et al., 1990). Thus 8-PT could
decrease the thymocyte cell number by inducing apoptosis,
rather than ADO being required generally for thymocyte
differentiation. In accordance, loss of A2ARs, the dominant
thymocyte AR subtype, does not affect the number and the
distribution of various thymocyte populations in mice (Kiss
et al., 2006), despite of the fact that the expression of other
ARs remained unchanged (Lukashev et al., 2003). ADO is,
however, constantly produced in the cortical layer of the thymus,
and can contribute to the apoptosis of neglected thymocytes
similar to other signaling molecules that are also produced by
macrophages in an engulfment-dependent manner (Szondy
et al., 2012). The ADO-induced death of mouse thymocytes is
strongly dependent on the A2ARs, as in A2AR null thymocytes
ADO fails to induce significant cell death (Kiss et al., 2006).
The ADO-dependent death in mouse thymocytes is mediated
via cAMP and cAMP-dependent protein kinase (Armstrong
et al., 2001; Kiss et al., 2006) and involves upregulation of Bim,
a BH3-only pro-apoptotic member of the Bcl-2 protein family
(Kiss et al., 2006). In human thymocytes, on the other hand,
ADO induces a Ca2+-dependent death (Szondy, 1994). ADO

also promotes the glucocorticoid-induced death of neglected
thymocytes (McConkey et al., 1993), and together with the
engulfing macrophage-produced retinoids and TGF-β, also
contributes to the upregulation of TG2 in the dying cells (Sándor
et al., 2016, 2017). Thus, engulfing macrophage-produced
apoptosis-promoting molecules, including ADO, appearing in
the cortical thymic milieu cooperate in both the fast killing of
thymocytes, which express useless TCRs, and in the upregulation
of their TG2 expression. These signals together are so crucial for
the upregulation of TG2 in vivo that in vitro, though thymocytes
die upon exposure to apoptotic stimuli, they cannot upregulate
the expression of the protein (Szegezdi et al., 2000). Several
molecules, which induce apoptosis of neglected thymocytes,
also interfere with the TCR-mediated signaling pathways and
inhibit negative selection in a dose dependent manner (Ashwell
et al., 1996; Szondy et al., 1998; Szegezdi et al., 2003). For
glucocorticoids, it has been demonstrated that this way these
molecules determine the TCR avidity thresholds that determine
whether developing thymocytes survive or die, and therefore
help to mold the antigen-specific T cell repertoire (Ashwell et al.,
1996). Interestingly, ADO has also been reported to interfere
with the TCR-induced signaling pathways and negative selection
via interfering with the CD3 ζ chain phosphorylation (Apasov
et al., 2000). Thus ADO, similar to glucocorticoids and retinoids,
might affect the TCR avidity thresholds in a dose dependent
manner. And finally, development of tTreg cells have been
shown to be dependent on engulfing macrophage-derived TGF-β
(Konkel et al., 2014; Chen and Konkel, 2015). Interestingly, both
retinoids (Mucida et al., 2007) and ADO (Ohta and Sitkovsky,
2014) promote the TGF-β-dependent development of Treg cells
in the periphery. In CD73/prostatic acid phosphatase double
knock out mice, where the extracellular ADO levels are low, the
tTreg cell production was found to be impaired (Yegutkin et al.,
2014) indicating the involvement of ADO also in the tTreg cell
differentiation.

EFFECT OF ADENOSINE ON THE
ENGULFMENT-RELATED PROCESSES
OF THE MACROPHAGE

Apoptotic cells release find me signals for macrophages so
that the macrophages could find them efficiently. In the
thymic cortex the apoptosis sensitive DP thymocytes are
in strong interaction with the cortical macrophages forming
clusters with them (Rezzani et al., 2008). Thus, the removal
of the constantly appearing apoptotic cells might not require
chemotactic migration of macrophages. When, however, a large
amount of DP thymocytes die, additional macrophages migrate
through vessels into the thymus, and enter the cortical region,
where most of the apoptosis takes place (Odaka and Mizouchi,
2002). In macrophages a purinergic autocrine signaling functions
to amplify and translate chemotactic signals into directional
motility (Kronlage et al., 2010). Upon sensing chemotactic
signals, macrophages release ATP at the leading edge of the
cell, which is then degraded to ADP, AMP, and ADO. Loss
of either adenosine A3R or A2BR receptor function blocks the
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chemotactic migration of macrophages toward the apoptotic cells
(Joós et al., 2017). The involvement of AR subtype in the control
of chemotactic navigation, however, might be macrophage type
specific, since peritoneal tissue resident macrophages express
both receptors at high levels, while in monocyte-derived
macrophages the expression of the adenosine A2BR dominates.
In accordance, loss of A3Rs affects the apoptotic cell removal in
the peritoneal cavity, but has no effect on the thymic apoptotic
cell removal in vivo (Joós et al., 2017). ADO has no effect
on the phagocytosis of apoptotic cells (Köröskényi et al., 2011;
Duró et al., 2014), but it might contribute to the apoptotic
cell-induced upregulation of cell surface TG2 (Szondy et al.,
2003; Rébé et al., 2009; Sarang et al., 2014) which acts as
a phagocytosis coreceptor in macrophages (Tóth et al., 2009)
and contributes to the activation of TGF-β released in latent
form (Nunes et al., 1997). ADO is also required to maintain
the immunologically silent removal of apoptotic cells. In the
absence of A2AR signaling KC and macrophage inflammatory
protein-2 neutrophil chemokines are released by engulfing
macrophages (Köröskényi et al., 2011). During the engulfment
of apoptotic cells several anti-inflammatory mechanisms are
activated to prevent the production of pro-inflammatory
cytokines (Trahtemberg and Mevorach, 2017). Many of them
act via inhibiting nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) transcriptional activity which plays
a key role in the induction of inflammatory cytokine genes
(Baeuerle and Henkel, 1994), or via inducing the production of
TGF-β or IL-10 (Szondy et al., 2017). ADO signaling was also
shown to interfere with the NF-κB function by inhibiting its
nuclear translocation, DNA binding and transcriptional activity
(Xia et al., 2000; Majumdar and Aggarwal, 2003; Lukashev
et al., 2004) and to induce IL-10 (Németh et al., 2005). In
addition, A2AR signaling prevents nitrogen monoxide formation
in engulfing macrophages (Köröskényi et al., 2011) and enhances
the expression of dual specific phosphatase, which interferes
the MAPK signaling pathways known to contribute also to the
pro-inflammatory cytokine expression (Köröskényi et al., 2016).

A3Rs, on the other hand, were found to promote apoptotic
cell uptake-induced neutrophil chemoattractant formation (Duró
et al., 2014). Since A3Rs are downregulated during engulfment,
while the expression of A2ARs is induced, the immune silencing
signaling of ADO acting via the upregulated A2ARs dominate
during phagocytosis of apoptotic cells.

CONCLUSION

Increasing evidence indicate that macrophages engulfing
apoptotic cells respond to the chemotactic signals released
by apoptotic cells, to the apoptotic cell engagement and to
the apoptotic cell uptake with producing various molecules,
such as ATP, IL-10, TGF-β, CO, prostaglandin E2, retinoids,
and also ADO. These molecules together regulate either the
phagocytic activity of macrophages and/or contribute to the
immunologically silent removal of apoptotic cells. However, they
might play also additional roles in the maintenance of tissue
homeostasis, and this role vary from tissue to tissue. The data
presented in this review indicate that in the thymus ADO in an
interplay with other engulfing macrophage-derived molecules
might contribute to the thymocyte selection processes (Figure 1).
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