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INTRODUCTION

Optic pathway glioma (OPG) arises in the optic nerve, op-
tic tract, or optic chiasm, and it is a rare tumor that accounts 
for 5% of pediatric brain tumors [1]. Although most cases of 
OPG are considered pathologically low-grade, these tumors 
range from indolent to progressive [2]. Therefore, an appro-
priate multidisciplinary approach including observation, sur-
gery, chemotherapy, and radiation therapy (RT) is required 
for treatment of this diverse condition. Historically, surgical 
excision followed by RT has resulted in favorable long-term 
outcomes [3]. 

Partial resection with adjuvant RT is performed more often 
than complete surgical resection due to the tumor location. 
Further, due to residual disease after resection, patients with 
OPG often demonstrate inferior outcomes among pediatric 
low-grade gliomas treated with RT [4,5]. Additionally, RT is 
administered as a salvage treatment for progressive deep-seat-
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ed tumors. Recently, physicians have increasingly adopted a 
chemotherapy-first approach, deferring RT in fear of possible 
late effects of RT including pseudo-progression, visual dis-
turbance, vasculopathy, endocrine deficiency, neurocognitive 
impairment, and secondary malignancy. However, recent tech-
nical advances in RT, especially intensity-modulated photon 
RT or proton beam RT (PBT), have enabled effective and safe 
treatment [6]. The physical advantages of PBT over photon RT 
(X-ray) is based on the “Bragg peak” which could minimize 
unnecessary radiation exposure of normal organs [6-8]. RT 
using a proton beam can effectively increase the therapeutic 
ratio by sparing the normal organs, especially in pediatric pa-
tients [7,8].

In this review, we summarize the recent literature regard-
ing RT for treatment of OPG in terms of RT-related toxicities. 
We also particularly focus on comparison between photon RT 
and PBT. 

TUMOR CONTROL RATES

Several retrospective series have been published for either 
pediatric low-grade gliomas in general or OPGs in specific 
(Table 1). A retrospective study with long-term outcomes af-
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ter RT limited to OPG has shown favorable long-term sur-
vival outcomes of 92%–98% after 10 years [9]. Tsang et al. [9] 
reported outcomes of 89 patients treated with a total dose of 
54 Gy with photon RT with a 10-year progression-free sur-
vival of 62%–68%. They reported that pre-RT chemotherapy 
was associated with inferior progression-free survival out-
comes, whereas younger age (particularly in children aged <6 
years) at RT was only related to overall survival outcomes. For-
ty-six patients with pre-RT chemotherapy had recurrent dis-
ease after RT administration. This subgroup may have aggres-
sive tumor biology or tumor repopulation resulting in inferior 
progression-free survival outcomes. A prospective phase II 
trial, ACNS 0221, investigated conformal photon RT with a 
total dose of 54 Gy for low-grade glioma in 37/85 (44%) pe-
diatric patients with hypothalamic or suprasellar tumors [10]. 
With a median follow-up of 5 years, progression-free surviv-
al and overall survival were 71% and 93%, respectively, com-
parable to earlier reports [11-13]. Regarding RT techniques, 
Indelicato et al. [14] demonstrated similar outcomes following 
PBT compared to photon RT. Among 174 patients with low-
grade glioma treated with 50.4–54.0 Gy relative biological ef-
fectiveness (RBE) PBT, there were 101 patients with OPG. With 
a median follow-up of 4.4 years, patients with OPG showed 
favorable outcomes of a 5-year local control rate, progression-
free survival, and overall survival of 89%, 88%, and 93%, re-
spectively. They also observed better local control and progres-
sion-free survival following 54 GyRBE than following <54 
GyRBE (5-year local control, 91% vs. 67%; 5-year progres-

sion-free survival, 90% vs. 67%). 
Although there is no comparative study between photon RT 

and PBT and follow-up period is relatively shorter in study of 
PBT than photon RT, oncologic outcomes (local control, pro-
gression-free survival, and overall survival) were comparable 
according to the RT modality as summarized in Table 1. In de-
tails, progression-free survival at 5 years following photon RT 
and PBT were 72%-84% [15,16] and 88% [14], respectively. 
Considering the indolent nature of OPG, however, long-term 
follow-up should be warranted to compare the oncologic ef-
fectiveness of PBT compared with photon RT.

Based on current literature review, adopting upfront PBT 
(or photon RT) followed by chemotherapy cannot be deter-
mined. However, upfront PBT may be considered if tolerable 
toxicities which will be described in this review are expected. 
Further multidisciplinary discussion is needed considering 
individual patient and tumor characteristics. 

LATE EFFECTS FOLLOWING RT FOR 
OPG

Pseudoprogression
Although pseudoprogression (psPD) after RT for high-grade 

gliomas has been well investigated, information on psPD after 
low-grade gliomas is limited. Several reports have described 
this phenomenon in 15% to 30% of patients after undergoing 
RT for low-grade gliomas. The underlying mechanism of psPD 
stems from RT-induced vascular damage [17]. A recent com-

Table 1. Clinical outcomes for OPG following RT

Study
Patients 

(n)
OPG RT Total dose

Definition of 
progression

PFS OS

Only OPG
Tao et al. [11] 29 29 (100%) X-ray 54 Gy Radiologic assessment 10 yr 89% 10 yr 100%
Cappelli et al. [12] 53 53 (100%) X-ray 50–55 Gy Visual symptom

Radiologic assessment
10 yr 66% 10 yr 83%

Grabenbauer et al. [24] 25 25 (100%) X-ray 45–60 Gy Radiologic assessment 10 yr 69% 10 yr 94%
Combs et al. [15] 15 15 (100%) X-ray 52.2 Gy Radiologic assessment 5 yr 72% 5 yr 90%
Tsang et al. [9] 89 89 (100%) X-ray 54 Gy Radiologic assessment

Secondary malignancy
10 yr 62%–68% 10 yr 92%–98%

Acharya et al. [16] 41 41 (100%) X-ray 54 Gy Radiologic assessment 5 yr 84% -
Mixed OPG and other low-grade glioma

Marcus et al. [13] 81 37 (46%) X-ray 52.2 Gy Radiologic assessment 5 yr 83%, 8 yr 65% 5 yr 98%, 8 yr 82%
Oh et al. [4] 181 62 (34%) X-ray 54–57 Gy Neurologic symptom

Radiologic assessment
8 yr 39% 8 yr 94%

Raikar et al. [5] 17 6 (35%) X-ray 50–54 Gy Radiologic assessment 3 yr 69%, 10 yr 46% 10 yr 100%
Cherlow et al. [10] 85 37 (44%) X-ray 54 Gy Radiologic assessment 3 yr 77%, 5 yr 71% 3 yr 94%, 5 yr 93%
Greenberger et al. [25] 32 Unknown Proton 52.5 GyRBE Radiologic assessment 8 yr 83% 8 yr 100%
Indelicato et al. [14] 174 101 (58%) Proton 54 GyRBE Radiologic assessment 5 yr 88% 5 yr 93%

OPG, optic pathway glioma; RT, radiation therapy; PFS, progression-free survival; OS, overall survival. RBE, relative biological effectiveness
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long-term visual acuity in 41 children with OPG receiving X-
ray and showed that incidence of decline in visual acuity was 
low; 11% and 14% for the better and worse eye, respectively. 
The decline occurred within the first 2 years after RT and was 
not related to progression of disease [16]. Recently, Hanania 
et al. [26] reported that early PBT as an initial or first-line sal-
vage treatment was related to improved 8-year blindness-free 
survival rate of 100% compared to a 60% rate following che-
motherapy. In this report, the visual outcomes of late PBT were 
not different from those of no PBT. Therefore, early PBT may 
preserve functional vision in appropriate patients before symp-
tomatic progression. Serial follow-up of 20 patients with OPG 
demonstrated that surgery may play a major role in baseline 
function, whereas pre-RT chemotherapy may interrupt the 
improvement of visual disturbance following RT [27]. All pa-
tients treated with pre-RT chemotherapy received delayed RT 
due to symptomatic progression and they finally had signifi-
cantly inferior visual acuity in their worse eye [27]. Therefore, 
an individualized approach incorporating surgery, RT, and 
chemotherapy is required to preserve long-term visual function 
in patients with OPG. Although current data support compa-
rable visual function outcomes between X-ray and PBT, there 
is a chance for improvements in visual outcomes when early 
PBT approach is encouraged.

parison study investigated serial magnetic resonance imaging 
between photon RT and PBT from 83 pediatric patients with 
low-grade gliomas. Higher rates of psPD after PBT were ob-
served compared to those after photon RT: overall rates of psPD 
were 45% and 25%, respectively (p=0.048) [18]. The relative 
dose heterogeneity of passive scattering PBT compared to pho-
ton RT may be related to frequent “hotspots” resulting in in-
creased vascular injuries and frequent psPD. Scanning PBT, 
an advanced PBT technique, deflects the proton beam using 
magnets positioned in the upstream of the nozzle and delivers 
treatment beams across the cross-sectional area of the target 
by controlling the beam path. A layer-by-layer dose painting 
of scanning PBT may provide a conformal dose distribution 
to the distal and proximal edges of the target [19]. Therefore, 
scanning PBT may reduce this late effect, which could affect 
the assessment of treatment response [19]. 

Change in visual outcomes
Because of the location of OPG, most patients with OPG usu-

ally experience long-term visual impairment following cura-
tive treatment, which could significantly affect quality of life 
[20,21]. Although chemotherapy is adopted as a therapeutic 
approach for young patients to defer RT, chemotherapy could 
not successfully preserve visual acuity [22,23]. Overall, 7%–
17% of patients who undergo RT experience visual deficien-
cy (Table 2) [10-12,14-16,24,25]. Acharya et al. [16] evaluated 

Table 2. Toxicities outcomes following RT

Study
Proportion 

of OPG
RT PsPD Visual deficiency Vasculopathy

Endocrine 
deficiency

Only OPG
Tao et al. [11] 29 (100%) X-ray 17% 72%
Cappelli et al. [12] 53 (100%) X-ray 17%
Grabenbauer et al. [24] 25 (100%) X-ray 12% 48%
Combs et al. [15] 15 (100%) X-ray 7% 13%
Tsang et al. [9] 89 (100%) X-ray 10 yr 29% 10 yr 7%
Acharya et al. [16] 41 (100%) X-ray 5yr 12%
Hanania et al. [26] 38 (100%) Proton Blind-free survival 100%
Awdeh et al. [27] 20 (100%) X-ray 25% (best eye)

   50% (worst eye)
Kestle et al. [31] 28 (100%) X-ray 18%

Mixed OPG and other low-grade glioma
Marcus et al. [13] 37 (46%) X-ray 5%
Cherlow et al. [10] 37 (44%) X-ray 2% 2%
Greenberger et al. [25] Unknown (n=32) Proton 17% (decline) 6% 31%
Indelicato et al. [14] 101 (58%) Proton 32% 1% 3% 22%
Ludmir et al. [18]   29 (35%) X-ray/proton 25%/45%
Hall et al. [38] Unknown (n=644) X-ray 2.6%
Bavle et al. [29] Unknown (n=81) Proton 9.9% (severe 6.2%)

OPG, optic pathway glioma; RT, radiation therapy; PsPD, pseudoprogression
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Vasculopathy
Vasculopathy, including cerebral vessel stenosis, Moyamoya 

disease, and stroke may occur in the late phase (over 10 years) 
and even in adulthood [28]. The development of vasculopathy 
highly depends on the location of the tumor. Patients with 
tumors located in the suprasellar region frequently developed 
vasculopathy around the Circle of Willis accounting for 9%–
20% of incidence: 18%–19% of patients with OPG develop 
vasculopathy [29]. Tsang et al. [9] reported a 10-year incidence 
of 7% for clinically significant vasculopathy in 89 patients with 
OPG. In addition, they found no vasculopathy in any patients 
older than 10 years. Risk of vasculopathy may increase when 
RT is administered at young age. Merchant et al. [30] observed 
higher incidence of vasculopathy in patients <5 years than 
those >5 years at time of RT for low-grade glioma (12.5% vs. 
3.8%).

Specifically, Moyamoya disease has been reported to devel-
op in 5%–18% of patients treated with X-ray. Kestle et al. [31] 
reported that 18% of 28 patients with OPG were diagnosed 
with Moyamoya disease after 3.1–4.5 years of treatment. Ad-
ditionally, 20%–30% of patients experienced stroke symptoms 
as a long-term sequela. Mueller et al. [32] reported a dose-re-
sponse relationship of 5% hazard per 1 Gy in 325 patients with 
low grade gliomas. Radiation to the Circle of Willis may pro-
voke stroke events [33-35]. Campen et al. [34] observed stroke 
in 4.9% in 265 children and 12/13 patients were treated with 
RT to the Circle of Willis. Bowers et al. [35] also reported that 
OPG (odds ratio 4.14, 95% confidence interval of 1.08–15.87) 
was associated with frequent stroke events due to tumor ge-
ometry. Among 13/807 patients with brain tumor who expe-
rienced non-perioperative stroke, 3 patients had OPG [35]. 
Series limited to patients with OPG showed that 17%–18% of 
patients could experience stroke after X-ray [12,31].

Currently, there is a limited body of data to report vasculop-
athy limited to OPG following PBT. Instead, reports of vascu-
lopathy after PBT associated with all brain tumors showed a 
slightly lower incidence (5%–10%), than those after X-ray treat-
ment [14,25,29,36-38]. Hall et al. [38] reported a 3-year inci-
dence of serious vasculopathy as 2.6% in 644 children (mostly 
with craniopharyngioma, ependymoma, or low-grade glio-
ma) treated with PBT. Maximum dose to the optic chiasm >54 
GyRBE was related to serious vasculopathy. Bavle et al. [29] 
also found that 5/81 children (6.2%) who experienced vascu-
lopathy following PBT for brain tumor received >45 GyRBE 
to the optic chiasm. Moreover, Moyamoya disease and stroke 
events occurred in 3%–6% and 1%–8% of patients, respectively, 
within the first 5 years after PBT [14,25,29,36-38]. 

Considering tumor geometry and prescription RT dose, pa-
tients with OPG are at high-risk of vasculopathy, regardless of 
RT techniques (X-ray or PBT). Therefore, screening for early 

detection of any types of vasculopathy needs to be considered 
prior to symptomatic presentation.

Endocrine and neurocognitive impairment
Endocrinopathy in OPG following radiation is highly attrib-

utable to both the tumor itself located in the hypothalamic-
pituitary axis and the high radiation dose to this region. In a 
1990 report by Brauner et al. [39], treating OPG could induce 
growth hormone (GH) deficiency within 2 years. The incidence 
of endocrinopathy has been reported to be between 13% to 
72% following X-ray treatment and 22%–31% following PBT 
(Table 2). Tao et al. [11] reported 72% of endocrinopathy in 
29 OPG patients treated with photon RT; GH deficiency is the 
most frequent (59%) endocrinopathy followed by thyroid-
stimulating hormone deficiency (48%), precocious puberty 
(38%), amenorrhea (24%), and adrenocorticotropic hormone 
deficiency or panhypopituitarism (21%). Granbenbauer et al. 
[24] also reported details of endocrinopathy following photon 
RT in 25 OPG patients; GH deficiency in 10 patients (40%) fol-
lowed by delayed puberty or adrenocorticotropic hormone 
deficiency in 3 patients (10%), and thyroid stimulating hor-
mone deficiency or panhypopituitarism (2%). In a series of 
PBT, Greenberger et al. [25] reported 31% of endocrinopathy 
in pediatric patients with low-grade glioma; GH deficiency and 
hypothyroidism were frequently observed. They also found the 
high risk dosage group ≥40 GyRBE was associated with in-
creased incidence of any endocrine deficiency compared to <40 
GyRBE (at 5-years, 70% vs. 10%). Since the dose to the hypo-
thalamic-pituitary axis more than 40 Gy may be highly associ-
ated with endocrinopathy, neither PBT nor X-ray treatment 
can minimize the dose to the region considering the high dose 
(>50 Gy) required for tumor control. 

Data on neurocognitive or neuropsychological outcomes is 
limited in patients with OPG [40,41]. In 1998, a report from 
Cappelli et al. [12] showed that 34% of 53 patients with OPG 
have encountered intellectual impairments. Papini et al. [41] 
reported that patients with OPG had a moderate risk of neu-
rocognitive impairment related to visual perception and cog-
nitive proficiency. They examined the neuropsychological out-
comes from longitudinal assessments of visual perception, 
general intelligence, and academic achievements in 12 pedi-
atric patients with OPG. 

There are several risk factors contributing to neurocogni-
tive outcomes. Firstly, young age at RT is considered a risk fac-
tor for neurocognitive impairment after RT [12,42]. In addi-
tion, serial measurements of intelligence quotients revealed 
that radiation dose to the left temporal lobe or hippocampus 
was highly related to neurocognitive decline [43,44]. Potential 
benefit of intensity-modulated photon RT or PBT compared 
to traditional 3D-RT in intellectual outcomes may be found 
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and 15-year cumulative incidence of secondary malignancy 
were 1.8% and 3.5%, respectively. Eight among 11 solid sec-
ondary malignancies developed within the intensity-modu-
lated photon RT field, 1 within the intermediate-dose area, 
and only 1 was out-of-field [51]. Solid secondary malignan-
cies included high-grade glioma (n= 3), osteosarcoma (n=3), 
colon cancer (n=2), thyroid cancer (n= 1), presumed sarcoma 
(n=1), and unknown primary (n=1). They found that most 
solid secondary malignancies developed in the high-dose area 
supporting the safety of intensity-modulated photon RT. In 
regard to PBT, scattering foil for field size adjustment could 
produce out-of-field neutron dissemination resulting in sec-
ondary ionizing radiation which could increase second malig-
nancies compared to X-ray [50]. However, Brodin et al. [52] 
found a reduced risk of radiation-induced subsequent neo-
plasm compared to 3D-RT or intensity-modulated photon RT 
based on radio-biologic modeling even when the considering 
neutron effect. Also, Indelicato et al. [53] reported a 10-year cu-
mulative incidence of 3.1% in 1,713 children treated with PBT 
and 1.7% in 1,676 children without germline mutation. They 
observed that all 5 high-grade gliomas (in children without 
genetic syndrome) developed in the high-dose region same as 
the intensity-modulated photon RT series [51]. A retrospec-
tive cohort study of 558 adult patients treated with PBT showed 
slightly reduced incidence of secondary neoplasm compared 
to matched cohort from the Surveillance, Epidemiology, and 
End Results cancer registry treated with X-rays (5.2% vs. 7.5%) 
[54]. Long-term follow-up data on PBT for OPG may help 
physicians to identify the protective effects of PBT compared 
to X-rays (even intensity-modulated photon RT) in the devel-
opment of secondary neoplasms.

CONCLUSION

Although there is a lack of consensus regarding the optimal 
use of RT, the clinical integration of RT, either X-ray or PBT, 
has increased. Long-term tumor control rates following RT 
have shown favorable outcomes. However, RT for OPG is re-

in dosimetric studies for other pediatric brain tumors. Qi et 
al. [45] modeled the effect of temporal lobe dose on intelli-
gence quotient and demonstrated that a reduction of temporal 
lobe dose with 6 Gy in intensity-modulated photon RT com-
pared to 3D-RT may result in an estimated IQ difference of an 
additional 3 points. Furthermore, Park et al. [46] observed that 
PBT had the greatest benefit in saving the temporal lobe and 
hippocampus for suprasellar germ cell tumor compared to in-
tensity-modulated photon RT. Greenberger et al. [25] demon-
strated no significant decline in neurocognitive function in 32 
patients with OPG after PBT. Reduced radiation exposure by 
intensity-modulated photon RT compared to previous 2D or 
3D-RT to the normal brain, especially to the temporal lobe may 
mitigate the previously reported neurocognitive function im-
pairment (Fig. 1). Importantly, PBT may further reduce radi-
ation to normal brain compared to intensity-modulated pho-
ton RT, expecting improved functional outcomes compared 
old series of OPG patients.

Secondary malignancy
There are limited data on secondary malignancies that stem 

from RT in patients with OPG. A recent report found that 10-
year cumulative incidence of secondary was 8% (11 of 89 pa-
tients) with a median interval of 9 years [9]. Considering the 
location and interval between RT and secondary malignancy, 
the authors identified 8 of 11 patients with subsequent cancer 
as true RT-induced malignancies. Several potential mecha-
nisms of second neoplasms could exist, including malignant 
transformation of low-grade glioma, tumor related to NF-1 
mutation, or true RT-effect [47-49]. 

Due to increased beamlets, beam-on time, and monitor units 
of intensity-modulated photon RT resulting in larger volumes 
of normal tissue exposure to low-dose radiation than 2D or 
3D-RT, some previous reports raised concerns of increased 
risk of secondary malignancy [50]. However, long-term (11 
years) follow-up data from a single center with 325 patients 
treated with intensity-modulated photon RT revealed that sol-
id secondary malignancy developed in 11 patients and the 10- 

A CB D

Isodose line
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95%
80%
60%
40%
20%

Fig. 1. Plan comparison according to radiation therapy (RT) modality. RT planning using 2-dimensional photon RT (A), 3-diensional confor-
mal photon RT (B), intensity-modulated photon RT (C), and proton beam RT (D). Proton beam have better dose conformity to target area 
and lower radiation dose distribution to normal brain (e.g., temporal lobe) than photon RT.
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lated to several late toxicities, including psPD, visual distur-
bance, vasculopathy, endocrinopathy, and neurocognitive de-
cline. In this context, high-conformal RT techniques, such as 
intensity-modulated photon RT may minimize these late toxic 
events compared to traditional 2D or 3D-RT. Moreover, PBT 
may reduce the dose to normal structures compared to X-rays 
(2D or 3D-RT, and even intensity-modulated photon RT) ow-
ing to its physical characteristics. Therefore, comparable tu-
mor control outcomes with reduced late toxicities from PBT 
(or intensity-modulated photon RT) could revisit the appli-
cation of timely RT instead of deferring RT for the treatment 
of OPG. 
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