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Increasing chronological age is the greatest risk factor for human diseases. Cellular
senescence (CS), which is characterized by permanent cell-cycle arrest, has recently
emerged as a fundamental mechanism in developing aging-related pathologies. During the
aging process, senescent cell accumulation results in senescence-associated secretory
phenotype (SASP) which plays an essential role in tissue dysfunction. Although discovered
very recently, senotherapeutic drugs have been already involved in clinical studies. This
review gives a summary of the molecular mechanisms of CS and its role particularly in the
development of cardiovascular diseases (CVD) as the leading cause of death. In addition, it
addresses alternative research tools including the nonhuman and human models as well
as computational techniques for the discovery of novel therapies. Finally, senotherapeutic
approaches that are mainly classified as senolytics and senomorphics are discussed.
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INTRODUCTION

Cellular Senescence (CS), defined as irreversible cell-cycle arrest, has become popular in recent years
due to its high association with aging and age-related diseases. Although CS is a defense mechanism
against damage or stress factors, its accumulation during aging has been proposed to cause many age-
related pathologies. CS was first discovered in human diploid cells (fibroblast cells) in the early 1960s
by Hayflick and Moorhead. They observed that fibroblasts reach the maximum number of cell
divisions before they go through irreversible cell cycle arrest (Hayflick and Moorhead, 1961) which
was later named replicative senescence (RS). Although, the cause of CS was stated as telomere
shortening at first (Harley et al., 1990), and that telomerase bypasses the senescence arrest (Bodnar
et al., 1998), senescence may also be triggered by other aging-associated stimuli (López-Otín et al.,
2013).

CS, which is characterized by irreversible cell cycle arrest as a response to different stressors, is
considered as a double-edged sword depending on the cellular and physiological processes. CS may
both have beneficial and harmful effects representing evolutionary antagonistic pleiotropy (Giaimo
and d’Adda di Fagagna, 2012) while CS has beneficial effects on organisms during various
pathological and physiological processes such as wound healing and tumor suppression, it also
has harmful effects on organisms, especially, during the aging process (He and Sharpless, 2017). The
irreversible growth-arrested cells turn into senescent cells that secrete proinflammatory cytokines,
growth factors, and proteases named senescence-associated secretory phenotype (SASP) through
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autocrine/paracrine pathways (Kumari and Jat., 2021). In
paracrine fashion, secretion of large amounts of SASP harms
the neighboring cells, and eventually, causes them to become
senescent cells and increases the SASP secretion (Bozaykut,
2019).

Although CS mechanisms involve complex mechanisms (Karin
and Alon, 2021), recent work suggests removing CS aids to prevent
age-related pathologies. During aging, various scenarios are
possible. CS accumulation may either result from increasing
production of senescent cells with age or arise from decreasing
removal of senescent cells, again with age (Florido et al., 2011;
Kirkland andTchkonia, 2017; Karin andAlon, 2021). Overall, CS is
highly associated with aging which is a progressive process
characterized by the functional decline and dysfunction in cells
and tissues (McHugh and Gil, 2017; Rodrigues et al., 2021) that
ultimately causes various age-related diseases, including
cardiovascular disease (CVD) (Parry and Narita, 2016; Campisi,
2018; Bozaykut, 2019). Recently, to prevent tissue dysfunction and
age-related pathologies, removal of senescent cells or ameliorating
CS phenotype by senotherapeutic drugs has been proposed as a
promising therapeutic approach. Moreover, using omics
technologies and bioinformatic approaches, repurposing of the
drugs could be a promising and rapid approach for the discovery of
new senotherapeutics.

In this review, the current field of CS will be surveyed with a
special emphasis on CVD by summarizing its essential role and
important bottlenecks in the area. In addition, the utilization of
alternative aging models such as long-lived and short-lived
rodents and computational approaches in order to identify the
molecular mechanisms of CS and to develop novel
senotheraupetics will be discussed.

COMMON PATHWAYS OF CELLULAR
SENESCENCE

While CS is an essential cellular response to different stress
factors or developmental signals, it is also one of the primary
causes of aging and aging-related diseases (López-Otín et al.,
2013; Surova and Zhivotovsky, 2013; Galluzzi et al., 2018;
Sapieha and Mallette, 2018; Bozaykut et al., 2020b).
Therefore, understanding the underlying mechanisms of CS
is crucial to offer therapeutic approaches for these diseases.
There are various molecular mechanisms that play a role in the
development of the CS including DNA damage response, cell
cycle arrest, p53/p21WAF1/CIP1 pathway, INK/ARF locus,
p16INK4A/pRB pathway as reviewed below in detail and
summarized in Figure 1.

FIGURE 1 | The causes and different mechanisms involved in cellular senescence. CS is induced by various factors such as oxidative damage, telomere
dysfunction, tumor suppressor inactivation, strong mitogenic signals, epigenetic alterations, mitochondrial dysfunction, oncogene activation, DNA damage, proliferative
exhaustion, metabolic stress, genotoxic stress, and other stress. This induction occurs by different pathways and ends up with stable cell cycle arrest. This figure is
created by BioRender.com.

Frontiers in Aging | www.frontiersin.org June 2022 | Volume 3 | Article 8280582

Inci et al. Cellular Senescence: Tools and Models

http://BioRender.com
https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles


DNA Damage Response
DDR, which is an evolutionarily conserved response to DNA
damage, gets activated by single-strand or double-strand breaks
of DNA. When the cell comes across irreparable DNA damage,
two possible cellular fates are either apoptosis or CS to prevent the
proliferation of the damaged cells. In this regard, DDRmachinery
determines the cell fate based on the extent and duration of the
DNA damage signaling. While short-term DNA damage mainly
leads to apoptosis, long-term mild DNA damage leads to CS
(Petrova et al., 2016).

During the replicative senescence process, the progressive
telomere shortening in human diploid cells causes
unprotected, double-stranded chromosomal free ends and
these uncapped ends are identified by DDR machinery
(d’Adda di Fagagna et al., 2003; Shay and Wright, 2019). On
the other hand, intrinsic stimuli such as hyperproliferation,
telomere attrition, oxidative damage, and extrinsic stimuli such
as chemotherapeutic drugs, γ-irradiation, ultraviolet lead to
persistent DDR signaling to result in irreversible and
irreparable DNA damage and eventually in CS (Di Leonardo
et al., 1994; D’Adda Di Fagagna, 2008; Fumagalli et al., 2012).

Yet, another stressor is oncogene activation named oncogene-
induced senescence (OIS) that causes a hyperproliferative phase.
During the OIS, mitotic signals trigger DNA replication and
cause genomic damage accumulation and consequently, DDR
gets induced. Although OIS is mediated by both DDR and tumor
suppressor mechanisms, DDR is more sensitive and requires a
lower oncogenic load (Evangelou and Ioannidis, 2013; Gorgoulis
et al., 2018). While in RS, DDR depends on the telomeric length.
In OIS, DDR does not depend on telomeric length even though it
is associated with telomeric dysfunction (d’Adda di Fagagna et al.,
2003; Suram et al., 2012). However, it has been proven that both
telomeric and non-telomeric DNA damage have equivalent roles
in triggering senescence (Nakamura et al., 2008). Based on this
information, the relationship between DNA damage and CS is
undeniably strong. Consistently, increased oxygen concentration
just after birth leads to DNA-damage response which is followed
by cell cycle arrest in the cardiomyoctes (Puente et al., 2014) and
the rate of cardiomyocytes turnover has also been shown to
decline with aging (Bergmann et al., 2015). Moreover, recently, it
was suggested that in the failing heart which is accompanied by
DNA damage, deprivation of α-myosin heavy chain (α-MHC)
and elevation of β-MHC leads to inadequate response to
traditional therapies (Katsuumi et al., 2018). Another study
performed in aging mice showed that the loss of α-MHC gene
through DNA damage induces cardiomyocyte apoptosis, heart
failure, cardiac contractile dysfunction, and left ventricular
hypertrophy (Barouch et al., 2006) pointing out the fact that
DNA damage affects both functionality of the cardiac cells and
drug responses in the older people although underlying
mechanisms are still not clearly defined (Jackson et al., 2021).

Cell Cycle Arrest
The cell cycle is highly essential for cellular processes such as
development, proliferation, and viability and one of the main
characteristics of senescent cells is stable cell cycle arrest. When
the dysfunctional cells go down the stable cell cycle arrest which is

a defense mechanism triggered by different stressors, the
proliferation of dysfunctional cells is halted and the cell
cannot continue to divide. Cell cycle arrest occurs in G1 and
G2 phases in senescent cells (Mao et al., 2012; Gire and Dulic
2015; Kumari and Jat, 2021) and the G0 phase in the quiescent
cells (Di Leonardo et al., 1994; Kumari and Jat, 2021). Therefore,
unlike quiescent cells, senescent cells cannot reenter the cell cycle
even in favorable growth conditions because they cannot respond
to mitogenic or growth factor stimulation while quiescent cells
can proliferate when conditions are favorable (Campisi and
d’Adda di Fagagna, 2007; Calcinotto et al., 2019; Gorgoulis
et al., 2019; Mohamad Kamal et al., 2020). In addition, when
considering various G0 states (G0-entry, G0 and G0-alert), it is
important to distinguish them to understand the fate of cells and
it is claimed that it can be identified with the molecular algorithm
by checking Ki67, beta-galactosidase, and pRPS6 activities
(Alessio et al., 2021).

During cell cycle arrest, nutrition sensory pathways, such as
mTOR, stay active in growth arrest (Blagosklonny, 2013)
implying that senescent cells are metabolically active even
when the cycle is stopped. On the other hand, senescent cells
are not apoptotic. Thus, they are not eliminated immediately. It is
suggested that, under the stable activity of mTOR, the cells
undergo stable growth arrest and become senescent, but when
the mTOR activity is inhibited, senescence converted into a
quiescent state retaining proliferative potential (Korotchkina
et al., 2010; Blagosklonny, 2012). Therefore, the activity of the
mTOR pathway is proposed to be an important factor in
distinguishing one cell from another.

In addition, senescent cells are different from terminally
differentiated cells that enter the irreversible cell cycle arrest.
Terminal differentiation is a defined developmental program,
whereas senescence is mostly executed as a cellular stress
response (Baumann, 2016; Hinze and Boucrot, 2018;
Mohamad Kamal et al., 2020). However, senescence may
occur in terminally differentiated cells demonstrating that
senescence is not dependent on an active cell cycle (Jurk et al.,
2012; von Zglinicki et al., 2021). The activation of the p53/
p21WAF1/CIP1 and p16INK4A/RB tumor suppressor pathways
controls the cell cycle exit (Herranz and Gil, 2018;
Kobashigawa et al., 2019; Liu and Wan, 2019) as discussed below.

p53/p21WAF1/CIP1 Pathway
One of the common pathways that play a crucial role in senescent
growth arrest is the p53/p21WAF1/CIP1 that is activated as a
response to DNA damage caused by oxidative stress,
oncogenic stress, and telomere attrition. After DNA damage
occurs, p53 and, hence, p53 tumor suppressor pathway is
activated by DDR signaling to regulate a set of transcription
factors and antiproliferative genes (Olivier et al., 2010;
Kastenhuber and Lowe, 2017). As a result, cells undergo
irreversible growth arrest and become senescent (Lowe et al.,
2004).

Since p53 has many roles within a cell, its regulation is driven
by different factors. One of the most important functions of p53 is
the induction of p21CIP1 transcription during CS progression.
p21CIP1 is a cyclin-dependent kinase inhibitor (CDKi) and its
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inhibitory effects end up with hypophosphorylation of
retinoblastoma protein (pRB) and formation of DREAM complex
that is formed of p107 and p130 RB pocket proteins, resulting in the
cell cycle exit (D’Adda Di Fagagna, 2008; Gire and Dulic, 2015). In
addition to this, p53 signaling inactivation intervenes the initiation of
CS (Shay et al., 1991; Beauséjour et al., 2003; Stewart et al., 2003;
Campisi, 2005). According to several studies, CS may be disrupted
by the inactivation of p53 (Shay et al., 1991; Beauséjour et al., 2003).
The critical point in p53 induction is that; when the stress-induced
senescence is temporary, it can induce the quiescence, and the DNA
repair process becomes active to turn cells back to their usual cycle
(Childs et al., 2015). However, chronic stress may cause long-term
cell cycle arrest by activating p16INK4A, which is a CDK inhibitor
(CDK4 and CDK6) (Sharpless and Depinho, 2006). Although,
p21CIP1 induction is crucial for the initiation of senescence, its
permanent expression is not required for senescent cells wherever
p16INK4A is maintained (Sharpless and Sherr, 2015). On the other
hand, unlike p16INK4A and p53, the upregulation of p21CIP1 is
considered as the driver for developmental senescence (Muñoz-
Espín et al., 2013; Storer et al., 2013).

The role of p53 has been also demonstrated in cardiac diseases
through various studies. As such, p53 expression is observed to be
highly expressed in the heart during cardiomyopathy when
compared to the healthy heart. Furthermore, another study on
murine models with overloaded left ventricular pressure showed
that accumulation of p53 in cardiac cells leads to cardiac
angiogenesis and impaired systolic function (Sano et al., 2007).

p16INK4A/pRB Pathway
p16INK4A/pRB pathway is another important pathway during CS
due to its significant impact on the cell cycle. Asmentioned above,
pRB is one of the tumor suppressor proteins that inhibit cell cycle
progression from preventing excessive cell growth until the cell
becomes ready for division. On the other hand, when pRB is
phosphorylated, the cell cycle can maintain its progression. If
p16INK4A permanently activates pRB in human cells, the cells
undergo irreversible cell cycle arrest and become senescent. Even
if pRB is inactivated, the process is no longer revoked or reversed
(Muñoz-Espín et al., 2013), which suggests that p16INK4a/RB
pathway may induce an alternative way for the irreversible cell
cycle arrest and collaborate with mitogenic signals to generate
reactive oxygen species (ROS) that results in irreversible
cytokinetic block (Takahashi et al., 2007).

The pRB belongs to the protein pocket family which can bind
the functional region of other proteins by their specific pocket
(Münger and Howley, 2002; Korenjak and Brehm, 2005). The
main feature of pRB is its restriction ability in DNA replication to
prevent the progression of the G1 phase to the S phase (Goodrich
et al., 1991). In this regard, the dephosphorylated pRB binds and
inactivates the E2F complexes by forming the RB-E2F complex.
RB-E2F complex has a repressive capacity that eventually avoids
the transcription of genes essential for the progress of the cell
cycle (Wu et al., 1995; Funk et al., 1997; Fischer and Müller,
2017). Furthermore, to enhance the suppression of DNA
synthesis, this repressive complex attracts factors such as
histone deacetylases (HDACs) and histone methyltransferase
SUV39H1 to inhibit transcription of S phase genes (Lai et al.,

1999; Nielsen et al., 2001; Vandel et al., 2001). On the other hand,
the hyperphosphorylation of pRB is linked to the inhibition at the
restriction point. E2F cuts loose from the repressive complex,
promoting the transcription of the S phase genes and the cell cycle
progression (Zhang et al., 2000). In addition, the crosstalk
between the pRB and AKT signaling pathways plays an
important role in the switch of quiescence and senescence by
re-coordinating the overlapping functions of Forkhead
transcription factors such as FOXO3a and FOXM1
(Eijkelenboom and Burgering, 2013; Lam et al., 2013; Imai
et al., 2014). Other than the role of RB-E2F complex in early S
phase, DREAM complex, which consists of p107 and p130 with
dimerization partner, E2F4-5 and a Multivulval class B (MuvB) is
another master regulator of the cell cycle, mainly, of late S-phase
and in G2 phase (Litovchick et al., 2007; Sadasivam et al., 2012).
In addition to E2F binding sites, DREAM complex binds to cell
cycle genes homology region promoter elements. Thus, it is
suggested that it has larger effects and functions than RB for
the control of the cell cycle (Müller et al., 2012; Guiley et al., 2015;
Fischer and Müller, 2017). As such, DREAM dissociates with
E2F/pRB components to bind B-MYB and FOXM1 activators to
regulate the genes related to the cell cycle (Engeland, 2017).

The prominent role of the p16 pathway has been
demonstrated in cardiovascular aging through several studies.
As such, elevated p16 levels were demonstrated in the coronary
arteries of hypertensive rat models (Westhoff et al., 2008; Boe
et al., 2013). Another important study showed that p16INK4a

driven CS leads to alterations in the proinflammatory status of
macrophages, therefore, affecting SASP levels (Cudejko et al.,
2011). Finally, when p16-positive senescent cells were eliminated
in premature aging mice, aging phenotypes were reduced in the
heart, along with other tissues, resulting in the extension of
healthspan (Baker et al., 2016).

INK4/ARF Locus
INK4 family proteins have a crucial role in DNA repair,
apoptosis, and CS (Cánepa et al., 2007). INK4 (short for
INhibitors of CDK4) is a cyclin-dependent kinase inhibitors
(CKIs) family that consists of p16INK4A p15INK4B, p18INK4C,
and p19INK4D. These four members of the INK4 family are
inhibitors of CDK4 and CDK6 (Li et al., 2015) which may
lead to the blocking of cell cycle progression and thus, the cell
cannot go past the G1 restriction point (Ortega et al., 2002).

On the other hand, ARF tumor suppressor proteins are encoded
by the INK4/ARF locus while physically linking to each other. ARF
regulates p53 stability by binding and inhibitingMDM2 (Sharpless,
2005; Kim and Sharpless, 2006), leading to a cross-talk between p53
and pRB pathways (Gil and Peters, 2006). On the other hand, p53
regulates the ARF expression through the negative feedback
mechanisms (Kotake et al., 2011).

CELLULAR SENESCENCE AND
CARDIOVASCULAR AGING

As described above, CS is a cell cycle arrest and it presents
different characteristics that are categorized as beneficial,
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neutral, and detrimental based on the conditions (He and
Sharpless, 2017). The discovery of senescent cells in the
embryos showed that CS also has a role in organogenesis
during development. Although these cells express the common
biomarker of CS, senescence-associated beta-galactosidase (SA-
β-gal), they do not show any DNA damage or senescence-
associated secretory phenotype (SASP) cytokines (Muñoz-
Espín et al., 2013). Unlike adult senescent cells, they employ
p21 (Storer et al., 2013). Furthermore, senescent cells are involved
in wound healing, kidney development, placental development,
and bone growth (Lozano-Torres et al., 2019). However, within
the aging process, the role of senescent cells becomes detrimental
and they are involved in age-related diseases such as
cardiovascular diseases, cancer, neurodegenerative diseases,
pulmonary fibrosis and renal disease. Aging is a biological
process that results from the disruption of balance in systems
or organisms eventually damaging the homeostasis (Parry and
Narita, 2016; Calcinotto et al., 2019). The loss of homeostasis
leads to tissue dysfunction causing many age-related diseases
(Campisi, 2013). As such, aging organisms experience various
chronic diseases and the motivation of research on the biology of
aging is to understand the mechanisms behind aging-related
pathologies to develop therapies against them. Until now, nine
different hallmarks of aging have been determined including the
CS (López-Otín et al., 2013), which promotes the idea that aging
is affected by multiple parameters instead of one single-cause in
the cells (Da Costa et al., 2016). The connection of CS and aging
were firstly proved by the studies of INK-ATTAC mouse models
in which the removal of p16INK4A cells resulted in reducing the
age-related pathologies. These mice studies started a new era for
therapeutic approaches to increase the healthspan of organisms.
(Baker et al., 2011, 2016).

A recent statistical report released by the American Heart
Association (AHA) and National Institutes of Health (NIH)
showed that cardiovascular disease (CVD) has a higher
incidence than other common diseases, even more than the
combination of lung diseases and cancer (Bozaykut et al.,
2020a; Virani et al., 2020; Li et al., 2021). Older people are
prone to develop any kind of CVD (heart failure,
hypertension, stroke, coronary heart disease) and aging has
been proposed to be the main risk (Rodgers et al., 2019).
Recently, targeting CS, as one of the main hallmarks of aging,
has been regarded as a hub for CVD-related aging therapies. It
has been shown that people with Human Progeria syndromes,
Werner syndrome, and Hutchinson-Gilford progeria syndromes
(HGPS), who have a high number of senescent cells even at young
ages, develop atherosclerotic plaque burden which accelerates the
risk for CVD (Hamczyk, Villa-Bellosta, et al., 2018b). Other
studies also have shown that CS is related to arterial diseases
including peripheral artery diseases, aortic aneurysm, coronary
artery disease, cardiac fibrosis, and heart failure (Cafueri et al.,
2012). In addition, heart failure rates increase in the elderly even
without any signs of other risk factors such as hypertension,
diabetes, obesity or atherosclerosis. The biomechanical and
biochemical deterioration of the heart through aging results in
left ventricular (LV) dysfunction and arterial stiffening. Diastolic
LV dysfunction has also been related to chronic heart failure,

which is one of the most observed heart diseases and a
considerable proportion of these patients are older people
(Benjamin et al., 2019). On the other hand, aortic diseases,
such as abdominal aortic aneurysm (AAA) and thoracic aortic
aneurysms, are other age-related diseases and it has been shown
that there is oxidative DNA damage and telomere attrition in
endothelial and vascular smooth muscle cells (VSMCs) of the
patients (Cafueri et al., 2012).

Cardiovascular Cells and Cellular
Senescence
During the CVDs, several cell types that are affected by CS are
VSMCs, endothelial cells, and macrophages as summarized in
Table 1. These cells were shown to have high SA-β-gal levels in
people with age-related diseases or in line with old age. Recent
studies have also demonstrated the effect of premature CS in
atherosclerotic cells (Minamino et al., 2002; Matthews et al., 2006;
Hamczyk et al., 2018a). The relationship of the most prominent
cardiovascular cells and CS is reviewed below.

Endothelial cells (ECs) are the building blocks of the inner
vascular wall, and they are involved in communication with
neighbor cells. These cells are influenced through vascular aging
and the number of senescent ECs increases in the arterial walls
(Bozaykut, 2019). According to a study of coronary artery diseases,
ECs in atherosclerotic plaques are detected with increased SA-β-gal
activity (Minamino et al., 2002). The studies on the molecular
mechanism of EC senescence reported that in aged people the
expression of CS biomarkers (p53, p16INK4A, and p21) are
increased which can be reversed by exercise. More importantly,
EC senescence has been proposed to have an effect on defective
vascular endothelial function in aged people (Rossman et al., 2017).
In addition, another research showed that endothelial progenitor
cells, which are precursors of ECs, are involved in atherosclerosis,
and senescence of these cells increases the rate of atherosclerosis in
the elderly (Yang et al., 2008). However, the complete mechanisms
on how ECs senescence is induced have not been fully understood,
which has remained to be investigated.

Vascular Smooth Muscle Cells (VSMCs) are the major cell
type that composes the majority of arterial walls. They are critical
to maintaining the integrity of blood vessels walls. Besides,
VSMCs are involved in the different stages of the
atherosclerotic process (Basatemur et al., 2019). In addition,
VSMCs play an important role in the development of aortic
aneurysm, and fibrotic neointima formation. (Cafueri et al., 2012;
Bennett et al., 2016; Komaravolu et al., 2019). Notably, these cells
significantly affect atherosclerotic immunity through the artery
tertiary lymphoid organs (ATLOs) formation (Hu et al., 2019).
Although the role of VSMC senescence in CVDs has been shown
in previous studies, there are a few studies on the metabolic
regulation of VSMC senescence. Very recently, a study on the
sirtuin family demonstrated that SIRT6 protein (but not mRNA)
expression is declined in VSMCs in human and mouse
atherosclerotic plaques (Grootaert and Bennett, 2021). On the
other hand, another study showed that SRT1720 protein has an
inhibitory effect on VSMC senescence through the SIRT1
pathway, which was shown by the decrease in SA-β-gal
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activity and in p21, p53, p16 protein expressions (Sung et al.,
2020).

Cardiomyocytes are part of the myocardial tissue affecting
their microenvironment with the secretion of pro-inflammatory
factors, SASPs, exosomes and 30–40% of the heart consists of
cardiomyocytes (Tang et al., 2020). Until recently,
cardiomyocytes in adults have been known as post-mitotic
cells. Nevertheless, recent studies reported that the
proliferative capacities of these cells are protected, yet, their
renewal rate is decreasing with aging (Bergman et al., 2009).
The CS phenotype of cardiomyocytes is represented by DDR,
contractile dysfunction, SASP, mitochondrial defect and ER
stress. However, further studies are required to understand the
role of senescent cardiomyocytes in cardiac aging and in CVD
development (Ock et al., 2016; Tang et al., 2020).

The existence of Cardiac stem cells (CSCs) has been known for
almost 20 years in adult mammalian hearts. Progenitor cells have
little proportion in tissues, but they hold a potential for
differentiating into different cell types in a tissue. CSCs can
differentiate into three different cell lineages which are smooth
muscles, ECs, and myocytes with their self-renewing, clonogenic
and multipotent features (Cianflone et al., 2020). Senescence in
these cells is associated with different diseases such as diabetic
cardiomyopathy, hypertensive cardiomyopathy, myocarditis and
valvular heart diseases (Chimenti et al., 2003).

Immune cells have a role in initiating CVDs through the aging
process. The functions of these cells are altered with the CS which
is also known as immunosenescence (Rodrigues et al., 2021).
Senescent macrophages are one of the pivotal immune cell types
for the formation of CVD. They are involved in early
atherogenesis and are found to accelerate plaque instability in
late phases of the disease (Stoneman et al., 2007). Specifically,
leukocyte senescence has been suggested to play a role in
initiating plaque formation (Calvert et al., 2011). The link
between immunosenescence and CVD is attracting interest

and the use of immune cells is proposed as a promising
therapeutic approach as discussed later in the review.

THE TOOLS OF CELLULAR SENESCENCE
RESEARCH

Biomarkers for Cellular Senescence
Detection and quantification of the senescent cells (especially in
vivo) are challenging (Sharpless and Sherr, 2015) and there is no
single universal marker to investigate senescent cells. Thus, the
combination of several biomarkers is used for the reliable
detection of senescence (Di Micco et al., 2021). Although
detection of senescent cells is complicated, there are main
biomarkers for detecting CS. For instance, physiologically,
senescent cells can be distinguished by their flat and extra
enlarged morphology. Other than their physiology, there are
other biomarkers for the detection of senescent cells in vivo
and in vitro. These biomarkers can be divided into the
following four categories: Enzymatic assays, lipofuscin
accumulation, proliferative capacity, and molecular
biomarkers. On the other hand, the method of choice for the
detection of CS also depends on the cell type, physiological
context, insult, or the type of stressor (Kirschner et al., 2020).

SA-β-gal activity is a histochemical staining technique used for
the detection of accumulated lysosomal enzymes and it is the most
widely used biomarker for CS detection. The enzyme β-GAL has a
specific working pH range at 6.0 which enables the hydrolysis of
X-gal and after the reaction, a deep blue product is released from the
cells (Kuilman et al., 2010). Regrettably, due to its presence in pre-
senescent, quiescent and immortal cells, it is required to be combined
by additional markers such as p21 and p16 expressions (Hall et al.,
2017). In addition, senescence-associated heterochromatin foci
(SaHF) is another marker for the detection of CS. However, they
are mostly found in oncogene-induced senescent cells. Furthermore,

TABLE 1 | Summary of cardiovascular cell senescence pointing out the mechanisms, biomarkers and related diseases.

Cardiac cells Mechanisms Biomarkers Related disease References

Cardiomyocyte Telomere damage,
Mitochondrial dysfunction,
Oxidative stress/ROS

SASP (TGFB2, GDF15, EDN3),
p16, p21, SA-β-gal, MMP9, TAF

Cardiac fibrosis, cardiac hypertrophy,
heart regeneration, myocardial
infarction, cardiomyopathy, arrhythmias

Gude et al., 2018; Childs et al. (2018)

Immune cells Inflammation, ECM Telomere shortening, SA-β-gal,
TNF-α, IL-6

Myocardial infarction, atherosclerosis,
cardiomyocyte hypertrophy

Masso et al. (2015); Ramosa et al.,
2017; He et al. (2020); Childs et al.
(2018)

VSMCs Telomere damage, Oxidative
stress/ROS, other stressors

Prelamin-A, SA-β-gal, p21, p16,
cyclin D1, PDGFRa, TRF2,
miRNA-126, HIF1-α

Atherosclerosis, vascular stiffness,
AAA, neointima formation, artery
calcification, pulmonary hypertension

Alique et al., 2019; Bennett et al.
(2016); Matthews et al. (2006); Childs
et al. (2018)

Cardiac Stem
Cells

INK/ARF pathway,
Epigenetic modifications

SA-β-gal, SASP (PAI1, IL-6,
IL-8), γH2AX, p16

Chronic heart failure, myocardium,
cardiomyopathy

Baker et al. (2016); Lewis and
Buffenstein et al. (2016); Cesselli et al.,
2018; Cianflone et al. (2020); Childs
et al. (2018)

Endothelial Cells Telomere damage,
Mitochondrial dysfunction,
Oxidative stress/ROS, Vascular
inflammation

SASP (IL-6, VEGF, PAI1, MMP1,
MMP3), ICAM-1, TAF, telomere
attrition, miRNA-126, HIF1-α

Atherosclerosis, atrial fibrillation,
heart failure

Jia et al., 2019; Chen et al. (2018);
Childs et al. (2018)
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modified histone γH2Ax could be used to detect DNA damage from
telomere-induced foci (Gire et al., 2014). Another reliable way to
analyze the status of DNA replication is through Ki-67, PCNA, or
[3H] thymidine.

According to a recent systematic and meta-analysis study that
investigates CS variance across the ages and the tissues in humans,
even in the same individual, the organs have different levels of CS
(Tuttle et al., 2020). Thus, it is vital to choose an appropriate
biomarker for effective analysis and the categorization of
biomarkers according to study type, such as in vivo, in vitro, or
ex vivo,was documented in a recently published review (González-
Gualda et al., 2021). Determination of propermarkers for tissues in
age-related diseases is also related to the type of the disease. The
studies on age-related diseases in humans revealed that the most
common markers for the detection of CS in heart diseases are p16,
SA-β-gal, and p53, followed by SASP, p21, and γH2Ax expressions
(Tuttle et al., 2020).

Senescence-Associated Secretory Phenotype
In addition to CS biomarkers discussed above, secretory phenotype
is being used for the identification of CS (Witkiewicz et al., 2011)
since senescent cells secrete chemokines, inflammatory cytokines,
growth factors, and matrix metalloproteinases (MMPs) known as
SASP. During the aging process, SASP is transcriptionally
regulated by CCAAT/enhancer-binding protein β (C/EBP-β)
and nuclear factor kappa-B (NF-κB) depending on the CS
inducer and context (Acosta et al., 2008; Kuilman et al., 2008;
Chien et al., 2011). As a response, interleukin IL-1α (IL-1α) is
produced to enhance C/EBPβ and NF-κB activity and amplify
SASP signaling through IL-6 and IL-8 production, in the early
senescence (Acosta et al., 2008). Moreover, the role of transposable
elements which induced cyclic GMP–AMP synthase linked to
stimulator of interferon genes (cGAS-STING) pathway was also
shown in the activation of SASP (Sedivy et al., 2013; Dou et al.,
2017; Li and Chen, 2018).

The communication of senescent cells occurs through this
complex series of secretion from senescent cells affecting the
nearby cells. Chronic SASP conditions alter the cell environment
and induce age-related diseases during the aging process. The
components of SASP depend on the context of the disease and
might result in distinct outcomes in different cells. Literally,
SASPs are the main reason for the double-sided effect of
senescent cells as they are known to be beneficial and
detrimental (Coppé et al., 2011; Kumari and Jat, 2021).
However, during the aging process, their detrimental effect is
prominent on neighbour and non-senescent cells and these
secretomes are used as the target for senotherapeutic
approaches. Recently, senomorphics, a new class of drugs
suppressing SASP without eliminating senescent cells have
been discovered and will be discussed further.

More recently, these factors have been investigated in the light
of an unbiased quantitative analysis and the findings showed that
SASP might be investigated under the following four categories:
metabolic processes, extracellular matrix/cytoskeleton/cell
junctions, regulators of gene expression, and ox-redox factors
(Özcan et al., 2016). Different SASP factors could be used for
detecting senescent cells in various situations and a recent article

created “SASP Atlas” for solving the complexity of SASP
components with proteomics study which might facilitate
choosing the appropriate biomarkers for senescence according
to different types of tissue (Basisty et al., 2020). The role of SASP
in inflammaging is suggested previously with different types of
inflammatory cytokine secretion. Furthermore, it has been
proposed that inflammaging should be considered as a
hallmark of CVD (Liu et al., 2020). As summarized in
Table 1, different SASP factors are used as biomarkers for CS
in different types of cardiac cells.

Model Organisms to Study Cellular
Senescence
With the increasing popularity of the role of CS on human
diseases, the research has expanded to understand the
underlying mechanisms by using various experimental models.
However, model selection is just as crucial as choosing the proper
biomarker. As shown in Figure 2, CS studies can be performed
with the help of different types of animal models or organisms,
and different experimental and computational approaches.

Nonhuman models are crucial for CS research since it is
possible to set up the experimental design to understand the
complexity of CS and investigate the potential therapies.
However, since main CS research is motivated by the need to
resolve the problems mainly in humans, human studies are
required for the validation of the therapies besides having
ethical considerations. For that reason, 2D cell culture studies
have been widely preferred in which the physiological context is
not satisfactory. More recently, 3D human organoid cultures have
been developed to address these bottlenecks of aging and CS
research. In this section, we discuss well-known organisms as well
as alternative models and approaches to study CS.

SAMP/SAMR Models
The senescence-accelerated mouse (SAM) is established through
phenotypic selection to develop a common genetic pool for AKR/
J mouse strain. There is a total of 12 SAM strains, including
senescence-accelerated mouse resistant (SAMR) and senescence-
accelerated mouse prone (SAMP) substrains (Akiguchi et al.,
2017), each of which exhibits a specific different phenotype of
age-related diseases. Among these, SAMP8, which is
characterized by amyloid-beta deposition and abnormal
hyperphosphorylation of tau-like neurofibrillary tangles
(NFTs) in the hippocampus, a significant decline in learning
and memory, cardiac aging, anxiety, and hearing loss, has been
widely used in CS research. Although these pathologies make
SAMP8 mice suitable for studying Alzheimer’s Disease and other
cognitive disorders (Akiguchi et al., 2017; Okouchi et al., 2019;
Marie et al., 2018), they are also regarded as a model to study the
impacts of aging on cardiovascular health. SAMP8 demonstrates
rapid aging, and it has been shown that the main cause of rapid
aging of SAMP8 mice is the decreased expression and activity of
antioxidant molecules. Furthermore, oxidative stress which is a
characterization of SAMP8 mice, is also a risk factor for aging,
atherosclerosis, and neurodegenerative diseases, as well
(Niedzielska et al., 2016). Since extensive oxidative stress
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causes irreversible DNA damage, ultimately, it is also associated
with CS process.

LMNA Progeroid Mouse Models
LMNA progeroid mouse is a transgenic model to study HGPS
that was generated by an autosomal recessive mutation in the
Lamin A gene. The mutated protein, Lamin A/C (LamA/C),
which is an essential component of the nuclear lamina, plays a
major role in many nuclear functions such as transcription, cell-
cycle progress, DNA repair, DNA replication, and also chromatin
organization (Lopez-Soler et al., 2001; Moir and Spann, 2001;
Prokocimer et al., 2013). Therefore, mutations of Lamin A
protein leads to premature senescence as a consequence of
DNA damage, genomic instability, loss of heterochromatin
and telomere shortening (Foo et al., 2019). As a result, LMNA
mutations cause laminopathies which is the collective group of
rare diseases that can be distinguished in systemic or tissue-
specific forms and generally show premature aging traits
(Camozzi et al., 2014). HGPS, a rare dominant genetic
disorder, which is characterized by accelerated atherosclerosis,
premature aging, skin and adipose tissue atrophy, and bone
resorption (Mounkes and Stewart, 2004), is the most

significant form of systemic laminopathies (HGPS, OMIM
176670).

LMNA progeroid mouse reflects HPGS through lamin A,
lamin C, and progerin protein expression patterns. In HGPS,
vascular calcification is typically observed to lead to calcium-
phosphate deposition (CPD) in different layers of the aortic wall,
and these progeroid mice are useful to understand the
mechanisms of vascular calcification in HPGS. In a study,
Osorio et al., define the molecular mechanism of vascular
calcification in HPGS by analyzing LmnaG609G knock-in mice.
These mice over-express progerin as a result of aberrant splicing
which is a consequence of LMNA c.1827C > T (p.G609G)
mutation (Osorio et al., 2011). Moreover, it has been reported
that there is an increased number of VSMCs and reduced
extracellular pyrophosphate expression capacity of VSMCs in
progeroid heterozygous LmnaG609G/+ mice. In another study,
when intracellular ATP levels and extracellular ATP
accumulation were analyzed in wild-type and LmnaG609G/+

VSMCs, progerin-expressing VSMCs were shown to impair
ATP synthesis and mitochondrial function. Finally, inhibition
of aortic calcification was observed after 9 weeks of
Pyrophosphate treatment in homozygous LmnaG609G/G609G

FIGURE 2 | Tools and Models of Cellular Senescence. CS can be studied by using various techniques such as in vitro cell cultures, nonhuman models such as
usual rodent models (mouse, rat), transgenic mouse models (LMNA progeria mouse, p16-3MR mouse, Burb1 mouse, SAMP/SAMR mouse), special aging models
(naked mole-rat, blind mole-rat), 3D organoids, microfluidic chips and bioinformatic applications This figure is created by BioRender.com.
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mice (Villa-Bellosta et al., 2013). Collectively, this transgenic
model carries major symptoms of HGPS such as skeletal
anomalies, impaired somatic growth, shortened lifespan, and
cardiovascular alterations, and therefore, is one of the suitable
models to study CS-induced aging pathologies.

BubR1 Progeroid Mice
BubR1 progeroid mouse is another transgenic mouse model to
study the network of CS and aging. The budding uninhibited by
benzimidazole related 1 (BubR1) is a crucial protein that plays a
key role in mitotic spindle assembly checkpoint. Since its major
role is to prevent chromosomes from unequal separation, it helps
to maintain chromosomal stability and therefore, BubR1 has
direct involvement with CS (Yu, 2002). In addition, alterations
in BubR1 expression have been also observed in malignant and
premalignant lesions. Studies showed that decreased BubR1
expression causes CS through upregulation of the cell cycle
inhibitor p16INK4A (Baker et al., 2004, 2008, 2011; Matsumoto
et al., 2007; Kyuragi et al., 2015). However, knockout (BubR1−/−)
mice did not survive. For that reason, BubR1 mice that have
hypomorphic alleles (BubR1h/h) and express 10% of normal
BubR1 levels were produced for research use (Wijshake et al.,
2012).

BubR1 mutant mice exhibit various progeroid (resembling
premature aging) phenotypes. In addition, natural aging of
wild-type mice is also marked by reduced BubR1 expression,
further suggesting that this protein may be a regulator of normal
aging process (Baker et al., 2004). Moreover, an increase in
senescent hepatocytes and SASP is observed in tissues of BubR1-
deficient mice. In a study of mice lacking BubR1 with various
senescence-related phenotypes, elevated SASP factors and
accumulation of p16INK4A+ senescent cells were also observed
in adipose and muscle tissues (Baker et al., 2004; Matsumoto
et al., 2007; Baker et al., 2008; Baker et al., 2011; Kyuragi et al.,
2015).

p16-3MR
p16-3MR is a transgenic mouse model that was generated by
J. Campisi’s group in 2014. This reporter mouse has three
significant features that enable the selective detection,
isolation, and depletion of senescent cells (Demaria et al.,
2014). Due to the increase of p16INK4A+ expression during CS,
p16INK4A+ has been used as a biomarker to identify senescent cells
both in vitro and in vivo studies. Therefore, this model was
generated as a trimodal reporter combined with the p16INK4A+

gene. Under the control of the p16INK4A+ promoter, it contains
functional domains of a synthetic Renilla luciferase (LUC) to
permit the detection of 3MR-expressing cells by luminescence
both in vitro and in vivo; monomeric red fluorescent protein
(mRFP) to permit the isolation of senescent cells from tissues, and
lastly; truncated herpes simplex virus 1 (HSV-1) thymidine
kinase (HSV-TK) to permit selective elimination of senescent
cells (Demaria et al., 2014). This elimination occurs by the
combinational use of HSV-TK with ganciclovir (GVC) that
acts as a toxic DNA chain terminator in senescent cells,
breaking down the mitochondrial DNA and, hence, causing
apoptosis (Laberge et al., 2013).

The clearance of senescent cells has been shown to delay or
reduce aging phenotypes through p16-3MR model since it has a
mechanism that selectively and efficiently targets p16INK4A+

senescent cells such as endothelial-like cells, foamy VSMC-like
cells, and foamy macrophage-like cells by GCV administration.
p16INK4A+ senescent cells are known to be uniformly deleterious
throughout atherogenesis. It has been shown that the elimination
of these cells either via pharmacologic or transgenic approaches
inhibits disease-related detrimental pathologies such as fibrous
cap thinning and elastic fiber degeneration and reverses
atherosclerosis (Childs et al., 2016). Collectively, these studies
have shown that p16-3MR is an excellent model to study the
inducible depletion of the p16INK4A+ senescent cells, and
therefore, CS-related diseases such as CVDs.

Special Aging Models: Naked Mole Rat and
Blind Mole Rat
Most of the rodents are known to have a short lifespan, however,
there are superior species that evolved longer lifespans. Among
these, naked mole-rat (NMR) and blind mole rat (BMR) are the
most notable subterranean species and their extraordinary nature
makes them important model organisms for the biology of aging
research. One of the main differences between NMR and BMR is
their social hierarchy. NMRs are eusocial animals living in
communities with one queen that reproduce the rest of the
community whereas BMRs are solitary and aggressive. NMRs
and BMRs maximum lifespans are 32 and 21 years, respectively.
In addition their longer lifespan, they have also evolved anti-
cancer resistance, hypoxia tolerance, and many adaptation
strategies for extreme conditions, as well. Therefore,
understanding the mechanisms underlying the extreme
adaptations of these special rodents may contribute to novel
therapies for human healthspan (Azpurua and Seluanov, 2012).

Naked Mole Rat
NMR is a eusocial species endemic to the deserts of East Africa,
with an extraordinary lifespan of more than 30 years (Edrey et al.,
2011; Lewis and Buffenstein, 2016; Bozaykut, 2021). NMR
lifespan studies based on more than three thousand data by
Kaplan-Meier analyzes showed no significant increase in age-
related mortality when compared to other mammals (Kirkwood,
2015) pointing out NMR as an ageless organism (Ruby et al.,
2018).

In NMR, cellular senescence is evolved as a defense
mechanism against tumor formation by restricting the
proliferation of damaged or premalignant cells. Also, it has
been linked to the aging process and age-related pathologies.
On the other hand, while being longest-lived rodent, NMR has
resistance to various age-related diseases (Tacutu et al., 2011;
Yanai and Fraifeld, 2018). Interestingly, NMRs have been shown
to undergo the following three different types of CS that are DNA
damage-induced, oncogene-induced, and developmental CS
(Zhao et al., 2021) although they do not show age-related
phenotypes until the very late stages of their lives (Buffenstein,
2008). In addition, aged NMRs also do not show deterioration in
cardiovascular function, muscle structure or function, bone
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quality, cognitive functions, or any age-related pathologies (Pinto
et al., 2010; Edrey et al., 2011; Grimes et al., 2014; Stoll et al.,
2016). Surprisingly, in a study that compared young and old
individuals, higher cytosolic and mitochondrial ROS were found
even in younger individuals (Labinskyy et al., 2006). In contrast,
older individuals resist oxidative stress (Andziak and Buffenstein,
2006) and the lack of oxidative stress activation during aging
avoids the perturbation of mitochondrial function, and NMRs
escape from growth arrest.

It has been reported that the main reason behind cancer
resistance is early contact inhibition (ECI), which is
considered as the main barrier to prevent the overgrowth of
the cells (Seluanov et al., 2009). Furthermore, while hypoxia
tolerance is very low in the majority of mammals (Dzal et al.,
2015), NMRs can survive even in extreme hypoxic and anoxic
conditions. Relatively, NMR’s have been shown to develop special
metabolic adaptations under anoxic conditions in which they use
fructose as a fuel of glycolytic metabolism (Park et al., 2017).

In addition to metabolic and epigenetic adaptations in NMR,
Faulkes et al. defined the cardiac metabolic profile and
biochemical alterations. In addition, according to the previous
metabolic profiling reports (Park et al., 2017), NMRs were shown
to have an increased glycolysis, lactate, and glutathione rate which
suggests the increased resistance to oxidative stress. Furthermore,
succinate/fumarate ratio was also demonsrated (Faulkes et al.,
2019). Therefore, a variety of metabolic adaptations observed in
the NMR heart could be responsible to increase the survival
ability and protecting NMRs from age-related CVD.

It has been observed that there is a high level of lipid
peroxidation in the heart tissue of NMRs thus, it can prevent
the progression to fatal cardiac disease (Grimes et al., 2012). In
addition to this feature, the conserved cardiovascular function
(Grimes et al., 2014) which is not deteriorated by age makes this
organism a perfect candidate to study CS and age-related
cardiovascular pathologies.

Blind Mole Rat
Similar to NMR, BMR is an underground rodent that is highly
resistant to hypoxia and cancer, with a reported maximum
lifespan of 21 years (Avivi et al., 2005; Shams et al., 2005;
Edrey et al., 2012; Gorbunova et al., 2012; Schmidt et al.,
2017). Furthermore, while tumor formation can easily be
induced in mice and rats, BMRs are remarkably resistant to
exogenous carcinogens, and in 40 years of observation, not a
single incidence of spontaneous cancer was observed (Gorbunova
et al., 2012; Manov et al., 2013). Several studies on the superior
cancer resistance of BMRs demonstrated that BMR cells exhibit
uniform, vigorous proliferation and are able to achieve high-
density assembly without ECI. Instead of ECI, BMR cells pass
through a relatively small number of population doublings while
proinflammatory IFN-β is released as a response that is driven by
p53/RB pathway. Followingly, cells die because of the massive
necrosis within 3 days, named as concerted cell death
(Gorbunova et al., 2012).

Moreover, a recent study showed that replicative senescence in
BMR fibroblasts was manifested by the increased activity of SA-β-
gal and overexpression of p16, p21, and p53 mRNA expressions

(Odeh et al., 2020). Suprisingly, in senescent BMR fibroblasts,
SASP, as one of the important features of CS, was found to be
undetectable or decreased unlike senescent human and mouse
fibroblasts (Odeh et al., 2020). The study proposed that, the DNA
damage required for the activation of SASP in BMR senescent
cells was not sufficient, connecting with the data on the increased
DNA repair capacity of BMRs (Domankevich et al., 2018). The
same study also suggested that the increased p65 phosphorylation
was also not enough to activate NF-κB pathway which is accepted
as one of the main SASP regulator (Odeh et al., 2020). In addition,
a very recent study interestingly reported the activation of
retrotransposable elements (RTEs) that in turn induces
cGAS–STING pathway. As cGAS–STING pathway is
connected to SASP as explained above, the role of cGAS-
STING pathway on SASP status of BMR during aging remains
as an important question to be resolved (Zhao et al., 2018).

Although these data suggest that NMR and BMR, two special
aging models, are likely to evolve different adaptations during the
aging process, further investigations in order to understand these
adaptations are needed to develop alternative ways to treat CS-
related pathologies.

Cell and Tissue Culture Studies
Since the motivation to study the biology of aging is the need to
resolve human age-related pathologies, human models are
emerging. By using in vitro 2D cell culture methods, it is
possible to induce CS and therefore, observe CS progress in
various cell types such as human primary dermal fibroblasts
(Galvis et al., 2019), human fetal fibroblasts (Hayflick and
Moorhead, 1961), human primary bone marrow mesenchymal
stromal cells (BM-MSCs) (Antonioli et al., 2019) and IMR90 (Xu
et al., 2020). However, due to its highly heterogeneous phenotype
and complexity of human aging, 2D cell cultures can not fully
meet the biology of human aging. Model systems demonstrating
the features of environmental interactions, stochastic and
genetic-epigenetic variables such 3D organoids or microfluid
chips have been recently developed to solve these challenges of
human aging studies as described below (Cevenini et al., 2008).

3D Organoid Cultures
Specifically, studying human CS is challenging as the number of
senescent cells in an organism is very few to observe, in addition
to the long aging process of humans. These challenges lead
researchers to study senescent cells in vitro (González-Gualda
et al., 2021) however, as discussed above, 2D cell cultures do not
reflect the true representation of human aging. Very recently,
researchers have been focused on more advanced methods to
study senescence and one of the most promising techniques to
study CS is proposed as 3D organoid cultures (Torrens-Mas et al.,
2021). Organoid systems are simplified organs developed to
model many human tissues and diseases (Hu et al., 2018),
reconstructing physiological 3D tissue structure and cellular
composition in vitro (Simian and Bissell, 2017). Organoids can
be derived from primary cells and tissues or from sources such as
pluripotent stem cells (PSCs) (Barkauskas et al., 2017). On the
other hand, a recent study suggested intestinal epithelial
organoids are appropriate for aging studies as shown by the
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SA-β-gal accumulation, the decrease in DNA methyltransferase
expression, and the increase in p21 expression in organoids of
aged mice (Uchida et al., 2019).

The use of organoids in aging studies was shown in the
experimental setup of intestinal organoids from young and old
samples. Epigenetic changes resulting in stem cell dysfunction
and the reduction in Wnt signaling explain the reduced organoid
generation efficiency for aged mice and humans when compared
to younger individuals (Mihaylova et al., 2018; Pentinmikko et al.,
2019; Uchida et al., 2019; He et al., 2020). In addition, aged
organoids showed decreased DNA methyltransferases as well as
increased CS markers including SA-β-gal and p21 and p16
expressions (Christoph et al., 2021). Furthermore, one of the
well-described longevity strategies is the dietary intervention has
been also validated in a recent study. The study demonstrated that
24-h fasting resulted in enhanced organoid formation and self-
renewal potential in aged mice (Mihaylova et al., 2018). In
addition, improved organoid formation efficiency has been
also demonstrated in calorie-restricted mice that are explained
by the alternations in mTORC and SIRT1 signaling both of which
are the essential pathways in aging (Yilmaz et al., 2012; Igarashi
and Guarente., 2016; Igarashi et al., 2019).

Skin aging studies mainly rely on the in vitro cell cultures in
which CS can be induced or more recently on the skin equivalents
of 3D culture of fibroblasts and keratinocytes isolated from aged
donors. These 3D models have been shown to successfully
represent many features of skin aging (Diekmann et al., 2016).
As such, p16 levels were shown to vary significantly in young and
old-derived skin equivalents and p16 was suggested to drive other
changes related to skin aging (Adamus et al., 2014). Furthermore,
skin equivalents were also used to test the effect of fat-derived
stem cells on CS and it was shown to delay the expression of
senescence markers (Odile Damour, 2014).

Another 3D organoid model has been developed by cortical
neurons that are differentiated from human iPSC were shown to
represent typical features of senescent cells, such as increased SA-
β-gal activity, p16/p21 expressions, and inflammatory cytokines
(Shaker et al., 2021). This senescent phenotype was also
accompanied by the significant downregulation of Klotho, a
type I transmembrane protein with anti-aging properties
(Kuro-o., 2011; Massó et al., 2015; Shaker et al., 2021).

Since organoids have the ability to histologically recapitulate
human tissues in vivo, this technology holds the potential to test
potential longevity drugs that target the hallmarks of aging
including CS, while paving the way to personalized
interventions. However, organoid cultures also lack some
physiological features of the organisms such as vascularization
and further developments are needed to better represent the
physiology of human aging (Torrens-Mas et al., 2021).

Microfluidic Chips
Since 2D culture studies are restricted due to the lack of
environmental factors, microfluidics is yet another emerging
technology for the manipulation of the environment at the
microscale level. These systems have the ability to copy the
environment of organs, vessels, or tissues through various
regulations (Wu et al., 2020). This novel technique has been

recently initiated to study senescent cells and 3D filter senescence
chips were developed to isolate and to remove senescent cells
from biofluidics which enables low cell damage while filtrating
senescent cells (Chen et al., 2018). In a recent study, an in vitro 3D
model which is called “dermis-on-a-chip” that mimics the blood
vessels with skin fibroblasts was developed. This vessel is
embedded in the chip along with collagen-type-1 and
senescent fibroblasts were applied to the chip for the
observation of CS effect in the microchip environment. This
study provided evidence on how to optimize senescent cell
concentration in the experimental setup while enabling
observing the role of CS (Pauty et al., 2021).

Another microfluidic study displayed a tube-free microfluidic
platform for VSMC culture where extracellular matrix coating,
VSMC seeding, culture, and immunostaining can be performed
(Wei et al., 2014). In this approach, VSMCs are seeded into
microfluidic devices by even distribution. In comparison to bare
glass surfaces, VSMC proliferation and phenotype variations
caused by extracellular matrix coated substrates were explored
in time sequence. Furthermore, developed a progeria-on-a-chip
model to study HGPS which is driven by vascular aging. This
biomimetic microfluidic model was designed with VSMCs and
the authors showed the effect of biomechanical strain by
comparing the SMCs from healthy and HGPS donors. The
model revealed a new strained-derived mechanism with
in vitro studies (Ribas et al., 2017). Overall, newly enhanced
techniques on CS-related studies have had contributions to
diagnostics and drug applications on CVD and other age-
related pathologies.

Bioinformatic Approaches
After the discovery of senescent cells, scientists have put an
enormous effort to identify universal markers for the
characterization of the CS state. One of the reasons that make
it difficult to identify such markers, is the high heterogeneity and
complexity of the senescence phenotype. Because of this complex
feature of CS, detecting senescence is only possible by considering
the combination of multiple biomarkers within the same sample
(Sharpless and Sherr, 2015). However, during the identification of
CS and testing the potential treatments, it is important to have not
only highly sensitive biomarkers but also cost-effective
techniques are needed. Since bioinformatic studies provide a
significant reduction in cost and time, it has become an
important tool of science, making it possible to observe the
development of senescence at the single-cell level (Wiley et al.,
2017). With the help of computational approaches and high-
throughput techniques such as proteomics, genomics,
transcriptomics, metabolomics, it is possible to observe the
development of CS through common biomarkers and SASP
phenotypes, and to design therapeutic targets for
senotherapeuti_c approaches accordingly (Hernandez-Segura
et al., 2018).

On the other hand, with the help of omics technologies, it is
also possible to propose new drug candidates such as by
repurposing drugs that already exist. Besides the discovery of
novel senotherapeutics, drug repurposing provides faster
progress, fewer cost, and low attrition rates than the
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traditional drug discoveries (Pushpakom et al., 2019).
Computational technologies offer a great number of platforms
such as databases, tools, and servers to identify candidates of
repurposing drugs by fishing genes and specific targets while
investigating the presence of the interactions with a target of
known drugs (Nabirotchkin et al., 2020).

STRATEGIES TARGETING CELLULAR
SENESCENCE: SENOTHERAPEUTICS

Senescent cell accumulation causes various consequences leading
to age-related pathologies. Ultimately, prevention of CS or
clearance of senescent cells may be a promising therapeutic
approach for age-related diseases. Senotherapeutics is the
common name given to the class of drugs that target
senescence-associated phenotypes and/or senescent cells to
prevent age-related diseases. Senotherapeutics can be classified
into two diverse groups named senolytics and senomorphics each
of which modulates CS in different ways (Kim and Kim, 2019).
Senomorphics mainly block the senescence-associated
phenotypes to prevent/delay CS state without affecting the
total number of senescent cells. On the other hand, senolytics
aim to selectively kill senescent cells by inducing cell death and
reducing the total number of senescent cells (Si and Liu, 2014;
Kim and Kim, 2019). Besides senomorphics and senolytics,
preventing senescence formation before they accumulate and
using immune cells for the removal of senescent cells have
also been proposed as non-pharmacological therapeutic
approaches (Amaya-Montoya et al., 2020).

Senolytics
The most common feature of senescent cells is their resistance to
apoptosis and they avoid cell death through the expression of
prosurvival proteins. The discovery of the senolytic drugs was
accomplished by showing that inhibitors of these prosurvival
proteins, such as redesigned cancer chemotherapeutics, can also
kill senescent cells (Guerrero et al., 2019). Until now, several
classes of senolytics have been discovered that include Bcl-2
family inhibitors, p53 binding inhibitors, kinase inhibitors,
heat shock protein 90 inhibitors, histone deacetylase inhibitors
and natural compounds (Niedernhofer and Robbins, 2018).

The first senolytic drugs were designed on the hypothesis that
senescent cells are more susceptible to the inhibition of survival
networks than their normal counterparts. This hypothesis led to
the discovery of dasatinib (D), a multityrosine kinase inhibitor,
and quercetin (Q), a flavonol, that improved cardiac function
(Zhu et al., 2015). Regardingly, it was shown that the combination
of D + Q resulted in the removal of senescent cells while reducing
vasomotor dysfunction in old mice in addition to decreasing
aortic calcification (Roos et al., 2016). According to another
study, D + Q combination decreased the senescent cell burden
in aged Ercc1−/Δ-progeroid mice which was accompanied by the
healthspan extension and the reduction of age-related pathologies
(Ogrodnik et al., 2017). This combinational therapy also reduced
senescent cell load in aged, irradiated, and progeroid mice, while
improving cardiovascular and physical function (Xu et al., 2018).

B-cell lymphoma 2 (BCL-2) family inhibitors have been
demonstrated to have the capacity to remove senescent cells
by blocking prosurvival pathways as such, ABT737 inhibits the
interaction of antiapoptotic proteins with proapoptotic proteins
which consequently leads the senescent cells to apoptosis
(Ovadya and Krizhanovsky 2018). Navitoclax (ABT263),
which is the orally bioavailable analog of ABT737, is another
frequently studied potential senolytic that has been shown to
improve a wide range of CS pathologies in vivo (Van Deursen.,
2019). Navitoclax appeared to be effective against human
umbilical vein epithelial cells (HUVECs) and IMR90 human
lung fibroblasts, although it was not effective for primary
preadipocytes. Navitoclax targets BCL-2, BCL-xL, MCL-1, and
its activity is closely related to the differential expression levels of
these targets in various types of senescent cells (Kang, 2019). In
addition, Navitoclax removes the senescent cells during
atherogenesis and, therefore, has the potential to address age-
related CVD pathologies by the prevention of newly developing
lesions (Childs et al., 2018).

p53 is another key component of CS and p53/p21 axis has the
capacity for the development of novel senolytics. As such, a
peptide that inhibits the interaction of p53 with FOXO4, was
shown to release p53 and ultimately, induce apoptosis of
senescent cells in old mice (Baar et al., 2017). HSP90
inhibitors are yet defined as another class of senolytics. Studies
on Ercc1 −/Δ mice, a mouse model of human progeroid
syndrome showed that the treatment of HSP90 inhibitor, 17-
DMAG, prolonged the healthspan of these mice by delaying the
onset of several age-related symptoms and reducing p16INK4A

expression (Fuhrmann-Stroissnigg et al., 2017).
First-in-human clinical trials with senolytic drugs were also

published in 2019 with patients diagnosed with idiopathic
pulmonary fibrosis (IPF) which is typically characterized by
CS and a shorter lifespan. The results of the clinical trials
showed that the physical performance of the patients was
increased after 3 weeks of treatment with (D + Q) (Justice
et al., 2019; Ellison-Hughes, 2020) pointing the significant
potential of senolytics to target age-related CVDs.

Senomorphics
Another strategy to therapeutically target senescent cells is to
reduce their disease-causing phenotype, termed as senomorphics
(Fuhrmann-Stroissnigg et al., 2017), also known as senostatics
(Kang, 2019). The principle of senomorphics is to alter their
ability to maintain a stable growth arrest or to disrupt the
essential features of senescence, mainly SASP production and
secretion while keeping cells alive. This approach has the capacity
to interfere with the proinflammatory nature of senescent cells
and potentially avoid the main pathologies of aging and aging-
related disease (Herranz et al., 2015).

Senomorphics are suggested to modulate the senescent cells,
senescence-associated phenotypes, and senescence-related signal
pathways without inducing apoptosis of senescent cells.
Telomerase activators (Liu et al., 2017), mTOR inhibitors
(Lamming et al., 2013), sirtuin activators (Hubbard and
Sinclair, 2014), antioxidants (Si and Liu, 2014), anti-
inflammatory agents that target senoinflammation or
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inflammaging (Soto-Gamez and Demaria, 2017), proteasome
activators (Kim and Kim, 2019), and autophagy activators
(Nakamura and Yoshimori, 2018) have been proposed as
candidate senomorphics. Furthermore, simvastatin which is a
drug that belongs to the class of statins and it has been mainly
used to prevent increased cholesterol levels (Taylor et al., 2013).
However, simvastatin was also shown to intercept SASP in
senescent fibroblasts and cell cycle growth arrest in endothelial
progenitor cells (Assmus et al., 2003; Liu et al., 2015).

Immune Surveillance
Immune therapy is yet another approach to clear senescent cells, by
increasing their capacity for targeting senescent cells. Different
immune cell-based therapeutic approaches are used to treat
diseases and these approaches might be enhanced to target
senescent cells (Moutsatsou et al., 2019). As such, chimeric
antigen receptor (CAR) T cell therapy is a novel approach that
has been used for treating diseases such as cancer. These cells are
genetically modified with synthetic antigens to target specific cells
with reconstruction (Yu et al., 2017). Very recently, a cell-surface
protein which is the urokinase-type plasminogen activator receptor
(uPAR) was observed in senescent cells with high induction. This
revolutionary study also showed that CART cells, that specifically
were designed to target uPAR proteins, eliminate the senescent
cells both in vitro and in vivo studies (Amor et al., 2020).

Moreover, natural killer (NK) cells have the capability to target
senescent cells and the modification of NK cells, as in CART cells,
is a recent technique (Xie et al., 2020). Other immune cells have
also various roles in CS and these cells also have the potential to
develop novel senotherapeutic approaches as explained in detail
by Prata et al. (Prata et al., 2018). Currently, different types of
immune therapies are being developed, and converting these
immune cells into senotherapeutics is a new and promising
research area that may pave the way to cure CS-related diseases.

Pre-Senescence Therapy: Prevention of
Senescence
Another different therapeutic approach for CS-related diseases is
to prevent senescence accumulation before cells enter CS state
while extending the lifespan of cells. Several studies showed that
caloric restriction has a positive effect on lifespan in various
models (Mendelsohn and Larrick, 2018). More particularly,
calorie-restricted mice were shown to have lower telomere-
associated DNA damage foci (TAF) in hepatocyte cells
(Ogrodnik et al., 2017). Caloric restriction also elevated β-HB,
a type of ketone body, which resulted in the reduced aging-related
neurodegeneration (Paoli et al., 2014) and a recent study also
reported that inducing cellular quiescence with β-HB has an
inhibitory effect on replicative senescence and stress-induced
premature senescence (Han et al., 2018). Another research
investigated the effect of exercise and diet on senescent cells
and showed that fast-food diet led to the increased expression of
senescence markers (SASP, SA-β-gal, p16 and EGFP) in the
adipose tissue of mice. Interestingly, expression of SASP
factors was inhibited after fast-food fed mice performed
exercise (Schafer et al., 2016). Taken together, these findings

highlight new approaches and potential treatments for CS-related
diseases which is to prevent the senescence accumulation before
they enter senescence. Indeed, the possibility of senotherapies
becoming clinical drugs in real life might have challenges in
efficacy and for a maximised effect, treatments should be
considered either in a proactive manner or in the very early stages.

CLINICAL PERSPECTIVES AND
CONCLUSION

Even though several molecular mechanisms of CS have been
elucidated, other possible pathways may contribute to the
development of CS during aging. Although there have been
many studies focused on CS biology and its mechanisms of
action, the lack of a universal marker for the detection of CS is
still an important challenge due to the complexity of the process.
Therefore, future studies are expected to lead to the discovery of
novel pathways pointing out particular biomarkers based on the
diseases or tissue types, instead of focusing on one universal marker.

Most of the resources, now, also have shown that not all the
model systems are exactly suitable to study CS in various
conditions, disease states and cell/tissue types. For that reason,
it is suggested that, instead of choosing one single model, the
combination of the results from various models would provide a
better understanding of this complex phenomena (Barros et al.,
2021). While there are several studies on alternative aging models
such as NMR and BMR, there is no sufficient data to fully
understand how these unique species adapt CS mechanisms to
achieve healthy aging. It should be noted that new perspectives
are required to go beyond the current CS knowledge and further
studies with long-lived species may pave the way for humans to
switch to their longevity status.

For decades, CS studies have been conducted by in vitro cell
culture systems or nonhumanmodels. However, within the current
scientific innovations, now, researchers are focusing on more
advanced and reliable techniques for humans. Of them, 3D
patient-derived organoid studies have recently gained interest in
aging and age-related diseases by their potential to change the
dependence on non-human model systems (Uchida et al., 2019).
This technique might solve two of the major bottlenecks of aging,
which are the discovery of new biomarkers of human aging and the
translation of preclinical studies to humans. Furthermore, recent
rapid progress in computational techniques will aid to improve the
efficiency of the senotherapeutic approaches (Regnault et al., 2021)
that would fit better to human pathologies and will enhance the
possibility of successful human clinicals.

Lastly, senotherapeutic approaches have been used in the
treatment of various age-related diseases including CVD in the
last couple of years (Anderson et al., 2019; Walaszczyk et al., 2019)
and newmethods are in the process (Balistreri et al., 2021). Although
many mechanism-based approaches for targeting senescent cells
have been validated, their side effects are likely to limit therapeutic
use. Besides, the long effect of killing senescent cells in humans
stands a big question mark. That’s why, interest in different
therapeutic methods, including immune surveillance and
senomorphics has been raised. Successful translation of preclinical

Frontiers in Aging | www.frontiersin.org June 2022 | Volume 3 | Article 82805813

Inci et al. Cellular Senescence: Tools and Models

https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles


studies with the help of alternative models and techniques is
emerging for the novel therapeutic approaches and may facilitate
the way to the extension of healthspan and lifespan in humans.
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