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Traumatic brain injury (TBI) from penetrating or closed forces to the cranium can result
in a range of forms of neural damage, which culminate in mortality or impart mild to
significant neurological disability. In this regard, diffuse axonal injury (DAI) is a major
neuronal pathophenotype of TBI and is associated with a complex set of cytoskeletal
changes. The neurofilament triplet proteins are key structural cytoskeletal elements, which
may also be important contributors to the tensile strength of axons. This has significant
implications with respect to how axons may respond to TBI. It is not known, however,
whether neurofilament compaction and the cytoskeletal changes that evolve following
axonal injury represent a component of a protective mechanism following damage, or
whether they serve to augment degeneration and progression to secondary axotomy.
Here we review the structure and role of neurofilament proteins in normal neuronal
function. We also discuss the processes that characterize DAI and the resultant alterations
in neurofilaments, highlighting potential clues to a possible protective or degenerative
influence of specific neurofilament alterations within injured neurons. The potential utility
of neurofilament assays as biomarkers for axonal injury is also discussed. Insights into
the complex alterations in neurofilaments will contribute to future efforts in developing
therapeutic strategies to prevent, ameliorate or reverse neuronal degeneration in the
central nervous system (CNS) following traumatic injury.
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INTRODUCTION
Diffuse axonal injury (DAI), regarded as an integral process
in all grades of traumatic brain injury (TBI), results typically
from head rotational acceleration/deceleration, as well as the
propagation of force through the brain following impact (Adams
et al., 1989; Browne et al., 2011; Gupta and Przekwas, 2013).
It is characterized by two distinct types of axonal pathology:
swellings or varicosities along the length of axons, and the pres-
ence of large terminal bulbs (Chen et al., 1999; Smith et al.,
2003; Johnson et al., 2013). Progressive, post-traumatic swelling
of these structures leads to axonal disconnection (Povlishock
and Christman, 1995). These swellings contain neurofilament
accumulations (Okonkwo et al., 1998; Huh et al., 2002; Marmarou
and Povlishock, 2006; DiLeonardi et al., 2009), but the role
neurofilaments play in the development and progression of dam-
age is yet to be elucidated. Uniaxial tension is associated with
the development of varicosities in the long white matter tracts,
whereas sudden shear forces have been linked with the develop-
ment of axonal bulbs at gray-white matter interfaces, with relative
preservation of the proximal tracts (Chen et al., 1999; Smith
et al., 2000). Diffuse axonal injury can be diagnosed histologi-
cally using immunohistochemical labeling for amyloid precursor

protein (APP), which accumulates rapidly in axonal swellings and
bulbs post-injury, likely indicative of impaired axonal transport
(Suehiro and Povlishock, 2001; Smith et al., 2003). As diagnosis
of DAI in humans can only currently be made through post-
mortem investigations, there is growing interest in correlating
diffusion tensor imaging with clinical presentations as a novel
approach to identifying severity of axonal damage (Bazarian et al.,
2007), however this area remains controversial (Ilvesmäki et al.,
2014).

Although “diffuse” implies that it is widespread throughout
the central nervous system (CNS), DAI is better described as
lesions in multiple, yet common, loci throughout the white matter
tracts (Smith and Meaney, 2000; Meythaler et al., 2001; Maas
et al., 2008; Johnson et al., 2013), specifically the corpus callosum
and within the cerebral hemispheres and brainstem (Adams et al.,
1989). Rotational injuries in swine (Smith et al., 2000) and TBI
in humans (Skandsen et al., 2010; Matsukawa et al., 2011) have
demonstrated that axonal lesions within the brainstem and genu
of corpus callosum are negative prognostic indicators, and that
the location of DAI is related to severity and the plane in which
the force is applied (Smith et al., 2000). Primary axotomy is a rare
event; rather, cytoskeletal abnormalities that proceed to secondary
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FIGURE 1 | Intracellular injury cascade in DAI. (A) In response to
trauma, the axolemma either undergoes primary mechanical failure,
exposing the cytosol to the extracellular space, or mechanosensitive
sodium channels are activated, resulting in a flux of sodium into the
axoplasm. (B) Perturbation to the ionic equilibrium results in directional
change in flow of calcium, resulting in intracellular accumulation. (C)
Calcium can be sequestered in the mitochondria, however this

generates reactive oxygen species that may disrupt oxidative
metabolism and have downstream consequences with respect to
oxidative damage to an axon in crisis. Similarly, elevated calcium can
activate calcium-dependent calpains (a), caspases (b) and phosphatases
(c) all of which mediate cytoskeletal breakdown. (D) Cytoskeletal
breakdown results in impaired axonal transport, axonal swelling and
neurofilament compaction.

axotomy are the most common form of DAI (Wolf et al., 2001;
Stone et al., 2004; Chung et al., 2005; Kelley et al., 2006; Wang
et al., 2011; Greer et al., 2013).

The human brain is viscoelastic in nature (Meythaler et al.,
2001; McKee et al., 2014), and is mechanically compliant under
normal, gradual accelerations associated with daily living. Due to
inertia, sudden acceleration over an interval of less than 50 ms
will overcome the brain’s viscoelastic properties, resulting in frank
shearing of the cell membrane and cytoskeletal elements, often
followed by a delayed elastic return to pre-injury morphology
(Smith et al., 1999; Smith and Meaney, 2000; Tang-Schomer
et al., 2010). The overall extent of DAI is amplified if the appli-
cation of force persists once the elastic threshold of axons is
surpassed (Meythaler et al., 2001). Although it is known that
the axonal cytoskeletal network is subjected to shearing and
torsional forces after a TBI, questions remain as to how this
process triggers subsequent chemical and molecular changes.
Although DAI is a frequent pathology seen in TBI, it is het-
erogeneous in nature, as not all axons that are subjected to the
same forces display appreciable transport deficits (Johnson et al.,
2013).

CALCIUM MEDIATES AN INJURY CASCADE IN DIFFUSE
AXONAL INJURY
The exact mechanisms that initiate secondary degeneration in
DAI are yet to be completely characterized, although in vivo and

in vitro experimental models provide some insight. For exam-
ple, fluid percussion models of injury in mice have reinforced
the notion that mechanical stretching and disruption of the
axolemma are a primary event, with axonal damage detectable
at 2 h (He et al., 2004) and 4 h post-injury (Spain et al., 2010).
In vitro, such damage precedes ionic imbalance (Smith et al.,
1999), which may precipitate axonal swellings, secondary axo-
tomy and Wallerian degeneration (Johnson et al., 2013). Axonal
alterations may be driven by increases in intra-axonal calcium
levels. In DAI, mechanical disruption creating breaches in the
axolemma has been suggested as a mechanism of extracellular
calcium entry (Farkas et al., 2006; Kilinc et al., 2009). How-
ever, activation of transmembrane calcium channels that medi-
ate the extracellular influx may also be essential. Stimulation
of mechanosensitive sodium channels by axonal deformation
may reverse sodium/calcium transporters and activate voltage-
gated calcium channels, culminating in the influx of extracellular
calcium (Figure 1; Wolf et al., 2001). Other calcium channels
that have been implicated include voltage-gated L-type and T-
type calcium channels (Knoferle et al., 2010). However, there is
also evidence for intracellular calcium release in axonal injury
(Staal et al., 2010; Stirling et al., 2014). A study of long-term
primary neuron cultures subjected to an axonal stretch injury
observed a biphasic calcium elevation, and indicated that both
intracellular and extracellular calcium contribute to the overall
increase in axoplasmic calcium (Staal et al., 2010). The link
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between the release of extracellular and intracellular calcium
stores will be an important focus of future research, with a recent
study showing that expression of stromal interaction molecules
may perpetuate elevated cytosolic calcium, as its suppression has
been shown to improve survival after an axonal cut injury (Hou
et al., 2014).

Several studies have investigated the effects of calcium on
primary axotomy, demonstrating that calcium entry is essential
for plugging the breached axon membrane and reconfiguring the
cytoskeletal environment to a growth cone morphology, allowing
for potential regeneration (Gitler and Spira, 1998; Kamber et al.,
2009; reviewed in Bradke et al., 2012). The effects of calcium
alterations in DAI are less well defined. The source and level of
calcium concentration can affect the cellular response to calcium
alterations, particularly as calcium is known to have a bipha-
sic reaction in many signaling pathways with activation at low
concentrations and inhibition at high concentrations (Berridge
et al., 2003). In axons that do not undergo primary axotomy, high
levels of cytosolic calcium could damage axons or kill neurons
through destruction of cytoskeletal elements (Staal et al., 2010;
Liu et al., 2014) and mitochondrial dysfunction (Wolf et al., 2001),
increasing the risk of progression to secondary axotomy. The
different sources of calcium may also reflect a differential response
to axonal injury. For example, the influx of calcium that occurs
secondary to changes in axolemmal permeability may contribute
to spectrin-mediated destruction in the subaxolemmal domain
(Czeiter et al., 2009), whereas the release from intracellular stores
may contribute more to the destruction of the core cytoskele-
ton. Increased calcium also facilitates excitatory neurotransmitter
release to create a positive feedback loop, exacerbating calcium
influx and silencing neurons through perpetual depolarization
(Barkhoudarian et al., 2011). The resultant excitotoxicity may
also trigger axonal degeneration, caspase activation (Hosie et al.,
2012; King et al., 2013) and distal axon swelling (King et al.,
2007).

In an attempt to correct the ionic imbalance, active trans-
port is upregulated, which in turn increases glucose metabolism
(Blennow et al., 2012). This places strain on the system, since
mitochondria sequester calcium to counter the cytosolic excess
(Buki et al., 2000), which generates reactive oxygen species and
disrupts oxidative metabolism (Figure 1; Prins et al., 2013)
through unknown mechanisms. The role of this stress in the
injury cascade is also unknown (Maas et al., 2008; Peng and Jou,
2010), but given the role of mitochondria in the extrinsic apop-
totic pathway (Xiong et al., 2014), it is likely that mitochondrial
protection would lessen the progression of vulnerable axons on to
secondary axotomy.

SECONDARY INJURY CASCADE PRECEDES CYTOSKELETAL
DESTRUCTION
Mitochondrial dysfunction after calcium sequestration may rep-
resent one of the final stages of the injury cascade. This is
evidenced by the colocalization of cytochrome c released by
stressed mitochondria, with neurofilament accumulations and
axonal swellings post-injury (Staal et al., 2007) where it may
augment the apoptotic cascade (Bossy-Wetzel and Green, 1999;
Buki et al., 2000). Administration of cyclosporin-A, a protective

agent limiting cytochrome c release from mitochondria (Suehiro
and Povlishock, 2001), significantly reduces the development of
axon pathology and progression of injured axons to secondary
axotomy (Staal et al., 2007). Dysfunctional mitochondria may also
have a role in activating caspase, which in tandem with calpain
and phosphatase activation may alter cellular metabolism and
cytoskeletal elements (Saatman et al., 2010; Ma et al., 2012; Smith
et al., 2013; Liu et al., 2014). Cytoskeletal alterations such as
neurofilament compaction and disruption, and disassembly of the
microtubule array, are thought to cause defective axonal transport
and swelling (Smith and Meaney, 2000), although these appear
to be separate phenomena, as argued below. Indeed, varicose
axonal regions are spanned by both intact and fractured micro-
tubules, suggesting that even partial disruption of the microtubule
network is sufficient to trigger swelling (Tang-Schomer et al.,
2012) and contributes to an increased risk of secondary axotomy
in injured axons (Smith and Meaney, 2000). Although the role
of microtubules in cytoskeletal disruption has been extensively
characterized, less is known concerning the role of neurofilament
proteins. However to explore this, it is relevant to first consider the
structure of neurofilament proteins and their post-translational
modifications.

NEUROFILAMENTS ARE A MAJOR CYTOSKELETAL ELEMENT
IN AXONS
Neurofilaments are the key intermediate filaments (IFs) in neu-
rons and a major component of the axonal cytoskeleton (Perrot
et al., 2008; Fletcher and Mullins, 2010). Neurofilaments are
widely but not ubiquitously expressed in the central and periph-
eral nervous systems, labeling distinct subpopulations throughout
the brain and spinal cord (Paxinos et al., 2009; Sengul et al., 2013)
and restricted to a subset of neurons in the neocortex (Campbell
and Morrison, 1989; Kirkcaldie et al., 2002; Paulussen et al., 2011).
There are five classes of IFs, which provide fundamental cellular
infrastructure (Petzold, 2005). These proteins are differentially
expressed between cell types and express tissue specific functions.
Neurofilaments, the type IV IFs, are integral to somatic, den-
dritic and axonal morphology and function. Structurally, NFs are
obligate heteropolymers assembled from four identified fibrous
subunits (Nixon and Yuan, 2011). The major neuronal IFs in the
CNS are those assembled from the NF triplet proteins: neuro-
filament light (NFL; 61kDa), medium (NFM; 90kDa) and heavy
(NFH; 115kDa). These subunits share a highly conserved central
rod domain by which they polymerize (Lariviere and Julien, 2004;
Nixon and Yuan, 2011). The head and C-terminal tail domains are
divergent between subunits, with the tail domains demonstrating
the greatest heterogeneity, particularly in the residue length and
number of phosphorylation sites (Perrot et al., 2008; Chang et al.,
2009). Neurofilament medium and NFH have a greater number
of residues in their tail constructs, 504 and 607 respectively,
compared to NFL with only 143 (Chang et al., 2009). One of
the key differentiating features between subunits is the number of
Lys-Ser-Pro (KSP) repeat motifs in the tail domain of NFM and
NFH (Perrot et al., 2008). KSP repeats appear to be functionally
significant, as they are the primary sites of phosphorylation (Jaffe
et al., 1998; Veeranna et al., 1998; Perrot et al., 2008; Yuan et al.,
2012).
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While NFL can form a homopolymer in vitro, NFs are obligate
heteropolymers in vivo and must include NFL (Lee et al., 1993;
Carter, 1998; Elder et al., 1998; Hirokawa and Takeda, 1998).
Another neuronal type IV IF—α-internexin, 66kDa—is expressed
developmentally prior to the appearance of mature NFs (Kaplan
et al., 1990; Fliegner et al., 1994). Although α-internexin is widely
expressed in the adult CNS and can coassemble with the triplet
proteins to form NFs (Yuan et al., 2006; Nixon and Yuan, 2011),
human and rat studies suggest that it can be expressed by a distinct
population of neurons with little immunoreactivity for the NF
triplet (Dickson et al., 2005).

Neurofilaments are particularly long-lived proteins with NFL
half-life estimated at approximately 3 weeks (Millecamps et al.,
2007). They are predominantly synthesized in the soma, with
axon-directed monomers traversing the axon at 0.2–1 mm/day
(Lariviere and Julien, 2004) on average, although movement is
thought to be highly asynchronous and bidirectional with peri-
ods of fast transport up to 50–100 mm/day interspersed with
stationary periods (Nixon, 1998; Prahlad et al., 2000; Roy et al.,
2000; Liu et al., 2004; Yuan et al., 2009). This slow transport
contributes to the long-term stability and integrity of the axonal
NF network (Liu et al., 2004). The rate of axonal NF transport
is dependent on the cytoskeletal environment, and transport is
faster in axons with low NF content (Millecamps et al., 2007).
At the axon terminal, NFs undergo calpain-mediated degrada-
tion, and calpain inhibition results in NF accumulations here
(Roots, 1983). However, proteolytic breakdown of NFs can take
place across the entire length of an axon (Millecamps et al.,
2007).

The function of NFs is not fully understood. Although the
importance of IFs for mechanical strength has been long recog-
nized, the varied composition and regulation of neurofilaments
suggest that they have a more complex role (reviewed in Capano
et al., 2001). However, it is clear that their structural heterogeneity
is likely to play an important role in dictating function.

POSTTRANSLATIONAL MODIFICATIONS OF
NEUROFILAMENTS
Neurofilaments undergo a number of posttranslational modifica-
tions, including phosphorylation and glycosylation. Phosphory-
lation has been well characterized (reviewed in Dale and Garcia,
2012) and appears to be location dependent, with high levels
of phosphorylation occurring in the internodal regions of axons
and lower levels of phosphorylation in perikarya (Nixon et al.,
1994; Liu et al., 2004). This is also reflected in the differential
concentration of NFs throughout the neuron, where phospho-
rylation state regulates anterograde transport (Shea and Chan,
2008). NFL N-terminal phosphorylation, regulated by protein
kinase A, takes place soon after synthesis and inhibits mature
NF assembly within the soma (Nakamura et al., 2000; Zheng
et al., 2003). In the axon, NFM and especially NFH become highly
phosphorylated at multiple KSP sites on the tail domains, recon-
figuring them into side-arms that extend from the assembled fil-
ament core (Veeranna et al., 1998; Dashiell et al., 2002; Stevenson
et al., 2011). Studies in rats have demonstrated that neurofil-
ament is phosphorylated by kinases directed to serine-proline

residues specifically in the KSP repeat sections of both NFM
and NFH, including cyclin-dependent kinases (cdk), members
of the mitogen-activated protein kinase (MAPK) family, as well
as glycogen synthase kinases (Jaffe et al., 1998; Veeranna et al.,
1998). MAPK-mediated NF phosphorylation is one aspect of
its diverse role in promoting neurite development and survival
under physiological and stress conditions (reviewed in Neary,
2005; Roskoski, 2012). Of particular interest, activation of MAPK
pathways has been observed in both in vivo and in vitro models
of trauma, although the effects of this upregulation are not yet
characterized (Dash et al., 2002; Mori et al., 2002; Hollis et al.,
2009; Yu et al., 2010).

It is thought that phosphorylation at these sites, particu-
larly in NFM (Jacomy et al., 1999; Rao et al., 2002) increases
NF spacing due to negative charge repulsion (de Waegh et al.,
1992). This is consistent with their high abundance in specific
populations of axons, correlating with axonal caliber and there-
fore conduction velocity. NF sidearm phosphorylation promotes
radial growth of the entire axon, and bridges neurofilaments to
cytoskeletal elements, specifically actin and microtubules, as well
as the axolemma (Elder et al., 1998; Hirokawa and Takeda, 1998;
Chen et al., 2000; Chang et al., 2009; Nixon and Yuan, 2011).
Phosphorylation of C-terminal domains also provides NFs with
resistance to proteolysis (Schumacher et al., 1999; Huh et al., 2002;
Lee et al., 2014), thus maintaining the integrity of the NF network
across long axonal processes.

Neurofilament phosphorylation has also been intimately tied
to myelination and axonal transport (de Waegh et al., 1992).
In addition, investigations utilizing myelin associated glycopro-
tein (MAG)-null mice have shown significant reductions in
the phosphorylation of NFM and NFH tails, which correlate
with smaller axonal diameters (Yin et al., 1998). It is pro-
posed that MAG interacts with an axonal receptor that activates
cdk5 and ERK1/2, kinases that are both capable of phospho-
rylating NFM and NFH (Dashiell et al., 2002). This suggests
that MAG-activated signaling may regulate NF phosphoryla-
tion, although this is yet to be fully elucidated. More recently,
Monsma et al. (2014) have shown that myelinating cells can
regulate the rate of NF transport, resulting in local accumu-
lation and expansion of the axonal diameter (Monsma et al.,
2014), a process for which phosphorylation is most likely the
mediator, given its upregulation during the process of myeli-
nation and studies such as Lee et al. (2014), who demon-
strated that MAPK cascades control anterograde transport of
NFs. NF content does not determine the overall level of myeli-
nation: there are no significant differences in the expression of
MAG between wildtype and NF knockouts (Wu et al., 2008).
Although there appears to be no direct relationship between
the level of myelination of an axon and its NF content, the
level of myelination may nonetheless affect the level of axonal
NF phosphorylation. This may explain why unmyelinated axons
appear selectively vulnerable to secondary axotomy after in vitro
stretch injury (Staal and Vickers, 2011), since NF phosphorylation
appears to protect against enzymatic degradation (Huh et al.,
2002).

Compared to phosphorylation, the role of NF glycosylation is
less well studied. The head region of NFL and NFM are modified
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by the addition of O-linked N-acetylglucosamine moieties, while
glycosylation occurs at the KSP repeats of NFH (Dong et al.,
1993). These sites have a critical role in NF assembly and it is
thought that glycosylation may have a role in the trafficking of
NFs (Petzold, 2005).

NEUROFILAMENT CHANGES IN INJURY
NF accumulation in injury may develop out of primary mechan-
ical failure of the NF network (Meythaler et al., 2001). However,
alterations to NFs also represent an early event in the development
of DAI, preceding microtubule fracturing and depolymerization
(Fournier et al., 2014). Impact acceleration and fluid percussion
injuries have been demonstrated to result in reductions in the
interfilament spacing post injury, either due to altered phospho-
rylation or proteolysis of the side arms (Povlishock et al., 1997;
Okonkwo et al., 1998). These changes are commonly termed NF
compaction. It is hypothesized that reductions in side-arm length
reduce interfilament spacing and lead to NF network collapse.
Side-arm loss also facilitates the access of RM014, an antibody
which recognizes the NF rod domain, and is therefore widely
used to identify NF compaction (e.g., Stone et al., 2001). Given
that side-arm extension relies on C-terminal phosphorylation
(Nixon et al., 1994; Chang et al., 2009), it follows that pathology
influencing phosphorylation state may be a driver behind NF
compaction.

Pathways that may mediate side-arm shortening or loss
include calcium-dependent calpain and calcineurin activation,
which may be consequences of calcium accumulation post-injury.
Evidence supporting calcineurin-mediated dephosphorylation
as a factor in NF compaction comes from trauma studies
investigating the impact of known calcineurin inhibitors. In
vivo and in vitro models of injury employing tacrolimus and
cyclosporin A have demonstrated reductions in axonal pathology
(Okonkwo and Povlishock, 1999; Marmarou and Povlishock,
2006; Staal et al., 2007; Dileonardi et al., 2012). However, it
is important to consider that cyclosporin A has an established
role in protecting mitochondria following elevated intracellu-
lar calcium, (Peng and Jou, 2010), thus, there is potential for
these agents to exert neuroprotection through an unidentified
mechanism.

Similarly, evidence supporting calpain proteolysis of NF side-
arms comes from a weight drop study demonstrating that admin-
istration of a calpain inhibitor prior to injury attenuated axonal
pathology (Buki et al., 2003). Although NFs have been identi-
fied as a calpain substrate (Ma, 2013), calpains may also act to
degrade sub-axolemmal anchoring proteins, specifically spectrin
(Saatman et al., 2003), thus the observed reductions in axonal
injury may reflect preservation of NF scaffolding rather than
prevention of direct NF degradation. However, it is interesting
to note that NF side-arm phosphorylation confers protection
against proteolytic action (Huh et al., 2002), thus the synergis-
tic action of calcium-activated calpains and phosphatases may
clip NF side arms, culminating in disintegration of the axonal
IF network (Povlishock et al., 1997; Buki et al., 2003; Ma,
2013).

Rotational head injuries in pigs have demonstrated that NF
compaction in axonal varicosities contain high levels of all NF

subtypes, although NFL accumulates before NFM and NFH,
suggesting a temporal sequence of cytoskeletal breakdown or
differential subunit transport (Chen et al., 1999). Injury-mediated
NF compaction is also observed in immature rats, which have
a lower NFH/NFM stoichiometry, suggesting that the loss of
NFM side-arms may be the main driver behind NF compaction
(DiLeonardi et al., 2009). In vitro studies using a fluid pressure
pulse to induce a mild axonal stretch injury in unmyelinated
axons have shown that by 48 h post injury, 51% of injured
axons showed elevated SMI312 immunoreactivity for phospho-
rylated NFs (Chung et al., 2005). At 72 h post-injury, com-
plete axotomy was observed at the injury site in 70% of axons,
supporting the proposal that neurofilament alterations precede
axotomy in DAI. This observation suggests that changes in the
phosphorylation state of NFs can take place after injury (Chung
et al., 2005), however the implications of this remain unclear.
Defining the complete mechanisms behind NF compaction is
yet to be achieved, however further investigation of side-arm
phosphorylation post-injury will be essential (Saatman et al.,
2009).

NF compaction has long been thought to contribute to
disrupted axonal transport in the setting of injury. Micro-
tubules are essential for axonal growth and transport (Nixon
and Yuan, 2011), with fracturing or depolymerization of the
transport machinery thought to contribute to this transport
block. In vitro axonal stretch injury with subsequent transmis-
sion electron microscopy has demonstrated that microtubule
breakage occurs in abnormally convoluted axons post-injury
(Tang-Schomer et al., 2012). Interestingly, these breakage points
corresponded to the varicosities that develop 3 h after injury
(Tang-Schomer et al., 2012), providing evidence that microtubule
disruption precedes swelling development. Measurement of this
phenomenon immunohistochemically has been achieved using
antibodies to the APP (Blumbergs et al., 1994), as it is a fast
anterograde axonal transport product that rapidly accumulates
at sites of transport disruption (Saatman et al., 2003). Accu-
mulation of APP and organelles at these sites leads to pro-
gressive swelling, culminating in axotomy (Buki and Povlishock,
2006).

Although both NF compaction and microtubule disruption
were thought to contribute to axonal transport block after
trauma, a growing body of evidence suggests that NF com-
paction and defective transport, as measured by APP, are sep-
arate pathophenotypes of DAI. Tacrolimus, a selective inhibitor
of calcineurin-activated phosphatases (Liu et al., 1991), attenu-
ates axonal damage and progression to secondary axotomy in a
subset of axons (Marmarou and Povlishock, 2006; Staal et al.,
2010), suggesting that cytoskeletal damage and progression to
secondary axotomy are due to dephosphorylation and protease
activation caused by axolemmal perturbation (Povlishock et al.,
1997; Schumacher et al., 1999; Huh et al., 2002; Marmarou
and Povlishock, 2006). However, in rats subjected to a cortical
controlled impact injury, this therapeutic approach was only
effective for APP-labeled axons. Axons experiencing NF com-
paction, shown by rod-domain RM014 labeling, were not pro-
tected (Marmarou and Povlishock, 2006). Thus it appears that
phosphatase activation cannot completely explain cytoskeletal
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disruption in injured axons undergoing NF compaction. Further-
more, DiLeonardi et al. (2009) showed in the same model that
APP and RM014 labeled the same anatomical distribution at six
and 24 h after injury, but labeling was never directly colocalised,
suggesting that NF compaction and transport failure are discrete
forms of axonal injury.

Although NF compaction and impaired axonal transport are
largely distinct (DiLeonardi et al., 2009), these pathological fea-
tures occur in the same tracts after injury (Creed et al., 2011).
More recently, a study of the spatial distribution of NF com-
paction and impaired axonal transport in the corpus callosum and
pyramidal tracts after TBI demonstrated that impaired transport
is the prevalent injury phenotype in white matter tracts at 24 h
post-injury (Kallakuri et al., 2012). In considering this, it is clear
that DAI is heterogeneous, with axons experiencing a differential
response that could depend on intrinsic factors or variability in
force distribution and loads.

TRANSLATING CHANGES IN NEUROFILAMENTS TO A
CLINICAL SETTING
Given the role of NFs in TBI and a range of neurodegenerative
conditions, these proteins may be useful plasma biomarkers for
axonal injury and neuronal damage (Petzold, 2005). It has been
proposed that frank axonal transection or secondary axotomy
results in the release of NF proteins into the extracellular com-
partment and subsequently the cerebrospinal fluid (CSF), and
eventually the bloodstream (Petzold, 2005). Since phosphory-
lation of NFH C-terminals is specific to axons, detection of
this epitope (pNFH) has been identified as a possible blood
biomarker for measuring the extent of axonal injury (Anderson
et al., 2008); indeed, after human TBI it rises significantly in
both CSF and serum (Siman et al., 2009). Early animal work
detected a serum rise in pNFH 6 h after controlled cortical
impact, peaking at 24–48 h before gradually decreasing to base-
line; the rise was significantly higher in more severe injuries,
and correlated with cortical loss (Anderson et al., 2008). This
pattern has also been recorded following blast TBI (Gyorgy et al.,
2011). As there is differential content of pNFH in the CNS,
with significantly higher concentrations seen in the long white
matter tracts of the spinal cord when compared to the cerebral
cortex (Anderson et al., 2008), interpreting changes in its serum
concentration may need to be made on a background of medical
imaging.

In a population of pediatric TBI cases, patients whose ini-
tial computed tomography scan showed DAI had significantly
higher serum levels of pNFH compared to those without DAI
(Žurek et al., 2011). Furthermore, patients who went on to
die by the 6-month follow up were retrospectively shown to
have had significantly higher pNFH serum levels than survivors
on days two, three and four after admission (Žurek et al.,
2011). This was one of the first human studies to demonstrate
that serum NFs may be prognostically useful in CNS trauma,
albeit less so with respect to outcome. Similarly, measuring
serum pNFH in spinal cord injury has been shown to correlate
with complete and incomplete sensorimotor loss, however its
sensitivity is lost at lower grades of injury (Hayakawa et al.,
2012). Although these findings already have potential clinical

significance, there is scope for continued research into corre-
lating pNFH serum concentrations with clinical observations,
histopathology and neurological outcome (Tisdall and Petzold,
2012; Yokobori et al., 2013). For the latter, serum elevation of
S100B, glial fibrillary acidic protein and neuron-specific enolase
have been shown to significantly correlate with neurological
deficit, although they are not specific to axonal damage (Žurek
and Fedora, 2012). More recently, pNFH has been shown to
stratify lower grades of injury, with significant rises in pNFH
seen up to 3 days after a mild TBI when compared to non-
injured controls (Gatson et al., 2014). Although pNFH is showing
great promise as both a sensitive and specific marker of axonal
injury after TBI, consideration of other NF isoforms may fur-
ther stratify injury severity. NFL holds a lot of potential, as it
appears to accumulate more rapidly than the other isoforms after
injury (Chen et al., 1999; Li et al., 2010). In Alzheimer’s disease,
amyotrophic lateral sclerosis and Guillian Barré Syndrome, NFL
serum levels are significantly different from healthy controls and
patients without neural degeneration (Gaiottino et al., 2013).
Interestingly, a recent case report involving a concussed boxer
showed marked CSF elevation of NFL that did not normalize
until more than 30 weeks post-concussion, emphasizing that
a far longer time-course of injury and recovery is biologically
detectable (Neselius et al., 2014). This is important to consider
in the setting of competitive sports, as functional recovery often
occurs within 1–12 weeks after the insult (Karr et al., 2014),
carrying with it the all-clear to return to a potentially traumatic
situation.
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