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The variability observed in action potential (AP) cardiomyocyte measure-

ments is the consequence of many different sources of randomness. Often

ignored, this variability may be studied to gain insight into the cell ionic prop-

erties. In this paper, we focus on the study of ionic channel conductances and

describe a methodology to estimate their probability density function (PDF)

from AP recordings. The method relies on the matching of observable statisti-

cal moments and on the maximum entropy principle. We present four case

studies using synthetic and sets of experimental AP measurements from

human and canine cardiomyocytes. In each case, the proposed methodology

is applied to infer the PDF of key conductances from the exhibited variability.

The estimated PDFs are discussed and, when possible, compared to the true

distributions. We conclude that it is possible to extract relevant informa-

tion from the variability in AP measurements and discuss the limitations

and possible implications of the proposed approach.

1. Introduction
The variability observed in action potential (AP) measurements is, like in most

biological systems, the consequence of many different sources of randomness.

In this paper, we focus on parameter randomness which, in the context of

AP modelling, corresponds to the natural variability of the cardiomyocyte elec-

trical properties such as its capacitance, ionic channel conductances and gate

time constants. Owing to the large number of free parameters in AP models,

these parameters are, in practice, unidentifiable [1,2]. In fact, different combi-

nations of these parameters can lead to the same AP. Therefore, we choose to

restrict our analysis to ionic channel maximal current densities which, for con-

venience, are referred to as conductances in the following. Among these

conductances, a subset is selected to account for the observed variability

depending on the available dataset. AP measurements may result from hetero-

geneity within a population of cells (inter-subject variability) [3] or from

dynamic variations within a single cell (intra-subject variability) [4,5]. In this

paper, we propose a novel way to study the variability of parameters of AP

model in both contexts. From a modelling point of view, it is convenient to

ignore the variability of electrophysiology measurements (and therefore of

the underlying parameters) since a set of fixed parameters is sought. However,

investigating the variability of parameters of the AP model has several motiv-

ations. It can be used to predict the response of cardiomyocytes to certain drugs

[6]. It can also provide insight into cell modifications at the origin of common

heart diseases such as atrial fibrillation (AF) [3,7] or ventricular arrythmia [8].

There are two main strategies to estimate the parameters’ variability given a

set of AP measurements. First, one could fit the AP model to each measurement

individually and therefore obtain a set of parameters from which useful

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2017.0238&domain=pdf&date_stamp=2017-08-23
mailto:jean-frederic.gerbeau@inria.fr
https://dx.doi.org/10.6084/m9.figshare.c.3852097
https://dx.doi.org/10.6084/m9.figshare.c.3852097
http://orcid.org/
http://orcid.org/0000-0002-1709-2787
http://orcid.org/0000-0002-3435-7388
http://orcid.org/0000-0002-4522-4329
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170238

2
statistics may be computed. The problem of fitting an indi-

vidual AP has been addressed many times using a large

variety of methods [2,9–13]. However, the computational

cost of such a strategy scales with the number of available

experimental samples and may therefore be prohibitive. As

a consequence, only a low number of cells can be analysed

this way. The second strategy belongs to the so-called popu-

lation of models approach. The experimental set is considered

as a whole and the parameters statistics are estimated by

solving a statistical inverse problem. Several techniques

were developed to solve such problems [14,15] and their

application to electrophysiology has recently generated

much interest [3,6,16–18]. The present approach belongs to

the second strategy. The AP model parameters are described

as random variables associated with an unknown probability

density function (PDF). The proposed method aims at

estimating the parameters PDF, thus generalizing the com-

monly used mean+ standard deviation intervals. The PDF

is sought so that it ‘explains’ the observed variability featured

by a given set of AP measurements. More precisely, the esti-

mated PDF is the solution of a constrained optimization

problem which is an adaptation of the maximum entropy

principle [19]. The method, later referred to as observable

moment matching (OMM), is detailed in [20]. Contrary to

other approaches such as Monte–Carlo Markov Chains

(MCMC) [21] or Approximate Bayesian computation [22],

the present method does not guarantee to converge to the

true parameters distribution. Instead, it proposes a way to

obtain an approximation of the underlying PDF at the frac-

tion of the cost of other finer methods. In this paper, the

OMM method is applied to the estimation of the PDF of

key conductances from AP measurements. These measure-

ments may be the AP time series (sometimes referred to as

waveforms or traces) or be in the form of biomarkers, i.e. fea-

tures extracted from the time series. Four different case

studies are presented to illustrate the use of the OMM

method in different scenarios. Test Cases 1 and 2 feature syn-

thetic datasets with AP biomarkers and time series. Test Case

3 features an experimental dataset with intra-subject vari-

ability and Test Case 4 features an experimental dataset

with inter-subject variability.
2. Material and methods
2.1. Electrophysiology measurements
2.1.1. Synthetic datasets
For validation purposes, the proposed method is first applied to

synthetic measurements, i.e. APs generated by a computational

model and corrupted by some noise to solve our statistical

inverse problem. An example of such synthetic measurements

is shown in figure 2. Here, the noise is an independent zero-

mean normally distributed random variable. The signal-to-noise

ratio (SNR) is written in dB and defined as follows:

SNR ¼ 10 log10

A2

2t2

� �
, ð2:1Þ

where t is the noise standard deviation and A is the AP

amplitude.

In Test Cases 1 and 2, the synthetic datasets are generated

by evaluating the AP computational model for different values

of the parameters, i.e. conductances, of interest. The parameters

are sampled from a known distribution so that the estimated

PDF may be compared to the true one.
2.1.2. Experimental datasets
In what follows, we are using published AP recordings that are

readily available online. In Test Case 3, the experimental dataset

consists of several APs recorded on a single canine ventricular

cell [4].1 This allows us to investigate beat-to-beat variability

which is a type of intra-subject variability. About 570 cycles

are available, 200 in control conditions and the remaining

after the addition of a drug and the modification of the

bath ionic centrations. In Test Case 4, the experimental data-

set consists of measurements human atrial cardiomyocytes

coming from different subjects [3].2 Interestingly, the dataset

is divided into two groups: one counting 254 sinus rythm

(SR) patients and another one counting 215 chronic AF

patients.

2.2. Electrophysiology cell models
2.2.1. Cell models
Throughout the four test cases presented in this paper, three

different AP computational models are used. Using different

models serves two purposes. First, it illustrates the fact that the

OMM method can successfully be applied to different scenarios.

Different cardiac cellular models were used to illustrate that our

methods are not model specific. Second, it is more natural to use

models that were designed from experimental set-ups that are

close to those of the available datasets. In Test Cases 2 and 4,

the human atrial model by Courtemanche et al. [23] was used.

It is one of the first human heart cell models. Mostly based on

the Luo & Rudy [24] membrane currents formulations, it was

developed using experimental recordings from human atrial

cells. In Test Case 1 (respectively, 3), the canine ventricular

model by Decker et al. [25] (respectively, Davies et al. [26]) was

used. Both models are improvements of the Hund & Rudy

model [27] with updated current formulations to fit canine epi-

cardium (for the Decker model) and mid-myocardial (for the

Davies model) cells. All three models belong to the so-called

second generation [28] for they provide detailed descriptions of

the main ionic channels, pumps and exchangers as well as the

internal calcium dynamics. For the sake of convenience, these

models will be referred to by their first author’s name. We will

focus on the PDF estimation of six key conductances correspond-

ing to the following currents: the fast sodium current INa, the

inward rectifier potassium current IK1, the transient outward

potassium current Ito (Ito1 in the canine models), the rapid

(respectively, slow) delayed rectifier potassium current IKr

(respectively, IKs) and the L-type calcium current ICaL. For the

sake of clarity, gNa, gK1, gto, gKr, gKs and gCaL will refer to a multi-

plicative coefficient for the corresponding values found in the

literature. For instance, gNa ¼ 1 means that gNa is set to the

same value as that of the original paper. When necessary, a

table will summarize the conductances that have been modified

from their reference values.

2.2.2. Numerical methods
The previously mentioned models consist of a set of coupled

ordinary differential equations (ODEs) whose formulae are

detailed, e.g. on the CellML project website [29]. The Courte-

manche and Davies models were implemented in an in-house

Cþþ code and the simulation outputs were compared with

those of the Matlab implementations found on the CellML web-

site. The time integration of the ODEs is carried out using the

CVODE library [30], which implements the Backward Differen-

tiation Formulae. This state-of-the-art time integrator is well

suited to stiff problems as those encountered in electrophy-

siology. It is adaptive, in time step and order, which can

significantly save computational time. For all the test cases, the

absolute and relative tolerances of the CVODE solver were set
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to 1026. For the Decker model, the time integration was carried

out using variable but non-adaptive time steps. The stimulation

protocol consists in stimulating at a frequency of 1 Hz (or 2 Hz

for Test Case 2) over a few cycles so that the recorded AP lies

in a permanent regime. In practice, the number of these transition

cycles was set to 5 (10 for APs stimulated at 2 Hz) and the relative

difference norm between two consecutives AP is less than 0.1%.

Unless stated otherwise, the stimulation duration is set to 2 ms

and its amplitude to 20 mA.

2.2.3. Action potential time series
In Test Case 1, the AP time series are used as the observable. This

means that the inverse procedure possibly uses the AP value at

every available time step. This has not only the advantage of cap-

turing all of the available information but also the disadvantage

of increasing the computational cost of the inverse procedure

because the number of time steps may be large. To tackle this

issue, a time-step selection algorithm was developed and is

described in [20]. It uses the pre-computed simulation database

to approximate the sensitivities with respect to each parameter

and for each time step. Using these sensitivities, the time steps

are clustered using an agglomerative clustering algorithm and

a representative is chosen for each cluster. Only the represen-

tatives are retained for the inverse procedure. In practice their

number is much lower than the total number of time steps,

thus alleviating the computational cost of the inverse procedure.

Indeed, as described in [20], the OMM procedure cost is domi-

nated by the inversion of a dense matrix of size (Nm � Nt)
2.

Furthermore, reducing the number of time steps is motivated

by numerical considerations because the conditionning of this

matrix deteriorates as the number of time steps increases. This

time-step selection comes at no cost because it uses the already

computed simulation database.

As the ODEs are solved using an adaptive time-stepping,

each AP simulation is discretized on a different time grid and

later interpolated on a common grid. This interpolation pro-

cedure introduces a numerical error which may be considered

as a numerical noise, alongside the noise in the measurements

(whether synthetic or experimental).

2.2.4. Action potential biomarkers
In Test Cases 2, 3 and 4, the inverse procedure is applied to so-

called biomarkers, which are quantities computed from the AP

time series. They describe the main features of the AP such as

its shape or its duration. We will focus on the following

biomarkers (figure 1): the AP duration APD90 (respectively,

APD50, APD30 etc.) at 90% repolarization (respectively 50%,

30% etc.), the resting membrane potential (RMP), the maximum

upstroke velocity dV/dtmax, the AP value at 20% repolarization

V20 (which roughly corresponds to the AP plateau value), the

AP value 30 ms after depolarization Vnotch and the area under

the curve (AUC), i.e. the AP time integral over one cycle.

Even though these quantities seem to capture well the main

features of a given AP, they generally do not convey enough

information about the underlying parameters for the inverse

procedure. Therefore, the pairwise products (APD90 � APD50,

APD90 � APD20 and so on) of the above biomarkers are

added to the constraints of moments. Note that the AP triangu-

lation is a commonly used biomarker and may be interpreted as

the pairwise product between APD90 and 1/APD30. For the syn-

thetic measurements, the noise is added to the AP time series

before computing the biomarkers.

2.2.5. Parameter calibration
We restrain our parameter estimation study to three to six con-

ductances. This assumption is critical and is discussed in the

Discussion section. This means that the parameters of interest
are allowed to vary, while all the other parameters of the

model remain fixed. While it seems reasonable to choose the

values found in the literature for these parameters, it often

proves to be a bad choice when dealing with real data. Therefore,

one needs to calibrate these parameters before performing the

inverse procedure using the most representative experimental

sample of the available data set. In Test Case 3, the most repre-

sentative sample is the one whose biomarkers are the closest to

the median values (there is one representative for each group).

In Test Case 4, the most representative sample is the AP whose

APD90 is the closest to the median value. Once these representa-

tive samples are identified, a parameter calibration procedure is

performed for all ionic conductances. Electronic supplementary

material, table S9, shows the values obtained from the literature

for these parameters as well as their estimated counterparts for

both Courtemanche and Davies models. The table also shows

concentrations of some external ion. These were directly set

using the bath descriptions available in the publications associ-

ated with the experimental datasets. The parameter calibration

is actually a constrained minimization problem where the cost

function J to be minimized reads

J(g) ¼
XNt

i¼1

((u(ti, g)� y(ti))
2 þ K

Xnp

j¼1

(gj � ĝj)
2, ð2:2Þ

where y is the experimental quantity of interest, u the corre-

sponding simulation output and Nt the number of values to

be fitted (number of biomarkers or number of time steps

depending on the test case). The second part of the cost function

is a regularization term, where np is the number of conductances

to fit, gj the estimated value of the jth conductance, ĝj its nom-

inal value and K is a user-defined regularization parameter.

This term ensures that the conductances remain within a reason-

able range around the nominal values. In practice, this

parameter is chosen to be small compared to the first term in

equation (2.2) so that the conductances are weakly constrained

around relevant values without too much impact on the fitting

quality. When possible, this parameter K may even be set to

zero. In the electronic supplementary material, figure S1, a

brief study of the effect of K is performed. The models con-

sidered in this work are not well suited to classical gradient

optimization techniques, as they consist of many and strongly

nonlinear ODEs, making the gradient computations challenging

and the cost function highly irregular. For the sake of simplicity,

we, therefore, used gradient-free optimization techniques such

as genetic algorithms [10]. We chose the covariance matrix

adaptation evolution strategy (CMA-ES) evolutionary algorithm

[31], for it is currently one of the most performant genetic

algorithms and was used successfully in a variety of appli-

cations. Furthermore, a Python (as well as other languages)

implementation of the CMA-ES algorithm is available online3

and behaves like a black-box optimization tool. The CMA-

ES algorithm was recently used in a similar context in [4],

where conductances of several models (including the

Davies model) were estimated from both synthetic and exper-

imental measurements. Note that values of all parameters are

not allowed to take negative values, but they are not limited

by any upper bound. An exception is made for the fast

sodium conductance gNa (which is limited to five times its

nominal value) for numerical reasons. Indeed, a high value

of gNa may lead to a failure of the time integration around

the upstroke.

2.3. Observable moment matching method
We now give an overview of the OMM method. This method

aims at obtaining an approximation of the parameters PDF at

a low computational cost. This approximation is, however, not
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meant to reach the precision of finer methods such as MCMC.

The interested reader is referred to [20] where more details

are provided.

2.3.1. Construction of the simulation database
The OMM method relies on the pre-computation of a simulation

database of many APs (or AP biomarkers) by varying the par-

ameters of interest. We introduce the parameter space Q, which

is a subset of Rnp where np is the number of parameters (the con-

ductances in our case). A point in Q, or sample of parameters, is

denoted by u ¼ (u1, . . ., unp
). The parameter space is discretized

using the Sobol sequence [32]. This sampling method is well

suited to the present framework: it uniformly spans the
parameter space in a low-discrepancy manner while featuring

a simple Monte–Carlo quadrature rule; it requires little knowl-

edge of the true parameters distribution; furthermore, as the

latin hypercube method used in [6], it only requires a lower

and upper bound for each parameter and the total number of

samples. Points in the discretized space will be called collocation

points and the total number of these points will be denoted

by Nc. The discretization of the parameter space is, therefore,

given by the set fu1, . . ., uNc
g. For each collocation point, one

AP is simulated using the numerical protocol described above

and stored. Note that once this simulation database is built,

no additional AP simulation is required during the inverse

procedure.
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2.3.2. Optimization problem
Given a PDF r, the moment of order m of the simulations at

a given point t (time step or biomarker index) is defined by

mr
mðtÞ ¼

ð
u[Q

uðu, tÞmrðuÞdu,

where u(u, t) is the simulation output, already computed and

stored in the database. The empirical moments of order m of

the measurements at a given point t are defined by

m̂mðtÞ ¼
1

N

XN

i¼1

yiðtÞm,

where yi(t) is the observable value at point t of the ith experimen-

tal sample and N is the total number of experimental samples.

The goal of the OMM method is to find the PDF r such

that the moments, up to a certain order Nm, of the simula-

tions and of the experiments match at every point t. This

moment-matching condition will later be referred to as the

moment-matching constraints. As explained above, in the case

where many observable quantities are available, a procedure

has been set up to select a subset for which the moment-

matching constraints hold. In general, however, the stated

moment problem is under-determined, meaning there exists an

infinity of different r that satisfies the moment constraints. We

propose to regularize the problem using the maximum entropy

principle where the entropy of a given PDF r is given by

SðrÞ ¼ �
ð
u[Q

rðuÞ log½rðuÞ�du:

This type of regularization roots in information theory [19], it is

considered the most natural choice when limited information

about a PDF is available. It is also well suited to our optimization

problem for practical mathematical reasons. In Section 2.4.2. of

[20], we propose an analysis of the error on the PDF estimation

made by adopting the maximum entropy regularization. In

Prop. 1. of the same paper, it is shown that under certain con-

ditions on the regularity of the observable and identifiability of

the parameters, the error on the PDF is bounded. The conditions

on the regularity of the observable may not be easy to check for-

mally because of the nonlinearities of the state equations.

Nevertheless, for the practical problems considered in this

work, they do not seem critical. The condition on the identifiabil-

ity may also be difficult to assess in general. In our algorithm,

the identifiability issues are circumvented by regularizing the

Hessian in the optimization problem and by selecting the

points in which the moments are matched (see Discussion

section). Finally, the estimated PDF is the solution of the

following constrained optimization problem:

max
r

S(r)

s:t:

mr
m(t) ¼ m̂(t) (moment constraints)ð

u

r(u) du ¼ 1 (normalization)

8<
:

8>>><
>>>:

: ð2:3Þ

The optimization problem is recast using Lagrange multipliers

for the constraints and the corresponding Euler–Lagrange multi-

pliers are solved using a quasi-Newton method. Denoting by jQj
the volume of Q, the integrals over the parameter space of

a given quantity f are approximated using the Monte–Carlo

quadrature rule:

ð
u[Q

f(u) du ≃ jQj
Nc

XNc

1

f (ui): ð2:4Þ

In electronic supplementary material, appendix A, an illustration

of the OMM method on a simple test case using the Davies

model is provided.
2.3.3. Post-processing
The PDF is a real-valued multivariate function of np variables. The

output of the OMM method is the estimated PDF values at each

collocation point in the parameter space. We insist on the fact

that the estimated PDF does not take any parametric form (such

as a multivariate Gaussian) but is defined point-wise. However,

beyond two dimensions, its visualization becomes complex and

may not provide much information. Therefore, as it is the case

in the remainder of the article, the PDF is post-processed so that

the marginal densities of the parameters may be visualized. The

marginal density zp(x) of parameter p at point x reads

z pðxÞ ¼
ð
ðu1 ;...;u p�1 ;x;u pþ1 ;...;un p Þ[Q

rðuÞdu1 . . . du p�1 du pþ1 . . . dun p :

This step actually needs a finer grid in the parameter space than

that provided by the Sobol sequence. The estimated PDF is interp-

olated on the finer grid using kernel smoothing. This step is

discussed in detail in [20]. In addition to the marginal densities,

the estimated parameter moments mm(up) may also be computed

directly from the PDF:

mmðu pÞ ¼
ð
u[Q

rðuÞum
p du:

Then, one can compare m1(up), the mean of parameter p and its

standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2(u p)� m1(u p)2

q
to their true values when

known. In practice, the integral quantities are all approximated

using equation (2.4).
2.3.4. Implementation details
An online repository in open access4 has been created to make

available data and codes used in this paper.
In each test case, the computational time of the inverse pro-

cedure is strongly dominated by the simulation database

construction. All other steps of the method, including the

OMM method itself, have a negligible computational time. The

approximative CPU times given for each test case are meant

for one processor. This means that the real time may be reduced

by simulating the APs in parallel, which is done in practice.

Simulations were performed on a Linux machine counting 12

Intel(R) Xeon(R) CPU E5-2640 @ 2.50 GHz processors.

External libraries are used in our code: Eigen 3 and GSL-

BLAS for the matrix/vector manipulations and algebra and

the Python library Scikit-learn [33] for the time-step selection

algorithm.
2.3.5. Comparison with existing methods
As discussed earlier, it is possible to infer the PDF of conduc-

tances of interest by performing an individual inverse problem

(or fitting) for each sample of the experimental measurements.

However, if there are N experimental samples, the cost of such

an approach would be N times the cost of a single fitting. On

the contrary, the proposed approach performs the PDF esti-

mation by taking into account only the statistical moments of

the set of measurements. Its main advantage is that it does not

scale with the number of measurements samples. In that

regard, it is, in most scenarios, computationally cheaper than

individually estimating the parameters from each sample.

Furthermore, all model evaluations are performed offline and

once and for all so that the main cost of the inverse procedure

can be decided in advance.

Another popular method performing estimations of PDFs is

the Bayesian inference. It guarantees to converge to the true

PDF, which the present approach does not claim to do, at

the expense of many forward model evaluations. The pre-

sent approach may, therefore, be seen as a less precise but

computationally cheaper alternative to Bayesian inference.
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3. Results
The observable moment-matching method is now applied

to four test cases, using both experimental and synthetic

AP measurements.

3.1. Test Case 1: Decker model with synthetic data
In this test case, the OMM method is applied to a synthetic

dataset using the Decker model with different scenarios:

one in control conditions and one with a blocked channel

(which models for example the effect of a drug). We show

that combining data from both scenarios increases the pre-

cision of the PDF estimation of the conductances of interest.

3.1.1. Control conditions
For the synthetic dataset, N ¼ 104 APs were generated using

the Decker model with six uncertain parameters: gNa, gK1, gto,

gKr, gKs and gCaL. The N samples were drawn from an uncor-

related multivariate normal distribution of mean 1.1 and

standard deviation 0.15. The SNR is equal to 41 dB. The simu-

lation database was built by sampling the same six

parameters over the domain Q ¼ [0.5, 2.0]6. Nc ¼ 215 samples

were drawn and the corresponding APs are shown

in figure 2. The construction of the simulation database

required a CPU time of approximately 1000 min for one

processor. For both the synthetic dataset and simulation data-

base, all remaining parameters are fixed and set to their

reference values. In this test case, the observable quantities

used in the OMM method are the whole AP time series.

The observable quantities, are therefore, the AP values at

each of the 449 time steps sampled from the time integration

grid. The number of moments to be matched is set to Nm ¼ 3.

As mentioned earlier, a procedure has been set up to select

only a subset of the available time steps to perform the

inverse problem.

The OMM method is applied and the resulting estimated

marginal densities are shown in figure 3. This allows us to

make a clear comparison between the true densities of par-

ameters and their estimated ones. Electronic supplementary

material, table S1, shows a more thorough comparison

between the statistics of estimated parameters and their

true ones. Except for gKs, their mean values are accurately

estimated (the error is always below 1%) and the errors on

the standard deviations range from 3 to 21%. Five out of

six conductances are correctly estimated, while the estimation

of gKs is poor. This is actually a conductance which is known

to be difficult to estimate when others vary, mainly due to

the fact that its effect is hidden by other conductances

(mainly gKr). Therefore, a strategy was devised to reduce

the uncertainty on the parameter gKs.

3.1.2. Block conditions
To unveil the effects of gKs onto the AP waveform, a drug

block scenario is devised to ‘mask’ the effects of the other

conductances that compete with gKs. Here, we simulate the

effect of a hypothetical drug by blocking 90% of the Ito, IKr,

ICaL channels, i.e. by setting the corresponding conductances

to 10% of their reference values. The same protocol, as in

the control conditions, is followed to generate the synthetic
dataset and the simulation database, this time varying only

the three remaining conductances (gNa, gK1 and gKs) with

N ¼ 104 samples for the synthetic dataset and Nc ¼ 212

collocation points for the simulation database. The construc-

tion of the simulation database required a CPU time of

approximately 125 min for one processor.

The OMM method is applied and the results are shown in

electronic supplementary material, table S2 and figure 3. The

density of gKs is now recovered with a good precision, as the

conductances previously responsible for its non-identifiability

remain fixed.
3.1.3. Combining control and drug block conditions
The drug block and control conditions are now combined to

simultaneously estimate the PDF of the six conductances of

interest. This is done by slightly modifying the inverse pro-

cedure. In addition to enforcing the moment constraints of

the AP values in the control conditions, the moments of the

parameters themselves (gNa, gK1 and gKs) are also constrained

to match those estimated in the drug block conditions. In

practice, this is easily done by adding these new constraints

to the initial set of constraints (see equation (2.3)). This is,

therefore, analogous to solving the inverse problem in the

control conditions with the additional knowledge of the

statistics of parameters obtained in the drug block conditions.

The final results are shown in electronic supplementary

material, table S3, and in figure 3. This procedure achieves

a much better estimation of the density of gKs. The errors

on the mean and standard deviation of gKs are significantly

reduced while the accuracy of the estimation of the other

conductances is similar to that of the control conditions.
3.2. Test Case 2: synthetic data at different pacing
frequencies

In this test case, the OMM method is applied to a synthetic

dataset using the Courtemanche model. Different scenarios

are investigated by varying the frequency of the stimulations

that trigger the APs.
3.2.1. Control conditions with 1 Hz pacing
For the synthetic dataset, N ¼ 104 APs were generated using

the Decker model with six uncertain parameters: gNa, gK1, gto,

gKr, gKs and gCaL. The N samples were drawn from an uncor-

related multivariate normal distribution of mean 1.1 and

standard deviation 0.15. The SNR is equal to 43 dB. The simu-

lation database was built by sampling the same six

parameters over the domain Q ¼ [0.5, 2.0]6. Nc ¼ 215 samples

were drawn and the corresponding APs are shown in figure

2. The construction of the simulation database required

a CPU time of approximately 1100 min for one processor.

In this test case, the observable quantities are the following

nine AP biomarkers: APD90, APD50, APD30, APA, RMP,

V20, dV/dtmax, Vnotch and AUC and the maximum

moment order is set to Nm ¼ 2. Adding the pairwise products

of biomarkers, the number of moment constraints adds up to

54. The OMM method was applied to this test case and the

statistics of estimated parameters are presented in electronic

supplementary material, table S4. The estimated marginal

densities for each of the six parameters are shown in

figure 4. While four out of six conductances are estimated
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with a reasonable precision, gKr, and to greater extent gKs, are

not well estimated.

3.2.2. 2 Hz pacing
The same simulation protocol is followed, this time by stimu-

lating the APs at a 2 Hz frequency. The accelerated simulation

pace induces modifications to the AP morphology (such as a

reduced APD) which should reveal new information about

the parameters compared to a 1 Hz stimulation. The OMM

method was applied to this modified test case. While the
exhibited variability differs from the 1 Hz case, no significant

improvement over the parameters estimation may be noted.

Results are shown in figure 4 and electronic supplementary

material, table S5.

3.2.3. Combining 1 Hz and 2 Hz data
A way to take advantage of the information available in the

previous two scenarios consists in combining the data

obtained at 1 Hz and 2 Hz pacing frequency for both the syn-

thetic dataset and the simulation set. The same inverse
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procedure, as before, is applied with the following extended

set of biomarkers:

fAPD901 Hz, APD501 Hz, APD301 Hz, RMP1 Hz,dV=
dtmax;1 Hz,V201 Hz,Vnotch,1 Hz, AUC1 Hz, APD902 Hz,

APD502 Hz, V202 Hz, Vnotch,2 Hz, AUC2 Hzg:

These biomarkers are enriched by their pairwise products

which amounts to a total of 119 quantities to be matched.

Results are shown in figure 4 and electronic supplementary

material, table S6. While gKs is still not correctly estimated,

this strategy succeeds in reducing the uncertainty for

parameters gKr and gCaL.

3.3. Test Case 3: experimental data from canine
ventricular cells

This experimental dataset (used in [4] and available online5)

features beat-to-beat variability of APs recorded from a single
canine ventricular cardiomyocyte. Here, only a subset (traces

#100 to #199) of the available dataset is used.

3.3.1. Calibration of the Davies model
The Davies model was chosen to study this dataset because it

is one of the most recent canine ventricular cell models. In

addition, this model was also used in [4] to study the same

dataset. The parameter calibration procedure was carried

out using the most representative AP of the experimental

set and a regularization parameter K ¼ 0 (i.e. no regulariz-

ation). Figure 5 shows the representative AP and its fitted

counterpart using the Davies model. In figure 5 is plotted

the history of values of six conductances for each iteration

of the CMA-ES algorithm. The conductances are normalized

with respect to the values found in the reference paper. Note

that the values obtained after the calibration are far from the

reference values (equal to one by definition), confirming the

necessity of such a procedure. This is also true for the other
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fitted parameters which are not shown in the figure for the

sake of clarity but whose values are given in electronic sup-

plementary material, table S7. Note that gKs seems to reach

an extremely high value. It is, however, consistent with

the values found in [4] and may be explained by a difference

in the experimental settings.
3.3.2. Inverse procedure
The OMM procedure is applied with the following bio-

markers as observable quantities: APD90, APD50 and

Vnotch. Here, Vnotch is the notch potential corresponding to

the AP value 8 ms after the depolarization peak. Vnotch

was preferred over previously introduced V20 because the

latter was not suited to the AP shape and its value was

almost constant over the experimental set. We made the

assumption that the observed variability was due to the vari-

ations of gKr, gKs (commonly associated with APD variations)

and gto1 (commonly associated with variations of Vnotch).

These conductances are among the most responsible for

beat-to-beat variability [34]. The simulation database was

built by sampling these three conductances over the

domain Q ¼ [0.4, 1.8]3 and Nc ¼ 213 samples were drawn.

The construction of the simulation database required a CPU

time of approximately 175 min for one processor. The mar-

ginal distributions of the three parameters of interest are

shown in figure 6 and the estimated statistics are

summarized in electronic supplementary material, table S7.
3.3.3. Comparison with individually fitted action potentials
As the exact distributions of the parameters of interest are

unknown, a comparison study is carried out using two

other PDF estimation techniques. The experimental APs are

individually fitted to the Davies model using the CMA-ES

algorithm. The same fitting procedure is used as in the

calibration step using the AP values at different times

(figure 5). In the first case, only the three conductances of

interest are allowed to vary, while the others remain fixed.

In the second case, all conductances (those concerned by

the calibration step) are allowed to vary. In both cases, the fit-

ting procedure yields a collection of N ¼ 100 values for the

three conductances of interest. The distributions are then

approximated using histograms, shown in figure 6. Even

though biomarkers were used for the OMM procedure and

time series were used for both individual fitting procedures,
the distributions of parameters show a striking similarity,

especially for the case where only the three conductances of

interest are allowed to vary. This suggests that the set of bio-

markers retained is enough to account for the observed

variability. This also shows the overall satisfactory perform-

ances of the observable moment-matching method which

achieves comparable results to individual CMA-ES fits at a

fraction of the computational cost. Indeed, the 100 individual

CMA-ES fits required around 105 model evalutions, while the

OMM method required only 8192.

3.4. Test Case 4: experimental data from human atrial
cells

This experimental dataset (used in [3,35] and available

online6) features AP biomarkers recorded from two popu-

lations of human atrial cells. The OMM procedure is

independently applied to both groups and the distributions

of the conductances of interest between the two groups are

compared.

3.4.1. Human biomarkers dataset
The dataset consists of 469 experimentally recorded sets of

seven human AP biomarkers divided in two groups: SR

with 254 samples and chronic AF with 215 samples. Both

groups exhibit a strong inter-subject variability in addition

to the inter-group variability. The available biomarkers are

APD90, APD50, APD20, APA, RMP, dV/dtmax and V20.

3.4.2. Courtemanche model calibration
The Courtemanche model was chosen to study this dataset.

Prior to the inverse procedure, a model calibration step is

independently carried out for both groups. The regulariz-

ation parameter is set to K ¼ 5 � 1023. The CMA-ES

algorithm is applied to fit the Courtemanche model par-

ameters to the most representative sample within each

group. The representative sample is the one which minimizes

its Euclidean distance to the median biomarkers values of its

group. Electronic supplementary material, table S8, shows the

most representative samples from each group as well as some

global statistics of the biomarkers set. In electronic sup-

plementary material, table S9 are displayed 11 conductances

of the Courtemanche model that were estimated during the

calibration step. First, for both groups, the values of
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estimated parameters differ from those found in the literature.

Second, there is a significant increase in gK1 and a significant

decrease in gto, gCaL and gKur from the SR to the AF group.

These modifications are commonly considered as a good AF

remodelling strategy [36–38]. For each set of estimated con-

ductances, an AP is simulated using the Courtemanche

model. One obtains a typical or most representative AP for

each group. Figure 7 shows such APs along with the AP

obtained with the reference parameters found in the literature.

The AF AP features a shorter APD and a more triangular

shape than the SR one, which is typical of AF [39,40]. This

figure also highlights the fact that choosing the literature

values as baseline may not be a good choice for the SR

group, and to a greater extent for the AF group. In the same

figure is added an AP that was obtained by applying the

suggested AF remodelling found in [38] to the SR model

(65% decrease of gCaL and gto, 49% decrease of gKur and

110% increase of gK1). Both AF APs are very different

and this suggests that AF remodelling should be designed

specifically for a given experimental set.

3.4.3. Inverse procedure
The OMM method is applied with four biomarkers of interest

as observable quantities: APD90, RMP, dV/dtmax and V20.

For each group, a simulation database is built by sampling

the following four conductances: gNa, gK1 and gto and gKr.

Nc ¼ 214 samples are drawn using the Sobol sequence and

the number of moments to be matched is set to Nm ¼ 2.

The construction of the simulation database required, for

each group, a CPU time of approximately 550 min for one

processor. The results of the inverse procedure are presented

in electronic supplementary material, table S10 and figure 7.

As no exact solution is known, one may only qualitatively

interpret the result. While gNa follows a common distribution

in both groups, the other three conductances show striking

differences. One way to validate the results is to compare

the estimated PDF of the obervable quantities (the four

biomarkers of interest) with the experimental one. By con-

struction, they must have the same mean and standard

deviation because two moments are matched for each

biomarkers. However, this does not guarantee that the distri-

butions are identical because an infinite number of

distributions satisfy the moment constraints. In figure 7 are

plotted the histograms of the experimental biomarkers

along with the estimated biomarkers PDF obtained with the

OMM method. In electronic supplementary material, figure

S2, we replicated the same plot for the pairwise products of

the biomarkers. The distributions are very similar for each

biomarkers which suggests that chossing Nm ¼ 2 is sufficient

in this particular case. Note also that, even though the distri-

butions of biomarkers are close to Gaussian ones, this is

definitely not true for the distributions of conductances.
4. Discussion
In this study, we have presented the OMM method which

serves the general purpose of estimating the PDF of uncertain

model parameters from a set of measurements. It has been

applied to electrophysiology measurements and illustrated

with four different test cases.

Test Cases 1 and 2 illustrate the proposed method with

synthetic datasets, which has two advantages. First, one
may try configurations of a large variety of parameters

which may be difficult or impossible to obtain in experimen-

tal conditions. Second, knowing the true distributions of the

parameters allows for a thorough evaluation of the estimated

parameters PDF. In Test Case 1, the proposed method is

applied to synthetic measurements generated from the

Decker canine model. The OMM method was applied to

estimate the PDF of six uncertain conductances. It showed

that the OMM method is able to simultaneously estimate

the PDF of several conductances.

The authors stress that the proposed method provides an

estimation that is an approximation of the real underlying

PDF of the parameters. This approximation is less precise

than what would be achievable with finer methods such as

Bayesian inference but has the advantage of being computa-

tionally less demanding in general. In [20], the authors

suggest that the present approach could serve as a prior

generator for Bayesian inference.

The quality of the estimation obtained depends on the

identifiability of the parameters given the available data.

However, if a parameter is poorly identifiable (which is the

case of gKs in this particular scenario) or even unidentifiable,

the method does not fail owing to the approximation of the

Hessian associated with the problem in equation (2.3) and

the regularization induced by the choice of a subset of time

steps where the moments are matched. In that case, such a

parameter is characterized by a flat estimated distribution.

In the context of experimental data, a strategy may be set

up to assess which parameters of the model are actually

identifiable, prior to applying the inverse procedure. Such

strategies exist (see e.g. [41]) but were not investigated in

the present work. Nevertheless, when faced with an esti-

mated flat distribution for one parameter, it is possible to

perform the following numerical experiment to assess

whether this parameter is unidentifiable or its PDF is, in

fact, uniform. Small perturbations (that conserve the norm

and positivity of the PDF) may be added to the estimated

PDF along the direction of the seemingly unidentifiable par-

ameter. If the moment constraints are still verified, then it

probably means that the parameter is, in fact, unidentifiable.

To improve the estimation of the hidden gKs parameter, an

artifical drug block remodelling was applied to the Decker

model. This drug was designed to block the currents that

were responsible for the unidentifiability of gKs. This remo-

delling consisted, in practice, in reducing the values of

corresponding parameters to 10% of their nominal values.

This strategy proved to significantly improve the estimation

of gKs and showed that the OMM has potential applications

in two contexts. First, it may be used to infer the effect (or

toxicity) of a drug using actual experimental data. Second,

it may help gain insight into experimental protocols that

can be set up to estimate quantities that are otherwise

hidden. These findings must however be mitigated by the

fact that, in real cells, it is improbable that a given drug

only affects a set of targeted ionic currents. It most probably

affects the whole cell kinetics and dynamics, including quan-

tities that were supposed to remain unchanged in our

artificial scenario. It is also important to note that some

stimulation protocols or drug block experiments are not

easily achievable in real experiments. In most cases,

especially when using human tissue, it is simply not possible

to conduct additional experiments, because the tissue is

critical to answer more novel research questions. It is an
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Figure 7. (a) CMA-ES parameter calibration of the Courtemanche model prior to the inverse procedure. APs obtained for the most representative samples of the SR
(blue) and AF (red) groups, with the reference parameters (dashed) and after AF remodelling (dotted). (b) Courtemanche conductances estimated marginal densities
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important practicality that makes recordings using animals

different from those possible using human tissue. Never-

theless, it may prove useful to inform novel experiments

that can be conducted to reduce the uncertainty in the esti-

mation of profiles of conductances based on successful

numerical scenarios.

The OMM method is related to the populations of models

(POM) approach but differs from it in certain aspects.

Whereas the focus of our method is to approximate par-

ameters distributions, POM studies intend to investigate the

implications of potential parameters ranges. It would

indeed not be possible to confidently estimate conductances

from ranges of AP biomarkers and additional constrains

would be required, as shown in our study. Other studies

such as [6], and those reviewed by Muszkiewicz et al. [42]

have triggered important discussions and increased interest

in an important area of research that requires diversity of

techniques and approaches, as shown here. In this context,

our study suggests a new method for PDF estimation that

may indeed be very useful for new applications.

In Test Case 2, the OMM method is applied to synthetic

measurements generated from the Courtemanche human

atrial model. The distribution of six conductances were esti-

mated from AP biomarkers obtained in control conditions.

Interestingly, the variability observed in the biomarkers set

is less informative than that of the AP traces themselves.

This is highlighted by the fact that distributions of two

conductances are poorly estimated compared to the first

test case. Indeed, the biomarkers are features computed

from the AP traces themselves and are therefore doomed to

carry as much or less information about the underlying par-

ameters. However, studying biomarkers instead of AP traces

is justified by the fact that, in practice, certain experimental

sets contain only biomarker values. To tackle this, a strategy

was set up to extract more information from the AP bio-

markers. This was done by changing the stimulation

frequency which unveiled new dynamics and therefore new

information about the parameters. Interestingly, such a strat-

egy may easily be transposed to an actual experimental

protocol. It is, in fact, commonly practised in cardiomyocyte

experimental studies [43]. Combining the data obtained

using two different frequencies improved the estimation of

gKr and gCaL. gKs was, however, still poorly estimated,

mainly because its effect is very similar to that of gKr, with

a lower amplitude. The investigation of richer stimulation

protocols, such as in [2], in order to improve the estimation

of poorly identifiable parameters could be the focus of

future investigations. It is, in certain cases, possible to suc-

cessfully estimate gKs by conducting an adequate numerical

experiment. In [4] for instance, the authors use the combined

recordings of an AP in normal conditions and with gKs

set to zero.

In Test Case 3, the OMM method is applied to a set of

experimental canine APs recorded from a single canine

ventricular cardiomyocyte. This experimental set is an

illustration of beat-to-beat variability which is mostly charac-

terized by variations of the APD. It is, therefore, natural to

make the hypothesis that these variations are in fact due

to fluctuations in the magnitudes of delayed-rectifier potass-

ium currents (gKr and gKs) which are the most responsible for

APD variations. The APs also exhibit variations around the

notch region which motivated the addition of gto as the

third uncertain parameter. These conductances are known
to be the ones that contribute most to beat-to-beat variability

[34]. All the other parameters were set to a fixed value using

a calibration procedure. Many values of conductances deviate

a lot from their reference values which suggests that this

step is necessary prior to any variability study. The estima-

ted PDF shows that the large variability observed in the

APD is in fact caused by small variations of the underlying

parameters. These findings were confirmed by carrying

out two other independent parameter estimations which

yielded similar distributions for the conductances of interest.

For gKs, the distribution differs when all the conductances

are allowed to vary. This may be explained by the fact

that this parameter is less identifiable compared to gKr, so

that its effect may be compensated or may interfere with

other conductances. Some limitations pertaining to the

experimental set must be considered. Indeed, the isolation

of cardiomyocytes is known to affect the membrane ionic

channels [44] and therefore the distributions obtained for

the conductances of interest may not reflect the in vivo
ones. Furthermore, the experimental traces considered are

just a snapshot of the cell at a certain state. Therefore, extrin-

sic factors operating at a long time scale and contributing to

variations of the AP features are neglected. For instance,

monitoring the APD over the full experimental set reveals

that there are long time scale increasing and decreasing

trends in the APD (see the electronic supplementary

materials in [4]).

In Test Case 4, the OMM method is applied to an exper-

imental set containg AP biomarkers obtained from two

different populations: SR and AF. To each group is associated

a most representative individual whose values of biomarkers

are the closest to the median ones of its group. The calibration

step is very informative as it allows for a first comparison

between the two groups, or more precisely between the

two representatives of each group. The calibration leads to

high differences for gK1 (þ220%), gto (2100%), gCaL (263%)

and gKur (260%) which are qualitatively similar to those

reported in [3]. These differences between the two groups

are also in agreement with the AF remodelling mechanisms

documented in [36–38,45]. The role of IKur seems to be pro-

minent in the onset of AF [7] along with perturbations of

the intracellular Ca2þ dynamics [39] which is coupled to

the L-type calcium current ICaL. Beyond these inter-group

variations captured in the calibration step, the inter-group

variability is revealed by the study of the estimated PDFs.

The results highlight the distribution differences of gto and

gKr between the two groups. In the SR group, these two

conductances feature a normal-like distribution that does

not deviate much from the mean value, whereas in the AF

group those distributions are skewed and much more

spread. The distribution of gNa is similar between the two

groups, which suggests that it does not play an important

role in the AF mechanisms. gK1 also features a much higher

mean value and higher variance in the AF group. A poster-

iori distributions of the biomarkers of interest may be

computed from the estimated PDF. When compared with

the actual distributions (approximated by histograms of the

experimental biomarkers), it shows that the OMM method

succeeded in matching the variability in the measurements.

In the future, studying other biomarkers or other types of

measurements may lead to a better understanding of the

AF mechanisms and of the sources of variability within

each group.
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We now discuss limitations concerning inverse problems

in electrophysiology in general and the OMM method in

particular. Akin to many inverse problem studies in electro-

physiology, we make the assumption that all variability

observed in the experimental dataset can be explained by

the variation of only a few conductances. Not only are

there a large number of different conductances but there

are also other parameters such as the parameters governing

the dynamics of the channel gates. However, such a simplifi-

cation is supported by two main considerations. First,

the proposed approach is limited by its computational cost.

Considering a large number of free parameters means that

more samples are required to span the high-dimensional

parameter space, which may be intractable in practice.

Second, the information available in the AP traces is not

enough to constrain all the model parameters. Adding

other sources of information such as intracellular calcium

concentrations revealed by fluorescence [46] or cell impe-

dence [47] may allow the estimation of more than six

parameters. Considering that, choosing the right set of

varying conductances is still paramount.

The rationale for choosing the six conductances investi-

gated in this work was based on their known importance

in determining the cardiac AP, and key properties including

upstroke velocity, plateau duration, resting potential and

AP duration. Among them, we included gKs knowing that

due to the redundancy of currents during repolarization it

would be expected to be poorly identifiable. Our method

can, however, be extended to include variability in additional

parameters if needed.

Another limitation comes from the experimental sets

themselves. Cells coming from different regions of the heart

exhibit different variability patterns in their APs. In the con-

text of assessing the effect of a drug or investigating

the causes of a heart disease, this approach should be

repeated with a wider variety of cell locations. Furthermore,

the electrical behaviour of an isolated cell differs from one

that is embedded in a tissue. Therefore, using measurements

at the tissue scale [48] (for example using MEA mea-

surements [49]) may yield results that are closer to the

in vivo conditions.

Another point to be discussed is the use of biomarkers

versus time traces. This is often imposed by the type of exper-

imental data available. Ranges of biomarkers using standard

protocols are easily accessed by experimentalists, and raw AP

data are not always available. It is, therefore, important to

evaluate the use of both biomarker ranges and AP traces.

The set of available biomarkers is often dictated by exper-

imental constraints. It is, however, possible, when there

are many available biomarkers, to conduct a preliminary

study to determine which biomarkers should be taken into

account in order to recover certain parameters of interest.

Such a study would consist in applying the proposed

method several times with different underlying variations
of parameters. Then, for a given set of experimental con-

straints, it would be possible to assess whether the

proposed method would be able to recover the underlying

distributions of parameters. Finally, the choice of numerical

settings pertaining to the OMM method is discussed. The

OMM method relies on the matching of the statistical

moments of some observable quantities. The number of

moments Nm to be matched is therefore important. In most

applications, choosing Nm ¼ 2 or 3 is sufficient to capture

the distribution of parameters. A common heuristics is to

increase Nm until no siginificant change in the estimated

PDF is observed. Note that using high Nm often leads to

numerical instability, all the more so if the noise level in the

measurements is high.

In summary, we have presented a new method for esti-

mating the PDF of parameters of AP models from various

sets of AP measurements. The AP measurements may come

in the form of waveforms (time series) or biomarkers. The

method has been illustrated with both synthetic and

experimental sets which exhibit both inter-subject and

intra-subject variability. The approach we describe has

potentially important implications in drug safety pharma-

cology and more generally in the understanding of

variability in ionic properties of cardiomyocytes. It intends to

be in line with recent works, suggesting that computational

models are a powerful tool to evaluate drug toxicity [50].

More generally, the proposed approach may be a new

way to investigate the sources of variability observed in

electrophysiology that are experimentally difficult to assess.
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Knaut M, Varró A, Ravens U. 2004 Role of IKur in
controlling action potential shape and contractility
in the human atrium influence of chronic atrial
fibrillation. Circulation 110, 2299 – 2306. (doi:10.
1161/01.CIR.0000145155.60288.71)

8. Gemmell P, Burrage K, Rodriguez B, Quinn TA. 2014
Population of computational rabbit-specific
ventricular action potential models for investigating
sources of variability in cellular repolarisation. PLoS
ONE 9, e90112. (doi:10.1371/journal.pone.0090112)

9. Hui BBCB, Dokos S, Lovell NH. 2007 Parameter
identifiability of cardiac ionic models using a novel
CellML least squares optimization tool. In 2007 29th
Annual Int. Conf. of the IEEE Engineering in Medicine
and Biology Society, pp. 5307 – 5310. New York, NY:
IEEE.

10. Syed Z, Vigmond E, Nattel S, Leon LJ. 2005 Atrial
cell action potential parameter fitting using genetic
algorithms. Med. Biol. Eng. Comput. 43, 561 – 571.
(doi:10.1007/BF02351029)

11. Chen F, Chu A, Yang X, Lei Y, Chu J. 2012
Identification of the parameters of the Beeler –
Reuter ionic equation with a partially perturbed
particle swarm optimization. IEEE Trans. Biomed. Eng.
59, 3412 – 3421. (doi:10.1109/TBME.2012.2216265)

12. Kaur J, Nygren A, Vigmond EJ. 2014 Fitting
membrane resistance in single cardiac myocytes
reduces variability in parameters. In Computing in
cardiology 2014 (ed. A Murray), pp. 209 – 212.
New York, NY: IEEE.

13. Lombardo DM, Fenton FH, Narayan SM, Rappel W-J.
2016 Comparison of detailed and simplified models
of human atrial myocytes to recapitulate patient
specific properties. PLoS Comput. Biol. 12,
e1005060. (doi:10.1371/journal.pcbi.1005060)

14. Koutsourelakis P-S. 2009 A multi-resolution,
non-parametric, Bayesian framework for
identification of spatially-varying model parameters.
J. Comput. Phys. 228, 6184 – 6211. (doi:10.1016/j.
jcp.2009.05.016)

15. Grenier E, Louvet V, Vigneaux P. 2014 Parameter
estimation in non-linear mixed effects models with
SAEM algorithm: extension from ode to PDE. ESAIM:
Math. Model. Numer. Anal. 48, 1303 – 1329.
(doi:10.1051/m2an/2013140)

16. Romero L, Pueyo E, Fink M, Rodrı́guez B. 2009
Impact of ionic current variability on human
ventricular cellular electrophysiology. Am. J. Physiol.
Heart Circ. Physiol. 297, H1436 – H1445. (doi:10.
1152/ajpheart.00263.2009)

17. Marder E, Taylor AL. 2011 Multiple models to
capture the variability in biological neurons and
networks. Nat. Neurosci. 14, 133 – 138. (doi:10.
1038/nn.2735)

18. Drovandi CC, Cusimano N, Psaltis S, Lawson BAJ,
Pettitt AN, Burrage P, Burrage K. 2016
Sampling methods for exploring between-subject
variability in cardiac electrophysiology experiments.
J. R. Soc. Interface 13, 20160214. (doi:10.1098/rsif.
2016.0214)

19. Jaynes ET. 1957 Information theory and statistical
mechanics. Phys. Rev. 106, 620 – 630. (doi:10.1103/
PhysRev.106.620)

20. Gerbeau J-F, Lombardi D, Tixier E. 2016 A moment-
matching method to study the variability of
phenomena described by partial differential
equations. See https://hal.archives-ouvertes.fr/hal-
01391254.

21. Rosenthal JS. 1995 Minorization conditions and
convergence rates for Markov chain Monte Carlo.
J. Am. Stat. Assoc. 90, 558 – 566. (doi:10.1080/
01621459.1995.10476548)

22. Barber S, Voss J, Webster M. 2015 The rate of
convergence for approximate Bayesian computation.
Electron. J. Stat. 9, 80 – 105. (doi:10.1214/15-
EJS988)

23. Courtemanche M, Ramirez RJ, Nattel S. 1998 Ionic
mechanisms underlying human atrial action
potential properties: insights from a mathematical
model. Am. J. Physiol. Heart Circ. Physiol. 275,
H301 – H321.

24. Luo C-H, Rudy Y. 1994 A dynamic model of the
cardiac ventricular action potential. I. Simulations of
ionic currents and concentration changes. Circ. Res.
74, 1071 – 1096. (doi:10.1161/01.RES.74.6.1071)

25. Decker KF, Heijman J, Silva JR, Hund TJ, Rudy Y.
2009 Properties and ionic mechanisms of
action potential adaptation, restitution, and
accommodation in canine epicardium.
Am. J. Physiol. Heart Circ. Physiol. 296, H1017 –
H1026. (doi:10.1152/ajpheart.01216.2008)

26. Davies MR, Mistry HB, Hussein L, Pollard CE,
Valentin J-P, Swinton J, Abi-Gerges N. 2011 An in
silico canine cardiac midmyocardial action potential
duration model as a tool for early drug safety
assessment. Am. J. Physiol. Heart Circ. Physiol.
302, H1466 – H1480. (doi:10.1152/ajpheart.
00808.2011)

27. Hund TJ, Rudy Y. 2004 Rate dependence and
regulation of action potential and calcium transient
in a canine cardiac ventricular cell model. Circulation
110, 3168 – 3174. (doi:10.1161/01.CIR.0000147231.
69595.D3)

28. Kogan BJ. 2009 Introduction to computational
cardiology: mathematical modeling and computer
simulation. Berlin, Germany: Springer Science &
Business Media.

29. Cuellar AA, Lloyd CM, Nielsen P, Bullivant DP,
Nickerson D, Hunter P. 2003 An overview of CellML
1.1, a biological model description language.
Simulation 79, 740 – 747. (doi:10.1177/
0037549703040939)

30. Cohen SD, Hindmarsh AC. 1996 CVODE, a stiff/
nonstiff ODE solver in C. Comput. Phys. 10,
138 – 143. (doi:10.1063/1.4822377)

31. Hansen N. 2006 The CMA evolution strategy: a
comparing review. In Towards a new evolutionary
computation (eds JA Lozano, P Larrañaga, I Inza, E
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