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Abstract

Atherosclerotic coronary artery disease remains a leading cause of worldwide morbidity and mortality. Invasive angi-

ography currently remains the gold standard method of diagnosing and treating coronary disease; however, more

sophisticated adjunctive interventional technologies have been developed to combat the inter and intra-observer

variability frequently encountered in the assessment of lesion severity. Intravascular imaging now plays a key role in

optimising percutaneous coronary interventions and provides invaluable information as part of the interventional car-

diologist’s diagnostic arsenal. The principles, technical aspects and uses of two modalities of intracoronary imaging,

intravascular ultrasound and optical coherence tomography, are discussed. We additionally provide examples of cases

where the adjunctive intracoronary imaging was superior to angiography alone in successfully identifying and treating

acute coronary syndromes.
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Introduction

Cardiovascular disease remains the principal non-com-
municable cause of death worldwide.1 The predomin-
ant underlying aetiology is coronary artery disease due
to the process of atherosclerosis within medium and
large-sized vessels. It results in connective tissue prolif-
eration and lipid accumulation with the vascular intima
leading to plaque formation and subsequent plaque
thrombosis, resulting from either denuded endothelium
or deep plaque rupture.2

There have been major advances in the diagnosis
and treatment of coronary artery disease over the
past several decades with invasive angiography remain-
ing the gold standard for diagnosis. However, since its
inception over four decades ago, numerous adjunctive
techniques have been developed to improve its diagnos-
tic accuracy.3 In general, angiography overestimates
lumen dimensions.4 Its limitations include the fact
that it only provides a two-dimensional view of a
three-dimensional structure and, consequently, is poor
at accurately estimating plaque volume, morphology or
lesion severity. Considerable remodelling of the vessel
wall and lumen shape occurs in the natural history of
the atherosclerotic process and this cannot be

accounted for when assessing coronary artery stenoses
with angiography only, thereby introducing errors.5,6

In addition, there is also considerable intra- and inter-
observer variability in interpretation of stenosis severity
during left heart catheterisation.7

Recent advances in the invasive management of cor-
onary artery disease including the use of rotational
atherectomy, intracoronary brachytherapy and the
introduction of bioabsorbable coronary stents,
demand precision and more accurate assessment of
the culprit lesion and surrounding vessel than can be
met by simple diagnostic angiography alone. Even
though success rates and long-term outcomes from
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percutaneous coronary procedures have significantly
improved with time, the procedure is not without its
inherent risks such as re-stenosis and stent thrombosis.8

Several adjunctive technologies that are currently in
use in the cardiac catheterisation laboratory evaluate
either the physiological significance (determining pres-
sure wire indices to calculate fractional flow reserve) or
anatomically visualise a coronary atherosclerotic
lesion. The latter strategy employs invasive imaging
techniques such as intravascular ultrasound (IVUS) or
optical coherence tomography (OCT). These newer
technologies are of particular value in assessing inter-
mediate coronary artery lesions (lesion with a stenosis
diameter of between 40% and 70%), left main stem
disease, bifurcation disease, ostial lesions and coronary
bypass conduit disease.

The aim of this review is to provide an overview of
the principles and current uses of IVUS and OCT. We
additionally provide examples of cases where the
adjunctive intracoronary imaging was superior to angi-
ography alone in successfully identifying and treating
acute coronary syndromes.

Intravascular ultrasound

Intravascular ultrasound (IVUS) is a catheter-based ima-
ging technique, developed over 20 years ago by Yock,
Hodgson and colleagues in 1989.9,10 It uses reflected
sound waves to provide a cross-sectional tomographic
view of the vessel lumen and the entire wall, including
the full thickness of any present plaque in vivo.11

It is now widely used as an adjunct to conventional
coronary angiography and percutaneous coronary
intervention procedures. IVUS enables the operator
to directly visualise the full 360� circumference and
take accurate measurements by direct planimetry of
the vessel lumen and atherosclerotic plaque. By doing
so, it has been shown to detect atherosclerotic abnorm-
alities in angiographically normal arteries. This is of
relevance because previous studies have suggested that
apparently minimal to moderate plaque lesions on angi-
ography may be most likely to rupture and cause acute
coronary syndromes.12–14 The literature, however,
reports a number of conflicting theories regarding the
severity of culprit lesions, particularly in the context of
ST-segment elevation myocardial infarction prior to the
index presentation.15–17 Invasive angiography alone is
insensitive to plaque size and atherosclerotic burden,
and it is now recognised that IVUS allows accurate
depiction of positive remodelling, whereby luminal
area has been maintained despite heavy plaque
burden, which may itself increase the risk for acute cor-
onary presentations.17

When used to assess the atherosclerotic burden,
IVUS has a higher resolution than non-invasive meth-
ods such as multi-detector computed tomography or
cardiac magnetic resonance imaging.18 Complex vessel
areas such as angiographically foreshortened segments,
ostial disease, diffusely diseased areas, bifurcation sten-
osis and long lesions can be more accurately assessed.
Therefore, IVUS is not only used during elective per-
cutaneous procedures but also in the setting of acute
coronary syndromes.19,20

IVUS is able to assess vessel wall composition and
identify any abnormalities such as inadequate stent
apposition or expansion, as well as the presence of dis-
sections following PCI, thus guiding the operator to
optimise intervention.21–23 The distribution and struc-
ture of the atheromatous plaque are important factors
affecting the success of PCI, brachytherapy as well as
atherectomy24 and by facilitating more precise plaque
assessment, IVUS has become increasingly invaluable
to the interventional cardiologist.25,26

In the era of drug eluting stents, IVUS-guided PCI
has been shown to reduce major adverse cardiovascular
events (MACE) when compared with angiographically
guided PCI.27 This IVUS-guided PCI associated
MACE reduction has also been found with implant-
ation of newer generation stents. In their study,
Hong demonstrated at 1-year follow-up among
patients requiring long coronary stents, IVUS-guided
everolimus-eluting stent implantation was associated
with a composite reduction in MACE, although this
was largely driven by a reduction in target lesion revas-
cularisation.28 This was further supported by a recent
meta-analysis corroborating the reduction in ischae-
mia-driven target lesion revascularisation, as well as
lower cardiovascular mortality and stent thrombosis
rates with an IVUS-guided approach.29

The procedure itself is technically simple to per-
form and is associated with a low complication risk.
A multi-centre survey of over 2000 IVUS cases
showed only an association with (but not necessarily
the direct cause of) minor acute clinical risks. The
most common of these was spasm in 2.9% of all the
IVUS studies. Other acute procedural and major com-
plications (including vessel occlusion, dissection and
thrombosis resulting in myocardial infarction, CABG
or worse) occurred in 0.3% and 0.1% of patients,
respectively.11

The device consists of a miniaturised ultrasound
transducer (either a mechanically rotated single trans-
ducer system device or multi-element electronic array
system), mounted on the tip of a catheter and attached
to a console, which reconstructs the image. The trans-
ducer is oriented so that the ultrasonic beam produced

2 Journal of the Royal Society of Medicine Cardiovascular Disease 0(0)



is aimed parallel to the long axis of the catheter.19

Typically high ultrasound frequencies around 20–50
MHz are used to achieve greater radial resolution at
the expense of penetration depth.

Heparin and intracoronary nitroglycerin are admin-
istered to reduce the risk of coronary vasospasm prior
to target coronary artery sub-selective cannulation. The
IVUS catheter is then advanced into the target vessel
and the transducer positioned beyond the target seg-
ment. A motorised drive unit with an automatic pull-
back system progressively withdraws the transducer at
a constant speed, usually at 0.5mm/s, although this can
be done manually. IVUS measurements are made at
every 1mm distance of pullback. Three layers of the
coronary arterial wall are identified on gray-scale
IVUS: the intima layer, the muscular media layer,
which appears as a dark band, and the adventitia
layer. Calcified plaque appears brightly echo-reflective
and creates a dense shadow, as well as reverberation
markers appearing radially at spaced intervals from
the calcified segment.30 Fibrotic tissue gives a bright,
but less intense appearance and fatty plaque tissue is
less bright than the adventitia layer. Using electronic
callipers and computerised planimetry, quantitative
measurements are made at the narrowest cross-section
to determine the minimal luminal area (MLA) and
diameter, and at a reference ‘normal’ segment (within
10mm proximal or distal to the culprit lesion). This
allows calculation of percentage stenosis, plaque area
and plaque burden.

Virtual histology IVUS (VH-IVUS) is an iteration of
the standard gray-scale version. It uses an automated
algorithm to process the reflected ultrasound backscat-
ter signal, further distinguishing plaque components
such as fibrous tissue, fibrofatty tissue, necrotic lipid
core and dense calcium.31 Atherosclerotic plaque rup-
ture is now accepted as the main cause of acute coron-
ary events. These vulnerable plaques are characterised
by a thin fibrous cap (less than 65 mm), large lipid pool
with increased macrophage activity and play a key role
in the atherosclerotic process. Detection of these vul-
nerable thin caps, as well as additional features of
plaque instability such as cholesterol crystals and neo-
vascularisation, are well below the axial resolution of
VH-IVUS.32 In order to address these concerns, mod-
ified criteria have been implemented for VH-IVUS
identification of vulnerable thin-capped fibroatheroma
(TCFA); a focal necrotic core (>10% of total plaque
area) without overlying fibrous tissue in the presence of
percent atheroma volume >40%.33 A number of pro-
spective studies have now shown associations between
VH-IVUS derived high risk plaque morphology, such
as the presence of VH-IVUS TCFA, and future MACE

confirming the biological and to some extent, prognos-
tic importance of VH-IVUS in identifying plaque com-
position.34–36 Indeed, plaque modification with statin
therapy has recently been evaluated with VH-IVUS
by Park et al. In their prospective single-centre study,
rosuvastatin was associated with a reduction in propor-
tionate necrotic core volume, total plaque volume and
VH-IVUS defined TCFA at 1-year follow-up in non-
culprit lesions. Further studies are warranted to assess
whether the plaque modification observed translates to
outcome improvement.37

Although an accurate anatomical assessment can be
made, IVUS does not provide physiological information
on which revascularisation decisions frequently depend.

Fractional flow reserve (FFR) is currently the inva-
sive modality of choice in assessing the haemodynamic
significance of stenoses. A haemodynamically insignifi-
cant lesion assessed by FFR correlates well with an
insignificant lesion detected by IVUS. However, pre-
dicting abnormal FFR with IVUS assessment proves
more challenging due to various factors other than per-
cent area stenosis influencing the functional effects of a
lesion.38 Previous studies have demonstrated moderate
correlation at best between MLA cut-off values and
FFR confirmed ischaemic lesions.38,39 An international,
prospective, multi-centre registry concurred with this
premise and identified an optimal threshold for correl-
ation with an ischaemic FFR (<0.8) of MLA below
3.07 mm2 in non-left-main stem lesions (64% sensitiv-
ity, 64.9% specificity). FFR correlated with plaque
burden but not VH-IVUS-derived plaque composition.
The authors conceded that despite moderate correl-
ation and a high ischaemic negative predictive value
for lesions with MLA >3.07mm2, accuracy could be
improved when using a reference vessel-specific ana-
lysis. This led to the conclusion that IVUS has a limited
role in the functional assessment of intermediate sten-
osis to accurately identify ischaemia-inducible lesions
and ascertain the indication for revascularization, but
remains a valuable and established tool to guide percu-
taneous coronary intervention.40

Optical coherence tomography

Optical coherence tomography (OCT) is a more novel
modality in comparison to IVUS. It was first developed
for cross-sectional retinal imaging in the 1990 s but over
the last two decades its application has rapidly expanded
to other fields and is now extensively used in interven-
tional cardiology.41 It provides the highest resolution of
all currently used invasive imaging modalities (5 to
20mm) resulting in high quality cross-sectional tomo-
graphic images of the coronary architecture.42
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Ultrasound is replaced by infra-red light emitted
from a rotating fibre-optic system. This is then reflected
or back-scattered from internal structures within tissue
and analysed by interferometric techniques. The OCT
image is produced from the backscattered light from
the vessel wall and the echo time-delay signal.
It provides a detailed image of around ten times greater
resolution than that achieved with IVUS due to the
shorter wavelength of the imaging light (�1300 nm)
compared with ultrasound.43 This is at the expense of
a reduced tissue penetration depth of 1–3mm (com-
pared with 4 to 8mm with IVUS) with the exception
of calcified lesions.44

Two main technologies exist to create OCT images:
the time-domain (TD-OCT) or frequency domain
(Fourier or FD-OCT) technique. The latter is preferred
due to faster image acquisition rates and a better signal-
to-noise ratio. It uses a fixed mirror with a variable
frequency light source allowing simultaneous detection
of reflections.45 The older TD-OCT uses a moving
mirror as its reference arm and a broadband light
source. Because of its slow acquisition speed, it is neces-
sary to occlude the target proximal coronary artery. An
over-the-wire low-pressure occlusion balloon catheter
with distal flush ports is used to infuse saline or
Ringer’s Lactate at a rate of approximately 0.5mL/s
for a maximum of 30 s in total in order to selectively
displace blood during the image acquisition. Any
amount of residual red blood cells will otherwise
cause significant signal attenuation. Unfortunately,
this action increases the risk of coronary damage and
myocardial ischaemia. In the newer FD-OCT system,
the higher acquisition frame rate and accelerated pull-
back speed permits the use of a single, high rate injec-
tion of a bolus of contrast to produce a blood-free
environment, thereby eliminating the need for balloon
occlusion46,47 and its potential ischaemic complications.

TCFA are the most rupture-prone lesions and, con-
sequently, remain a predictor of major adverse cardio-
vascular events.48,49 Studies to quantify fibrous cap
thickness have shown that the incidence of TCFA is
highest in acute myocardial infarction, intermediate in
acute coronary syndromes and lowest in chronic stable
angina. OCT with its superior resolution capacity is the
only current imaging tool than can accurately visualise
and quantify the thin fibrous cap.50 Correlating with
histopathology, the sensitivity and specificity of OCT
are 92% and 94% respectively for identifying lipid-rich
plaque, 95% and 100% for fibro-calcific plaque and
87% and 97% respectively for fibrous plaque.42

OCT is also able to quantify the activated macro-
phage content beneath the plaque fibrous cap.
Macrophages with their high lipid content produce
strong optical signals detectable by OCT, which is rele-
vant as increased macrophage density is thought to

contribute to the instability of vulnerable plaques.51–53

Due to its limited tissue penetration, however, OCT is
unable to assess in depth total plaque volume or vascular
remodelling. Current OCT systems are not suitable to
reliably assess tissue at depths beyond 2mm.54 In con-
trast to ultrasound, however, light penetrates calcium
and OCT is able to depict calcific nodules with well-
defined boundaries with high sensitivity and specificity.55

OCT has also demonstrated superiority in assessing cul-
prit lesions, particularly identifying thrombus, plaque
erosion and rupture when compared to IVUS or angio-
scopy.56 Earlier papers have also alluded to OCT outper-
forming IVUS in detecting spontaneous and PCI-
induced dissection, tissue prolapse and incomplete stent
apposition, all of which have been implicated in acute as
well as late stent thrombosis.57,58 In addition, limited out-
come data exists to show OCT-guided PCI as superior to
angiography alone.59 This unrivalled endovascular reso-
lution has allowed assessment of the vascular response at
individual stent strut level following device deployment.
Hence, numerous in vivo OCT studies have exploited its
capability to study factors related to the prognosis of
stent-implanted lesions, including neointimal hyperplasia,
stent strut coverage, stent malapposition and in-stent
neoatherosclerosis.60–62 With the emergence of bioab-
sorbable vascular scaffolds (BVS) and polymer-free
drug eluting stents, OCT has also been the primary ima-
ging modality to follow-up recruited cohorts assessing
stent strut resorption/ coverage, as well as optimisation
at the time of implantation.63,64

Both IVUS and OCT therefore provide useful and
differential information to diagnose, plan and evaluate
PCI. When enhanced visualisation of plaque character-
istics and microstructure are required such as detection
of intimal tears, thrombus, stent malapposition and
intimal hyperplasia, OCT provides a more superior
modality given its greater spatial resolution. Despite
limitations in resolution, IVUS provides valuable infor-
mation regarding plaque area, volume, morphology
and vessel size. Unlike OCT, ostial disease can be
imaged adequately as blood expulsion with contrast
from the field of view is not necessary. Its superior
depth of penetration also allows greater intracoronary
visualisation of larger diameter and ectatic vessels.

A summary of the main differences between FD-OCT
and IVUS are provided in Table 1, and the tissue char-
acteristics with OCT appearance are outlined in Table 2.

Case studies

IVUS-guided pci following acute coronary syndrome
of an angiographically unobstructed coronary artery

A 67-year-old Asian female, with a background of pri-
mary percutaneous coronary intervention (PPCI) to the
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left anterior descending artery (LAD) in 2012, was
admitted to our unit with cardiac chest pain, elevated
troponin I titres and anterior T-wave inversion
on electrocardiography (ECG). An echocardiogram
confirmed anterior regional wall motion abnormality
in the context of mild left ventricular impairment.
Following appropriate initiation of medical therapy for
non-ST-elevation myocardial infarction (NSTEMI),
coronary angiography was performed demonstrating
a right dominant unobstructed coronary circulation
and a patent stent in the proximal LAD (Figure 1(a)
and (b)). In view of her presentation, we undertook
IVUS assessment of the LAD demonstrating a grossly
under-expanded stent as well as severe eccentric fibro
calcific disease in the ostium (Figure 1(c) and (d)). The
stent was post dilated and following predilatation of
the ostium, a new drug eluting stent was deployed.
The patient’s recovery was uneventful and she was dis-
charged home.

OCT-guided pci following acute coronary
syndrome of an angiographically unobstructed
coronary artery

A 67-year-old hypertensive male presented to our unit
with a 24-hour history of intermittent episodes of chest
pain at rest. Routine investigations demonstrated
T-wave inversion on the ECG, and elevated
troponin I level. Coronary angiography demonstrated
a right dominant unobstructed coronary circulation
(Figure 2(a) and (b)). OCT assessment of the LAD
showed a long segment of fibrotic disease with a min-
imal luminal area of 1.98mm2 at the level of the first
diagonal (Figure 2(c) and (d)). Using an average for
reference vessel area of 7.29mm2, this equated to a
cross-sectional area stenosis of 73%. The lesion
was stented with two drug-eluting stents. He was dis-
charged home the following day and remains well at
follow-up.

Future perspectives

IVUS technology is continually evolving.
Radiofrequency back-scatter analysis converts radio-
frequency signals from IVUS into colour-coded regions
depending on the plaque composition thereby provid-
ing a virtual histology of the atherosclerotic lesion,65

which is now widely utilised. VH-IVUS has recently
been shown to reliably identify TCFA when compared
with OCT analysis of autopsied human hearts.66

Mechanical strain assessment with IVUS elastography
measures the mechanical strain property of the vessel
wall with studies demonstrating different mean strain
values between different plaque components.
Histological vulnerable plaque correlates with an ele-
vated strain value with adjacent low strain values.67

More recently, a hypothesis generating study analysing
plaque structural stress has also demonstrated a posi-
tive correlation with higher-risk underlying plaque sub-
types, representing a potential future application to aid
with predicting plaque rupture.68 Hybrid imaging com-
bining IVUS technology with near infra-red spectros-
copy (NIRS) accurately characterises lipid-rich plaques
within coronary arteries. Despite data reporting NIRS
derived lipid core burden index being no different
between acute coronary and stable angina patients,69

ST elevation MI patients have been identified by
NIRS as having large lipid-rich plaques at the culprit

Table 2. Tissue characteristics observed with OCT.

Tissue

characteristics OCT characteristics

Fibrous Homogenous

High reflectivity Low attenuation

Lipid Diffuse edges

High reflectivity

High attenuation

Calcific Sharp well-defined edges

Low reflectivity (compared to IVUS)

Low attenuation

Red thrombus Mass protruding into vessel lumen

Medium reflectivity

High attenuation

White thrombus Luminal protrusion

Medium reflectivity

Low attenuation

Stents: Metallic High reflectivity

High attenuation

Bioresorbable Low reflectivity (if residual polymer

present)

Low attenuation

OCT: optical coherence tomography.

Table 1. Major differences between OCT and IVUS.

OCT IVUS

Tissue penetration 1–2 mm 6–10 mm

Technology Near infra-red Ultrasound

Imaging speed (pull back) 20 mm/s 1 mm/s

Resolution: Axial 15mm 100–200 mm

Transverse 20–40mm 200–300 mm

Catheter size 3.2Fr 3.5Fr

Blood removal with contrast Yes No

OCT: optical coherence tomography; IVUS: intravascular ultrasound.
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site.70 Ongoing prospective studies will investigate
whether this combined dual probe catheter-based
approach translates to an accurate prediction of
MACE.

In the realm of OCT, research studies assessing stent
edge and strut detection capabilities, qualitative and
quantitative strut-level analysis, improved tissue char-
acterisation with texture analysis and polarisation
(making use of random scattering found in some tissues
and reproducible birefringence found in highly orga-
nized collagen-rich tissues) are either in progress or
are being proposed. An important area of continual
research assesses the impact and efficacy of proposed
anti-platelet and anti-atherosclerotic therapy in the
management of coronary artery disease.

There are several randomised open-labelled
studies in progress which aim to address the current
dearth of clinically applicable OCT outcome trial
data. The FORZA study will compare the economic
and clinical impact of OCT guidance versus FFR in

the assessment of angiographically intermediate coron-
ary lesions.71

The DOCTORS study will evaluate the impact of
changes in procedural strategy resulting from the use
of OCT after angioplasty and stent implantation of a
lesion responsible for non-ST-elevation acute coronary
syndrome.72

Novel stent technologies such as BVS rely heavily
upon adequate intracoronary imaging guidance. Co-
registration has demonstrated superiority of OCT
over VH-IVUS in optimising PCI with BVS to reduce
rates of scaffold thrombosis.73,74 The use of OCT in
BVS optimisation has also been used in more complex
coronary anatomy such as chronic total occlusions.75

Future developments include ultra-high resolution or
micro-OCT, which will provide even higher quality
images with spatial resolutions ten times that of
FD-OCT, permitting sub-cellular analysis of atheroscler-
osis, which may be used for individualised or targeted
therapy in the prevention of coronary artery disease.

Figure 1. (a) Postero-anterior (PA) cranial view of the left coronary circulation demonstrating mild proximal and mid LAD disease;

(b) PA caudal view demonstrating mild ostial LAD disease with a patent proximal stent; (c) IVUS revealing a grossly under-expanded

proximal portion of the LAD stent. (The dashed yellow line delineates the border of the coronary vessel wall. The blue dashed line

demonstrates the inner most stent struts malapposed from the vessel wall.); (d) IVUS of severe eccentric fibrocalcific ostial LAD

disease. (Note the blue arrows indicating areas of calcification.).
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Conclusion

Our cases have emphasised the value of intracoronary
imaging in cases where no clear culprit lesion is identifi-
able on the unaided angiographic images. As demon-
strated, adjunctive imaging is now recommended to
ascertain the aetiology of stent failure where inadequate
stent apposition or stent under-expansion could propa-
gate stent thrombosis or re-stenosis. Their roles in
research are well documented, including assessing the sta-
bility of vulnerable plaques by analysing its elastic and
acoustic features with elastography and radiofrequency
analysis, qualitative and quantitative stent strut analysis,
hybrid imaging technologies and studying the efficacy of
new anti-atherosclerotic therapies. Further research is
warranted to ascertain if prognostic benefit can be
gained with future clinical applications both in the cardiac
catheter lab and wider cardiology practice.
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