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A B S T R A C T   

This study assesses the application of a handheld, near infrared spectroscopy (NIRS) device, namely the Neo
Spectra Micro, for the determination of oregano authenticity. Utilising a large sample set of oregano (n = 295) 
and potential adulterants of oregano (n = 109), models were developed and validated using SIMCA 15 software. 
The models demonstrated excellent predictability for the determination of authentic oregano and adulterant 
samples. The optimal model resulted in a 93.0% and 97.5% correct prediction for oregano and adulterants, 
respectively. Different standardisation approaches were assessed to determine model transferability to a second 
NIRS device. In the case of the second device, the best predictions were achieved with data that had not un
dergone any spectral standardisation (raw). Subsequently, the optimal model was able to correctly predict 90% 
of authentic oregano samples and 100% of the adulterant samples on the second device. This study demonstrates 
the potential of the device to be used as a simple, cost effective, reliable and handheld screening tool for the 
determination of oregano authenticity, at various stages of the food supply chain. It is believed that such forms of 
monitoring could be highly beneficial in other areas of food authenticity analysis to help combat the negative 
economical and health implications of food fraud.   

1. Introduction 

The complex and global nature of food supply chains has highlighted 
a need to provide cost effective and rapid analytical approaches to 
ensure food authenticity [1]. This has become more evident with the 
current coronavirus (COVID-19) pandemic that has led to the major 
disruption of food supply chains, increased demand for food, diminished 
levels of surveillance and, potentially may lead to increased food prices 
in the future [2]. This volatility within the food system provides the 
perfect environment for fraudulent activity, and this has already been 
evidenced by the seizure of two shipments of horsemeat destined for the 
EU markets, reminiscent of the 2013 horsemeat scandal [3]. This vola
tility is likely to intensify with new trading relationships developing and 
a lack of robust systems in place to gather intelligence on potential food 
fraud risks or incidences [4]. Both the COVID-19 crisis and continuing 
issues caused by climate change have the potential to leave the food 
supply chain even more vulnerable to fraudulent activity. To help 
mitigate against these risks, a testing approach that can be conducted 
easily and effectively at various stages of the supply chain, to ensure the 

quality, safety and authenticity of the food we consume, is needed. 
Herbs and spices have been identified as one of the most widely 

adulterated food commodities globally [5]. This is, in part, due to the 
high intrinsic value of herbs and spices, which is estimated to reach USD 
$25 billion by 2025 [6]. The complex herb and spice supply chain in
corporates small-scale farmers/growers and intertwines many pro
cessors and traders worldwide [7]. Most herbs and spices are grown and 
processed in the country of origin and consequently, it is this highly 
susceptible ground or chopped form that makes its way along the food 
chain [8]. At each point of this long and complex chain, various fraud
ulent activities can be perpetrated, such as artificial enhancement, 
dilution and substitution, removal of authentic constituents and mis
labelling [5]. 

This chain can become even more complex and elongated depending 
on the end product [9]; herbs and spices can be used as a commodity in 
the domestic kitchen (usually in ground form) or further processed to 
produce prepared meals and added-value meats [10]. Thus, the product 
can potentially go through many processing steps, with various other 
ingredients added before it reaches the consumer. For a consumer 
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purchasing herbs or spices to use in the home, it is very likely that 
adulteration will be detected. Apart from the economic and quality 
implications for the consumer, there may also be negative effects on 
health, such as allergic reactions or stomach problems, if an adulterated 
product is consumed [5]. Secondary processors are also impacted by 
non-authentic products, leading to devastating economic implications 
for legitimate food business operators within the food chain. The po
tential implications of herb and spice fraud are poor organoleptic 
properties, which can have a secondary impact on product recipes in 
terms of product quality and consistency (Oakes, D – personal commu
nication), and public health threat, for e.g. allergens, resulting in the loss 
of reputation and consumer trust derived from a fraud incident [5]. 
Adulterated products can travel through the food chain making it 
difficult to control and mitigate. Many food business operators will have 
evaluated their own food chain by assessing the vulnerabilities within it 
[11] and subsequently designed and implemented a mitigation strategy 
[10]. However, the difficulty associated with validating this mitigation 
strategy via routine analytical testing, is a serious limitation within 
quality management procedures [12]. 

Widely used techniques such as mass spectrometry [13,14] and DNA 
analysis [15] are well-established, confirmatory methods used to 
determine food authenticity. These methods are highly sensitive and 
specific, but due to their high cost and labour-intensive methodology, 
they are not conducive to implementation in routine monitoring systems 
[16]. These limitations have initiated an interest in Near Infrared 
spectroscopy (NIRS) approaches for the determination of food authen
ticity. This is due to its non-destructive nature, miniaturization of optical 
components making it portable and/handheld and low cost and robust 
components which make it conducive as a screening tool at various 
points of the food supply chain [17]. Recent research has focused on the 
application of portable NIRS devices for the determination of authen
ticity of cod [18], South African honey [19], veal adulterated with pork 
[20] and the determination of melamine in soya-bean meal [21]. To the 
best of the author’s knowledge, only one publication has outlined the 
application of a portable NIRS device for the determination of authen
ticity of herbs and spices [17]. No methods have addressed the need to 
assess several handheld devices for the determination of herb and spice 
authenticity at various points of the food supply chain. It is evident that 
there is a need for robust screening methods that are cost effective and 
easily used on-site (or handheld), to ensure the authenticity of herbs and 
spices and products thereof, at several stages of the food supply chain. 

A major challenge in developing a NIRS method is the need for the 
development of classification models to interpret the spectra derived 
from complex vibrational overtone and combination bands. Previously, 
when multiple devices were required for use at various stages of the food 
chain, the development of classification models for each individual de
vice were required to compensate for the inherent instrument- 
instrument variation. Due to the costly and time-consuming limita
tions associated with developing models for many devices, model 
transfer has become very desirable. There are two approaches frequently 
undertaken: (1) univariate slope and bias correction of the calibration 
set, and (2) correction of the secondary spectra to mimic that derived 
from the initial device where the model was developed [22–24]. The 
second approach is more frequently undertaken and uses spectral 
standardisation to correct spectra derived from a secondary device. The 
aim is to transform the spectra of samples assessed on a secondary de
vice, so that they correspond to the spectra derived from a primary 
device, which was used in the development of the model [25]. Various 
spectral standardisation approaches have been used, including direct 
standardisation (DS) [26], piecewise direct standardisation (PDS) [27], 
orthogonal signal correction (OSC) [28] and wavelet hybrid direct 
standardisation (WHDS) [29], etc. Each standardisation approach re
quires the measurement of a group of standard samples (transfer sam
ples) by both the primary and secondary device, under the same 
experimental conditions. A mathematical correction is calculated from 
the data, and this can then be applied to samples analysed on the 

secondary device [30]. The optimal standardisation approach will ulti
mately depend on the complexity of the instrument differences. 

Herein, the aim of this work was to assess the capabilities of a hand- 
held NIRS device for the determination of authentic oregano from 
oregano that has been adulterated. Oregano was chosen to assess the 
applicability of the method due to its global use and thus inherent 
vulnerability throughout the food chain [13,14]. Chemometric models 
were developed and externally validated. A second NeoSpectra device 
was assessed to determine if the models developed using spectra from 
the primary device could be used to determine the authenticity of 
samples scanned on the secondary device. To assess the transferability of 
the models, various standardisation approaches were undertaken and a 
correction factor applied to the spectra obtained from a second device. 

2. Materials and methods 

2.1. Samples 

Authentic oregano samples were obtained from different sources and 
origins, with full provenance and traceability (n = 295). A number of 
potential adulterants were identified, including sumac, cistus, myrtle 
and olive (n = 109). All samples were in dried leaf, chopped form and 
stored in sealed bags at ambient temperature, away from direct light. No 
further preparation was required prior to analysis. 

2.2. Spectra acquisition 

A NeoSpectra Micro development kit (SW-001; SWS62231) was ob
tained from Si-ware Systems (Cairo, Egypt). The NeoSpectra Micro 
consists of a monolithic micro-electromechanical system (MEMS) 
Michelson interferometer, a single element photodetector and an elec
tronic driver board. For the purposes of this evaluation, the Spectra 
MOST software was controlled via connection to a PC. However, the 
device has the potential to act as a host on its own through the Raspberry 
Pi board and Bluetooth connectivity, enabling wireless connection to 
mobile phone/tablet application. Thus, the device has the potential to be 
utilised on-site and is portable due to its small dimensions (6 (L) x 3 (W) 
x 4 (H) cm inclusive of Raspberry Pi board). All spectra were collected in 
diffuse reflectance, over a spectral range of 1350 nm–2500 nm. The 
optimal conditions were as follows: 2 s scan time and a default optical 
gain, which was derived from a background scan. The device was left to 
warm up for 10 min prior to analysis by running in continuous mode. 
Prior to the first measurement, a background measurement was 
collected using a Spectralon (99% reflectance) and this was subse
quently updated every 10 min thereafter. Samples were analysed by 
continuously rotating a filled Petri dish over the collection window. A 
second NeoSpectra Micro device (SW-002) was used to assess multi
variate model transfer under the same parameters. 

2.3. Data pre-processing and analysis 

Three spectra were collected for each sample and averaged prior to 
data analysis. The data set was split into a reference set that consisted of 
209 samples and a validation set of 195 samples, which were not used in 
the creation of the model [31]. The samples represented oregano (87%), 
olive (5%), myrtle (3%), cistus (2.5%) and sumac (1.5%) in the reference 
set and oregano (58%) or adulterants (42%) in the validation set. The 
adulterant samples in the validation set were previously tested using a 
confirmatory mass spectrometry method and determined to be up to 
80% adulterated. Pareto scaling was used throughout, which uses the 
square root of the standard deviation as the scaling factor, allowing for a 
reduction in the relative significance of large values, whilst at the same 
time maintaining the structure of the data [32]. Different pre-processing 
strategies were assessed; data was pre-treated with standard normal 
variate (SNV), first order derivatives (1DER), Savitzky-Golay (SG) or a 
mixture thereof, to remove irrelevant light scatter from the spectra. 
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Chemometric analysis was carried out using SIMCA 15 software 
(SIMCA, Sartorius, Sweden). Classification models were built in SIMCA 
using Partial Least Squares Discriminant Analysis (PLS-DA) or orthog
onal PLS-DA (OPLS-DA). The models were validated internally via cross- 
validation, with 1/7th removed and used as the test set and remaining 6/ 
7th used to build the model. The prediction error was calculated for each 
validation set and this procedure was repeated for all subsets. The pre
diction accuracy was also validated using the external validation set 
(data not used in model development). 

Multivariate model transfer was assessed to determine if the model 
developed on SW-001 (primary) was capable of successfully predicting 
samples analysed on a second device (SW-002). Several mathematical 
procedures were assessed using data obtained from both devices. To 
determine the optimal data standardisation required, twenty scans of 
four different samples (two oregano and two adulterant samples) were 
chosen at random. Direct standardisation (DS) and Piecewise direct 
standardisation (PDS) were applied to determine the mathematical 
relationship between the data obtained from the two devices, and thus, 
assess its suitability to the model transfer process [33]. DS uses the 
whole spectrum measured on the primary device to fit each spectral 
point of the secondary spectra. In contrast, PDS utilises several spectral 
measurements in a small window to reconstruct the spectral point on the 
secondary instrument [34,35]. The optimal number of spectral points 
(window) when constructing the transformation matrix was assessed. 
DS and PDS was applied using MATLAB (R2019a, MathWorks Inc.) with 
PLS Toolbox (Version 8.7.1, Eigenvector Research Inc.). Using this in
formation, a factor was determined and applied to a validation set of 40 
samples analysed on SW-002 (secondary device) and the data was 
uploaded to SIMCA 15 software. A simple baseline correction, which 
used subtraction or division, was also assessed using the combined 
spectral differences of the four randomly chosen samples, scanned 

twenty times on SW-001 and SW-002, and the data was input into 
SIMCA 15 software to determine the compatibility of the model transfer. 
Fig. 1 presents an overview of how model development and validation 
was performed on SW-001, and the process of determining the optimal 
standardisation approach for model transfer to SW-002. 

3. Results and discussion 

3.1. NIR spectra of oregano and adulterants 

The average raw spectra of oregano and adulterants (cistus, myrtle, 
olive and sumac) collected using the NeoSpectra Micro NIRS (SW-001; 
primary) are shown in Fig. 2. Overtone and combination bands associ
ated with the absorption of NIR radiation by organic molecules are 
primarily of O–H, C–H, N–H and C––O groups, of which their funda
mental molecular stretching are weak in intensity and usually over
lapping [36]. Thus, NIR spectra are complex, limiting their usefulness 
for direct identification purposes. This is evident from the spectral in
formation shown in Fig. 2. In general, the collected spectra were char
acterised by absorption bands at 1650 nm, 1850 nm, 2000 nm, 2200 nm 
and 2400 nm. Due to the negligible differences between the spectra of 
authentic oregano and the adulterants, the development of a chemo
metric approach was necessary to determine the feasibility of the device 
for authentication purposes. 

3.2. Model development and validation 

Initially, principal component analysis (PCA) was carried out to 
assess the reliability of the data in generating a robust model focusing on 
maximum variance. As PCA is an unsupervised technique, the classifi
cation does not necessarily relate to the principal component patterns. In 

Fig. 1. The workflow for model development and transfer. (1) PLS-DA and OPLS-DA model development and validation using the spectra from the NeoSpectra 
primary device (SW-001) to predict the authenticity of oregano and adulterant samples; (2) Various standardisation approaches were developed using the spectra of 
four transfer samples (20 spectra for each sample) analysed on both the primary and secondary device. (3) The standardisation methods were applied to 40 validation 
set samples that were analysed on the secondary device (SW-002). (4) The standardised spectra derived from the secondary device (SW-002) was assessed against 
models developed on SW-001 (primary). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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this way, it is not prone to overfitting, which is regularly seen with PLS- 
DA analysis, due to the influence of projecting the data in relation to the 
best separation of classification groups [37]. Fig. 3A and B demonstrates 
the PCA score plot of a multiclass model and a two-class model, 
respectively. The separation of oregano and adulterated samples is 
evident in both plots, where clear groupings are observed. The simi
larities between the multiclass and two-class models, in terms of the 
specific groupings, particularly within the adulterant group, demon
strates the robustness of the data and good specificity, and therefore 
warranted further investigation into the predictability of a supervised 

model. 
PLS-DA and OPLS-DA supervised models for the identification of 

oregano and adulterants were developed using spectral data obtained 
from analysis using the primary device. Various pre-processing tech
niques were applied to assess the predictability of the models (Table 1). 
To determine the sensitivity and specificity of each model it was 
necessary to set a ‘cut off’ value or limit, over which the sample was 
deemed authentic oregano. To do this, the predicted values obtained 
from SIMCA 15 software during the classification, with respect to all the 
classes within each model, was used. Practically, the larger the predicted 
value, the greater the probability that the sample belonged to that class. 
To determine a cut-off value for the whole test set, the highest prediction 
value, which encompassed the maximum correct predictions (authentic 
oregano and adulterant samples), was calculated. The cut-off value was 
calculated for each model separately. With the cut-off value set, the 
majority of the models give over 90% correct predictions for oregano 
and the adulterated samples. In relation to the multiclass models, all 
models demonstrated good predictability, apart from the OPLS-DA 
model built using raw data (M2). In this case, the prediction classifica
tion was 72.8% and 60.5% for the adulterants and oregano, respectively. 
This correlates with the R2 and Q2 values obtained for the model (0.375 
and 0.301, respectively). These values indicate that the model can 
explain only a small amount of variation and that the predictability is 
low. This could be due to the effects of noisy or irrelevant data that had 
not underwent any smoothing or other pre-processing. 

The best multiclass model was an OPLS-DA (M8), developed using 
data transformed with SNV, 1DER and SG. This gave correct predictions 
of 95.1% and 91.2% for adulterated samples and authentic oregano, 
respectively. This model also demonstrated a high R2 and Q2 value of 
0.90 and 0.86, respectively, indicating a high level of explained varia
tion and good predictability in cross validation. The PLS-DA multiclass 
model developed with raw data also give high correct predictions of 
93.8% for the adulterants and 93.9% for authentic oregano (M1). 
Interestingly, good predictions were also obtained for the two-class 
models, including M9 and M10 that were built using raw data. In 
particular, the OPLS-DA model developed with data transformed with 
SNV, 1DER and SG give correct predictions of 97.5% and 93.0% for 
adulterant samples and authentic oregano, respectively (M16). This 
model provided slightly improved R2 and Q2 values over its multiclass 
counterpart of 0.97 and 0.99, respectively. As this is a screening 
approach, the aim is to detect as many adulterated samples as possible. 
Therefore, when a sample is correctly or incorrectly predicted as being 
adulterated, the samples will be further assessed via confirmatory 

Fig. 2. The average raw NIR spectra (prior to the application of data pre- 
processing) for cistus, myrtle, olive, oregano and sumac. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 3. Unsupervised PCA score plots of the NIRS data; (A) multiclass model 
and (B) two-class model. All data was pre-processed with SNV and 1DER. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 1 
Predictability of the multiclass and 2-class models determined using an external 
validation set (n = 195).  

Model IID Type Pre-processing Predictability 

Adulterant Oregano 

Multiclass M1 PLS-DA None 93.8% 93.9% 
M2 OPLS-DA None 72.8% 60.5% 
M3 PLS-DA SNV 87.5% 93.0% 
M4 OPLS-DA SNV 93.8% 93.0% 
M5 PLS-DA SNV + 1DER 86.4% 97.4% 
M6 OPLS-DA SNV + 1DER 92.6% 95.6% 
M7 PLS-DA SNV + 1DER + SG 93.8% 93.0% 
M8 OPLS-DA SNV + 1DER + SG 95.1% 91.2% 

2-Class M9 PLS-DA None 95.1% 93.9% 
M10 OPLS-DA None 95.1% 93.9% 
M11 PLS-DA SNV 93.8% 93.0% 
M12 OPLS-DA SNV 93.8% 92.1% 
M13 PLS-DA SNV + 1DER 92.6% 90.4% 
M14 OPLS-DA SNV + 1DER 91.4% 94.7% 
M15 PLS-DA SNV + 1DER + SG 92.6% 95.6% 
M16 OPLS-DA SNV + 1DER + SG 97.5% 93.0% 

SNV; standard normal variate, 1DER; first order derivatives and SG; 
Savitzky–Golay. 
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analysis [13]. As M16 correctly detected the highest percentage of 
adulterated samples, it was determined to be the optimal model. The 
best multiclass and two-class models are shown in Fig. 4. As a further 
indication of model performance and quality, Receiver Operating 
Characteristic (ROC) curves were created and the Area Under the Curve 
(AUC) was calculated for the 2-class models. An AUC value of 0.994 was 
determined for the best 2-class model, further demonstrating its appli
cability for the determination of oregano authenticity. 

3.3. Model transferability 

The development and validation of a robust, handheld analytical 
approach for use as a screening tool for food authenticity has limited 
application unless that method can be transferred to many different 
devices, allowing for their widespread application throughout the sup
ply chains. To demonstrate the potential of model transferability on the 
NeoSpectra Micro Development kit, in combination with chemometric 
modelling, a series of experiments were carried out to assess different 
standardisation approaches. Standardisation of spectral data derived 
from the secondary device allows for the use of the primary reference 
set, without the need for these samples to be analysed and a model 
created on the second device. To calculated the appropriate correction 
factor for standardisation, two oregano and two adulterated transfer 
samples were chosen using a random generator on excel. To remove 
noise, twenty spectra were measured for each sample, using the primary 
and secondary devices. The mean spectra, prior to any pre-processing 
(raw), are shown in Fig. 5. There are noticeable differences in the in
tensity, and slight differences in wavelength shift between the spectra 
from the two devices. However, the characteristic peaks at 1650 nm, 
1850 nm, 2000 nm, 2200 nm and 2400 nm, discussed in section 3.1, 

remain generally consistent. This would suggest that no standardisation 
or a simplified approach might prove optimal for the model transfer to 
the secondary device. 

Using the spectral information of the four transfer samples obtained 
from the two devices, different standardisation approaches were 
assessed (Fig. 6). Fig. 6A demonstrates the average spectra of a valida
tion sample obtained on both devices, without standardisation applied. 
Fig. 6B–F displays the raw spectra measured on the primary device 
(black line), compared to the standardised spectra measured on the 
secondary device (red line). Again, it is noted that although the spectra 
may differ in intensity, the characteristic peaks remain identical over all 
types of standardisation, apart from PDS with a window of 91 (Fig. 6C). 
Visible shifts in the wavelength is evident in Fig. 6C, this is most likely 
because of the large number of spectral points, which make up the 
transformation matrix. The inclusion of too many wavelengths for 
standardisation results in high noise, which dominates the spectra [38]. 
From the analysis of the data, it is difficult to determine the appropriate 
method, thus, to demonstrate the best model transfer approach, a wider 
selection of the reference set was used to assess the prediction capabil
ities of the models developed on the primary device. 

The model transfer results for predicting 40 validation set samples 
chosen randomly are summarized in Table 2. The results demonstrate 
varying degrees of predictability, over the model type, pre-processing 
applied and standardisation approach. Interestingly, the highest cor
rect predictions were obtained using the spectral data measured on SW- 
002 with no standardisation applied (M5, M11 and M12). M11, a PLS- 
DA 2-class model, had the highest correct predictions of 90% and 
100% for authentic oregano and the adulterated samples, respectively, 
when measured on the secondary device. This approach has the poten
tial to be successfully used in the model transfer, however it remains to 
be seen if this result would be the same for a third device. The best 
multiclass model correctly predicted 70% of the authentic oregano and 
100% of the adulterants (M5). The predicted results are poor for the 
authentic oregano samples when no standardisation is applied and the 
spectra from SW-002 is tested against M1-4, M6-10 and M13-16 devel
oped on the primary device. The influence of spectral interferences and 
over-working of the data has most likely had a negative impact on the 
model predictability. 

In general, DS and PDS transformation of the data derived from the 
secondary device was found to favour the prediction of either oregano or 
adulterated samples when applied to the reference models. The best 
predictions for the DS method was determined using the PLS-DA mul
ticlass model (M5). Correct predictions of 60% and 45% was achieved 
for oregano and adulterated samples, respectively. In contrast to the 
unstandardised results, DS resulted in the correct prediction of 100% of 
the authentic oregano samples in the majority of models, but failed to 
correctly predict the adulterated samples. This poor predictability can 
be attributed to the utilisation of the whole spectrum of the primary 
data, in order to fit each spectral point of the secondary data when DS is 
applied. It is known that spectral variations are limited to smaller re
gions of the spectrum, thus, each spectral point derived from the sec
ondary data is most likely associated with neighbouring wavelengths as 
oppose to the full spectrum [34,38]. This may explain why the spectral 
corrections resulted in poor predictability using the direct stand
ardisation approach for both multiclass and 2-class models. 

Various window sizes for PDS were assessed to determine the 
applicability of the standardisation approach to the model transfer 
(Supplementary material SI.1). Overall, none of the PDS approaches 
achieved a high enough predictability to be useful in the model transfer. 
The best predictions were 85% and 40% for oregano and the adulterants, 
respectively, and were obtained from utilising a window size of 91 
(multiclass OPLS-DA models; Table 2; M6 and M8). Again, it was noted 
that PDS favoured the prediction of either authentic oregano or adul
terants. Interestingly, this differed between the window sizes, with a 
window of one demonstrating high correct predictions for the adulter
ants and a window size of ninety-one correctly predicting the majority of 

Fig. 4. Supervised OPLS-DA score plots showing SNV, 1DER and SG trans
formed NIRS data, which resulted in the highest correct predictions. (A) Mul
ticlass model (R2 = 0.9; Q2 = 0.86) and (B) 2-class model (R2 = 0.97; Q2 =
0.99). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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authentic oregano samples. It was anticipated that PDS would provide a 
greater percentage of correct predictions over DS, as several measure
ments are collected within a small window and these are incorporated 
into the transformation matrix [34]. The number of principal compo
nents, window size and the number of transfer samples for stand
ardisation is known to have a significant effect on the performance of 
PDS [39]. Therefore, the experimental design described may have been 
limited by the use of the PDS approach. 

When applying the subtraction standardisation approach, an 85% 
and 90% correct prediction for oregano and adulterants, respectively, 
was determined using the 2-class PLS-DA and OPLS-DA models (M11 
and M12). All of the multiclass models demonstrated low correct pre
diction for the authentic oregano samples, however, they were able to 
correctly predict >95% of the adulterant samples. The division stand
ardisation approach also resulted in an adequate predictability of 75% 
for oregano and 95% for adulterant samples, using the multiclass OPLS- 
DA model (M2). It was noted that the majority of the models were able to 
correctly predict a high percentage of the adulterant samples from the 
SW-002 derived data that had underwent division standardisation, 
however, the percentage of correct predictions for authentic oregano 
was inadequate. It is likely that both subtraction and division stand
ardisation approaches prove successful as only the additive spectral 
differences are corrected, resulting in the consistency of the remaining 
spectra [40]. This is, however, dependent on the number and type of 
transfer samples used. 

It is interesting to note that the optimal model, with the highest 
correct predictions, differed between the validation results obtained on 
the primary and secondary devices. The predictability was greatest for 
M8 when assessing the validation set obtained from the primary device 
(Table 1). M8 correctly predicted 97.5% of the adulterants and 93.0% of 

authentic oregano. In contrast, M11 provided the highest correct pre
dictions of 100% of the adulterants and 90% of oregano samples 
determined on the secondary device, with no spectral standardisation 
(Table 2). These differences may be due to pre-processing the spectral 
data with first derivatives during model development. When the vali
dation set is applied from the secondary device, there are likely to be 
wavelength shifts, and as derivitised models are less robust to instru
mental changes, it is more difficult to correct for these [41]. 

4. Conclusion 

The results obtained in this study have demonstrated the excellent 
performance of the NeoSpectra Micro NIRS device for the determination 
of oregano authenticity. The development and validation of models 
using SIMCA 15 software confirmed the performance of the device, with 
high predictability achieved. The assessment of model transfer methods 
proved successful, with several approaches found to be applicable. This 
will be of significance in the future when more devices are assessed, 
which may require data standardisation due to larger spectral differ
ences. Overall, the work has demonstrated the applicability of the 
NeoSpectra device to be utilised at various stages of the food supply 
chain, for the rapid and cost effective screening of oregano authenticity. 
Further investigations to validate the model transfer method include, 
assessing more devices and in-field analysis to determine the impact of 
differences in handling and testing environment on the transferability. 
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Fig. 5. The mean NIR spectrum of oregano and adulterated transfer samples obtained using the primary (SW-001, black line) and secondary (SW-002, red line) 
NeoSpectra devices prior to the application of any standardisation methods. (A), (B), (C) and (D) denotes the average spectra for each of the four transfer samples. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 6. Effect of standardisation on the average spectra of twenty oregano samples from the validation set assessed on SW-002 (secondary) device. For comparative 
purposes, the average spectra with no standardisation applied has been shown for SW-001 (primary, black spectra). Standardisation procedures that were applied 
based on the correction factors calculated using the transfer samples included; (A) no standardisation, (B) piecewise direct standardisation (PDS) with a window of 1, 
(C) PDS with a window of 91, (D) direct standardisation (DS), (E) division and (F) subtraction standardisation. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Predictability of the multiclass and 2-class reference models developed on the primary device using the validation set data measured on the secondary device with 
different standardisation approaches applied (n = 40).  

Model ID Type Pre-processing None DS PDS Win01 PDS Win91 Subtraction Division 

Oreg. 
% 

Adult. 
% 

Oreg. 
% 

Adult. 
% 

Oreg. 
% 

Adult. 
% 

Oreg. 
% 

Adult. 
% 

Oreg. 
% 

Adult. 
% 

Oreg. 
% 

Adult. 
% 

Multiclass M1 PLS-DA None 25 100 100 0 40 80 100 0 25 100 65 95 
M2 OPLS- 

DA 
None 20 100 100 0 35 85 100 0 30 100 75 95 

M3 PLS-DA SNV 65 100 10 100 20 90 10 90 60 95 55 95 
M4 OPLS- 

DA 
SNV 60 100 5 100 20 95 10 90 55 95 45 95 

M5 PLS-DA SNV+1DER 70 100 60 45 35 90 75 45 65 95 100 25 
M6 OPLS- 

DA 
SNV+1DER 15 100 100 10 30 95 85 40 5 100 25 95 

M7 PLS-DA SNV+1DER 
+SG 

35 100 100 5 25 95 75 45 30 95 30 95 

M8 OPLS- 
DA 

SNV+1DER 
+SG 

15 100 100 10 25 95 85 40 10 95 45 95 

2-Class M9 PLS-DA None 25 100 100 10 50 55 95 20 25 100 50 95 
M10 OPLS- 

DA 
None 100 0 100 0 15 85 55 15 100 0 100 15 

M11 PLS-DA SNV 90 100 100 0 5 95 100 0 85 95 50 95 
M12 OPLS- 

DA 
SNV 85 100 100 0 5 95 100 0 85 95 60 95 

M13 PLS-DA SNV+1DER 40 100 100 0 25 95 100 0 30 100 30 100 
M14 OPLS- 

DA 
SNV+1DER 55 100 100 0 25 95 100 0 35 95 35 95 

M15 PLS-DA SNV+1DER 
+SG 

35 100 100 0 25 95 100 0 45 95 55 95 

M16 OPLS- 
DA 

SNV+1DER 
+SG 

10 100 100 0 20 95 100 0 15 95 50 95 

Oreg. refers to oregano and Adult. Refers to the adulterated samples. 
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