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Background. Bladder cancer (BLCA) is one of the most common cancers and ranks ninth among all cancers. Extracellular matrix
(ECM) genes activate a number of pathways that facilitate tumor development. This study is aimed at providing models to predict
BLCA survival and recurrence by ECM genes.Methods. Expression data from BLCA samples in GSE32894, GSE13507, GSE31684,
GSE32548, and TCGA-BLCA cohorts were downloaded and analyzed. The ECM-related genes were obtained by differentially
expressed gene analysis, stage-associated gene analysis, and random forest variable selection. The ECM was constructed in
GSE32894 by the hub ECM-related genes and validated in GSE13507, GSE31684, GSE32548, and TCGA-BLCA cohorts. The
correlations of the ECM score with cells (T cells, fibroblasts, etc.) and the response to immunotherapeutic drugs were
investigated. Four machine learning models were selected and used to construct models to predict the recurrence of BLCA. A
total of 15 paired BLCA and normal tissue specimens, human immortalized uroepithelial cell lines, and bladder cancer cell
lines were selected for the validation of the difference in expression of FSTL1 between normal tissues and BLCA. Results. Six
ECM genes (CTHRC1, MMP11, COL10A1, FSTL1, SULF1, and COL5A3) were recognized to be the hub ECM-related genes.
The ECM score of each BLCA patient was calculated using these six selected ECM-related genes. BLCA patients with a high
ECM score group had significantly lower overall survival rates than patients in the low ECM score group. We found that the
ECM score was positively associated with immune cells and fibroblasts and negatively correlated with tumor purity. When
treated with immunotherapy, BLCA patients with a high ECM score presented a high response rate and better prognosis. We
also found that the combination of FSTL1, stage, age, and gender achieved an AUC value of 0.76 in predicting bladder cancer
recurrence. Based on the RT-qPCR results of FSTL1 gene expression, there was an overall decrease in the mRNA expression of
FSTL1 in cancer tissues compared to their adjacent normal tissues. Subsequent in vitro validation demonstrated that the FSTL1
expression was downregulated at the gene and protein level compared to that in SVH cells. Conclusion. Taken together, our
results indicate that ECM-related genes correlate with immune cells, overall survival, and recurrence of BLCA. This study
provides a machine learning model for predicting the survival and recurrence of BLCA patients.

1. Introduction

Bladder cancer (BLCA) is one of the most common can-
cers and ranks ninth among all cancers [1]. About
83,730 cases of BLCA were diagnosed in the United States

of America in 2021, resulting in 17,200 deaths [2]. The
incidence of BLCA increases with patient age [1] and is
about four times more common in men than women
[3]. Based on the depth of tumor infiltration and stage,
BLCA is divided into two categories: non-muscle-invasive
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(75 percent, NMIBC, Ta, T1, and Cis) and muscle-invasive
bladder cancer (25 percent, MIBC, T2-T4) [4]. NMIBC is
typically treated with transurethral resection of the bladder
tumor (TURBT) plus intravesical chemotherapy [5].
Patients with MIBC are usually treated with radical cystec-
tomy (RC) and pelvic lymphadenectomy [6]. The 5-year
survival rate for NMIBC is more than 90% [7]. High
recurrence rates (60%) have been observed in NMIBC
patients [8], and about 20% of NMIBC patients will prog-
ress into MIBC [9]. Concomitantly, approximately half of
MIBC patients who receive RC develop recurrences or
metastases [7]. The mortality rate at 5 years for MIBC is
about 50% [10] with a worsening prognosis for the locally
progressive or recurrent MIBC patients. Thus, prediction
of the recurrence of BLCA is crucial to the management
and therapy.

The development of immune checkpoint inhibitors has
been a significant advancement in oncological therapy.
Immune checkpoint blockade (ICB) therapies that target
PD1 and PDL1 have been approved to treat a variety of
malignancies, including melanoma and BLCA [11]. Despite
these advancements, only a small percentage of BLCA
patients respond to ICB. Reports show that only about
20% of BLCA patients benefit from the treatment with ICB
[12]. Given the low response to ICB therapy, some biomark-
ers such as the expression of PDL1 and immune cells are
being considered for detecting potential ICB responders
[13, 14]. Presenting another challenge to therapy is the
immunosuppressive tumor microenvironment (TME),
which impedes the effectiveness of checkpoint inhibi-
tors [15].

The constituents of the TME include blood vessels,
immune cells, fibroblasts, and extracellular matrix (ECM).
The ECM is a distinct and complex architecture with over
300 proteins within intracellular spaces [16]. The ECM is
essential for maintaining tissue homeostasis, and thus,

abnormal ECM can promote cancer formation, progression,
and metastasis [17]. Accumulation of the ECM in tumors
acts as a barrier to block tumor cells from the effects of ther-
apy [18]. Furthermore, the ECM also affects the effectiveness
of immunotherapy by preventing immune cells and immu-
notherapeutic agents from reaching the tumor cell [18].
Cancer patients with highly expressed ECM-related genes
have a worse prognosis [19]. Therefore, analysis of the
ECM-related genes portends a basis for the prediction of
recurrence of BLCA patients.

In this study, we identified six ECM-related genes
(CTHRC1, MMP11, COL10A1, FSTL1, SULF1, and
COL5A3) that were associated with bladder cancer occur-
rence, tumor stage, and prognosis based on the bladder can-
cer tumor samples. These six ECM-related genes were used
to construct the ECM score. In addition, we found that
ECM scores correlated significantly with tumor stage, tumor
prognosis, immune cells, stromal cells, and tumor purity in
TME. It has been shown that ECM can be a good prognostic
factor for immunotherapy. By RT-qPCR, FSTL1 was signif-
icantly reduced in BLCA samples compared to normal blad-
der samples. Subsequently, in vitro validation of the FSTL1
gene and protein expression demonstrated that FSTL1
expression was downregulated in bladder cancer cells com-
pared to that in the normal SV-HUC-1 cell line. Virtual
screening and molecular docking of the structures of FSTL1
protein identified three small molecules relevant as predic-
tive molecules. Therefore, the study demonstrates the signif-
icance of the ECM as a good prognostic factor for
immunotherapy of BLCA patients.

2. Materials and Methods

2.1. Gene Expression Data Gathering and Processing. Bladder
cancer cohorts from the GEO database, including GSE32894
[20], GSE13507 [21], GSE31684 [22], GSE32548 [23], and
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Figure 1: The flowchart of this study.
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TCGA-BLCA cohort, were selected and downloaded. For
GEO datasets, microarray data profiles were downloaded
using the R GEOquery package [24]. Gene expression data
(FPKM) of TCGA-BLCA was obtained by the R TCGAbio-
links package [25], which was further transformed into tran-
scripts per kilobase million (TPM). Clinical data, such as
survival information, for these BLCA cohorts were collected
using the R GEOquery and TCGAbiolinks packages.

2.2. Identification of Differentially Expressed Genes (DEGs)
and Stage-Associated Genes (SAGs). To select the genes that
are crucial for tumor formation, the DEGs between the 414
tumors and 19 normal bladder tissues from the TCGA-
BLCA cohort were identified using the R edgeR package

[26]. The genes with “log2FoldChange>1” and “p value <
0.05” were considered DEGs. Using the mRNA expression
profiles from GSE32894 and TCGA-BLCA, we determined
the genes associated with the tumor stage. In order to select
the SAGs, a Pearson correlation analysis was conducted (a p
value of 0.05). The enriched pathways were conducted by the
clusterProfiler package [27].

2.3. Hub ECM-Related Genes. From the previous study [28],
1026 unique ECM-related genes from 10 ECM gene sets
were obtained. A Venn diagram analysis was carried out
among the DEGs, SAGs, and ECM-related genes. After that,
the intersected genes were further selected by the R package
random forest SRC which could calculate the importance
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Figure 2: The identification of hub ECM-related genes. (a) Volcano plot for differential gene expression between bladder cancer and normal
bladder samples. Red represents upregulation in bladder cancer, blue represents downregulation in bladder cancer, and gray represents no
change in expression. (b) Venn diagram of DEGs, SAGs (TCGA), SAGs (GSE32894), and ECM genes. (c) Random forest feature importance
ranking for the top 10 ECM genes.
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Figure 3: The association of ECM hub genes (COL10A1, COL5A3, CTHRC1, FSTL1, MMP11, and SULF1) with stage and prognosis of
bladder cancer of GSE32894. (a) Gene expression of genes in bladder cancer patients according to clinical stage. Analysis of the
relationship between (b) COL5A3, (c) COL10A1, (d) CTHRC1, (e) FSTL1, (f) MMP11, (g) SULF1, and bladder cancer survival prognosis
based on the Kaplan-Meier.
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Figure 4: Continued.
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value for predicting overall survival (OS) by using the ran-
dom forest method. The top six genes with the highest
importance value were defined as hub ECM genes for blad-
der cancer occurrence, development, and prognosis.

2.4. Calculation of ECM Score. The ECM score was calcu-
lated by ECM-related gene expression and coefficients (β)
from a multivariate Cox regression analysis. ECM score for
each bladder cancer sample was determined by the following
equation: ECM score = Expression ðgene1Þ × β ðgene1Þ +⋯
+ Expression ðgene6Þ × β ðgene6Þ. Bladder cancer samples
were split into high and low ECM score groups based on
the median ECM score. To estimate the relationships
between ECM score/ECM-related hub genes and prognosis,
the K-M survival curve analysis based on OS information
in the R package survival was used. Besides, the protein
values of ECM-related genes were calculated based on the
data from the Human Protein Atlas (HPA) data.

2.5. Association of ECM Score with TME Cell Populations.
The MCP-counter and ssGSEA tools were used to evaluate
the proportions of immune cells in each sample [29]. These
tools could evaluate the abundance of immune and nonim-
mune cells by mRNA expression profiles. The ESTIMATE
program is capable of generating three types of cell scores:
immune score (amount of immune cells), stromal score
(amount of stromal cells), and tumor purity (amount of
tumor cells) [30].

2.6. Association of ECM Score with ICB Response. The IMvi-
gor210 cohort of urothelial cancer patients receiving the
anti-PDL1 antibody atezolizumab was selected to predict
therapeutic response to ICB [31]. The profiles of mRNA
expression data and follow-up information were retrieved
from the R package IMvigor210CoreBiologies. By analyzing
transcriptome data of bladder cancer patients with the treat-
ment of anti-PD-L1 immunotherapy, we analyzed the asso-
ciation between ECM score and ICB response.

2.7. Prediction of Tumor Recurrence in BLCA by Random
Forest Classifiers. All the interaction data were randomly
separated into the training dataset (70%) and the testing
dataset (30%). In the current study, six common machine
learning methods were used for model selection, including
generalized linear models (GLM), K-nearest neighbors
(KNN), support vector machine (SVM), and random forest
(RF). The area under the curve (AUC), one of the most
essential criteria for assessing classification model effective-
ness, was selected in the current study. The AUC values of
four machine learning algorithms were tested by 5-fold
cross-validation in the training dataset, and the machine
learning algorithm with the highest AUC value was selected.

2.8. Specimen Collection and Preparation. For the FSTL1
gene expression, a total of fifteen bladder cancer specimens
and their adjacent normal tissues were obtained from the
Second Affiliated Hospital of Henan University of Tradi-
tional Chinese Medicine between January and December
2021. All tissues were pathologically diagnosed by two expe-
rienced pathologists. Tissue specimens were stored at -80°C
for further analysis. Written informed consent was provided
by all patients, and all handling was approved by the bioeth-
ics committee of our hospital.

2.9. Cell Culture. The human immortalized uroepithelial cell
line SV-HUC-1 (SVH) and BLCA lines (UMUC-3, T24,
SW780, and 5637) were applied in this study. The SVH cell
(F-12K medium, Manassas, VA, USA) and other cell lines
(RPMI-1640 medium, Gibco, USA) were cultured in the
medium supplemented with 10% fetal bovine serum and
incubated at 37°C in a 5% CO2 atmosphere.

2.10. Gene Expression Analysis. RNA isolation and reverse
transcription were described as detailed elsewhere [32].
RT-qPCR was performed with the 7500 Real-Time PCR sys-
tem (Foster City, CA) relying on the FastStartTM Universal
SYBR® Green Master (Roche). Glyceraldehyde 3-phosphate
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Figure 4: The construction and validation of the ECM score. (a) The distribution and overall survival data were displayed and ranked
according to the ECM score. (b) The distribution of gene expression for six ECM genes between low and high ECM score groups. The
Kaplan-Meier curves of overall survival time between high and low ECM score groups using the log-rank test in (c) GSE32894, (d)
GSE13507, (e) GSE31684, (f) GSE32548, and (g) TCGA-BLCA dataset.
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Figure 5: Continued.
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dehydrogenase (GAPDH), β2-microglobulin (β2M), 18S
ribosomal RNA (18S), and β-actin were used for normaliza-
tion by the qbase+ software. The primer sequences are listed
in Supplementary Table 1.

2.11. Western Blot Analysis. Briefly, the total protein from
samples was separated by electrophoresis (10% SDS-PAGE)
and transferred onto a polyvinylidene fluoride membrane
(PVDF) (Roche, Switzerland). Then, we incubated PVDF
membranes with primary antibodies against FSTL1
(1 : 2000, ProteinTech, USA) and β-Tubulin (1 : 5000, Pro-
teinTech, USA) at 4°C overnight, followed by washing with
TBST and secondary antibodies at room temperature for
one hour. Finally, the protein visualization was achieved by
an enhanced chemiluminescence (Thermo Fisher Scientific,
USA) detection system.

2.12. Virtual Screening and Molecular Docking. To discover
the potential inhibitors targeting FSTL1, a virtual screening
simulation was conducted based on the AutoDock Vina pro-
gram from the PyRx tool [33]. The protein structure was
obtained from the AlphaFold Protein Structure Database
[34]. The structures of 1615 FDA-approved small molecules
were downloaded from Zinc15 [35]. The AutoDock Vina
was set with default configuration parameters in the virtual
screening simulation [36]. The top three small molecules
having the lowest binding affinity (kcal/mol) to FSTL1 were
submitted for molecular docking using AutoDock [37].

Finally, the analysis of binding sites and visualizations were
performed using PyMOL programs [38].

3. Results

3.1. Identification of DEGs and SAGs. The workflow of our
study is shown in Figure 1. Based on the profiles from the
TCGA-BLCA cohort which contained 19 normal bladder
samples and 414 BLCA samples, we screened out 4041
DEGs (2107 upregulation and 1934 downregulation genes)
(Figure 2(a)). In GSE32894, there were 116 (stage 0), 97
(stage 1), and 85 (stage 2) samples. In TCGA-BLCA, there
were 130 (stage 2), 140 (stage 3), and 134 (stage 4) samples.
Based on pathological stage information, 996 genes from the
TCGA dataset and 7019 genes from GSE32894 were found
to be significantly associated with the stage (Figure 2(b)).
As shown in Supplementary Table 2, “Pathways of
‘Phagosome,” “Graft-versus-host disease,” and “Epstein-
Barr virus infection” were found to be enriched in genes
associated with the stage from GSE32894. Pathways of
“TGF-beta signaling pathway,” “ECM-receptor
interaction,” and “choline metabolism in cancer” were
found to be enriched in genes associated with the stage
from the TCGA-BLCA cohort. Pathways of “dilated
cardiomyopathy,” “hypertrophic cardiomyopathy,” and
“ECM-receptor interaction” were found to be enriched in
DEGs from the TCGA-BLCA cohort. Then, as shown in
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Figure 5: ECM score and hub genes are significantly positively correlated with stromal and immune cell abundance in multiple datasets
including (a) GSE32894, (b) GSE13507, (c) GSE31684, (d) GSE32548, and (e) TCGA-BLCA dataset.
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Figure 6: Evaluation of the association of ECM score with drug response to ICB and construction of machine learning models. (a) The
correlation of the ECM score with the response rate to immunotherapy in the IMvigor210 dataset. (b) The correlation of the ECM score
with the survival analysis in the IMvigor210 dataset. (c) Validation of machine learning models constructed by FSTL1, stage, age, and
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the testing dataset based on AUC value. (e) Validation of machine learning models constructed by FSTL1 in the testing dataset based on
AUC value. AUC: area under the receiver operating characteristic curve; RF: random forest.
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Figure 2(b), 33 common ECM genes were obtained from the
intersection of these 4 groups.

3.2. Selection of Hub ECM Genes and Calculation of ECM
Score. The intersected genes were further selected by the R
package randomForestSRC which can calculate the impor-
tance value for predicting overall survival by using the ran-
dom forest method. As a result, 6 genes were identified:
CTHRC1, MMP11, COL10A1, FSTL1, SULF1, and COL5A3
(Figure 2(c)). Based on the TCGA dataset (Supplementary
Figure 1), the expression levels of COL10A1, COL5A3,
CTHRC1, MMP11, and SULF1 in the bladder cancer
tissues were higher than those in the normal bladder
tissues. In contrast, the expression quantity of FSTL1 in
the bladder cancer tissues was lower than that in the
normal bladder tissues. There was a statistically significant
difference for these 6 gene expression profiles between
different stages (Figure 3(a)). In addition, the higher values
of 6 genes were found in the higher stages of BLCA.
Survival analysis was used to further evaluate the
prognostic significance of these 6 genes. The survival
results showed a trend that the lower the expression of
COL10A1, CTHRC1, FSTL1, MMP11, and SULF1, the
better the OS (p value < 0.05) (Figures 3(b)–3(g)). We also
did the same analyses on GSE13507 (Supplementary
Figure 2), GSE31684 (Supplementary Figure 3), GSE32548
(Supplementary Figure 4), and TCGA-BLCA
(Supplementary Figure 5), and the results indicated that
these 6 ECM hub genes were deeply associated with tumor
stage and prognosis of bladder cancer patients. Among
these 6 genes, protein expression data of CTHRC1,
MMP11, FSTL1, SULF1, and COL5A3 were available in
the HPA dataset (Supplementary Figure 6). CTHRC1,
MMP11, and COL5A3 protein levels were increased in
bladder cancer than in normal bladder samples
(Supplementary Figure 6, Supplementary Table 3). The
FSTL1 protein level was lower in bladder cancer than that
in the normal bladder samples.

Then, the multivariate Cox proportional hazard model
was used to calculate the coefficients of genes in GSE32894.
We further established an ECM score model by gene expres-
sion values and gene coefficients. The ECM score was calcu-

lated for each patient in the training cohort as follows: ECM
Score = (3.0026) × Expression (CTHRC 1) + (1.5510) ×
Expression (MMP 11) + (0.8459) × Expression (COL 10 A
1) + (0.6223) × Expression (FSTL 1) + (−1.2704) × Expression
(SULF 1) + ((− 0.7075) × Expression (COL 5 A 3).

Then we evaluated the ECM score with OS for each
patient in GSE32894, GSE13507, GSE31684, GSE32548,
and TCGA-BLCA cohorts. The median value of the ECM
score was used to distribute samples into the low and high
groups. In GSE32894, the ECM index distribution and over-
all survival data were displayed and ranked according to the
ECM score (Figures 4(a) and 4(b)). Patients in the high ECM
score group exhibited worse 5-year OS than those in the low
ECM score group, as shown in Figure 4(c) (p value <
0.0001). In addition, the p values of log-rank analysis in
GSE13507, GSE31684, GSE32548, and TCGA-BLCA
cohorts were calculated and shown in Figures 4(d)–4(g).

3.3. TME Cell Populations and Response to
Immunotherapies. In GSE32894, high ECM scores and hub
gene expression values were positively associated with sev-
eral TME cell populations, including stromal and immune
cells (Figure 5(a)). In contrast, ECM scores and hub gene
expression values were negatively associated with tumor
purity (Figure 5(a)). We also performed the same analyses
on GSE13507 (Figure 5(b)), GSE31684 (Figure 5(c)),
GSE32548 (Figure 5(d)), and TCGA-BLCA (Figure 5(e)),
and the results indicated that these 6 ECM hub genes and
ECM scores were deeply positively associated with immune
and stromal cells and negatively associated with tumor
purity of bladder cancer samples.

We also calculated the immune cell values by the
ssGSEA method. The results from GSE32894 (Supplemen-
tary Figure 7A), GSE13507 (Supplementary Figure 7B),
GSE31684 (Supplementary Figure 7C), GSE32548
(Supplementary Figure 7D), and TCGA-BLCA
(Supplementary Figure 7E) indicated that these 6 ECM
hub genes and ECM scores were deeply positively
associated with immune cells.

Then, we determined whether the ECM scores could
predict the therapeutic response of bladder cancer patients
to ICB treatment. Bladder cancer patients were divided into
“responder” and “nonresponder” by the follow-up informa-
tion, and it was found that the high ECM score group pre-
sented a higher percentage of responders (27%) than the
low ECM score group (14%) (Chi-squared test: p value <
0.01, Figure 6(a)). High and low ECM score groups also
had significantly different prognoses for the ICB treatment
(Figure 6(b)).

3.4. Construction of Machine Learning Models to Predict the
Survival of BLCA Patients. Based on recurrence information
from GSE32894, GSE13507, GSE31684, and TCGA-BLCA
datasets, 675 and 285 samples were defined as nonrecurrent
and recurrent patients, respectively. The combination of
genes (COL10A1, CTHRC1, FSTL1, MMP11, and SULF1),
age, and gender was used to predict the recurrent status of
BLCA patients. Firstly, these samples from four datasets
(GSE32894, GSE13507, GSE31684, and TCGA-BLCA) were

Table 1: The importance values in the GLM machine learning
model.

Variables Importance value

FSTL1 100

Grade 83.79657422

MMP11 66.20959301

Stage 47.83572557

SULF1 42.50328061

COL10A1 16.70044387

Age 0.59890661

Gender 0

COL5A3 0

CTHRC1 0
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combined into one dataset. Then, the combined dataset was
randomly divided into the training (70%) and the testing
datasets (30%). In order to reduce the complexity of models,
we used the GLM model to rank the importance values of
these variables. FSTL1 was selected from these ECM hub

genes since it had the highest importance value (Table 1).
Then, the commonly used machine learning classifiers
including the GLM, ANN, SVM, and RF were constructed
to predict the recurrent status of BLCA patients after treat-
ment. After setting the best parameter by a 5-fold cross-

(a) (b)

(c)

Figure 8: Molecular docking results for ZINC242548690, ZINC3978005, and ZINC169677008. (a) 3D view of the best selected
conformation of FSTL1-ZINC242548690. (b) 3D view of the best selected conformation of FSTL1-ZINC3978005. (c) 3D view of the best
selected conformation of FSTL1-ZINC169677008. Green color: FSTL1; purple color: small molecules; yellow color: conventional
hydrogen bonds.

Normal Cancer
0

1

2

3

4

Re
la

tiv
e m

RN
A

 
ex

pr
es

sio
n 

of
 F
S
T
L
1

⁎

(a)

Re
la

tiv
e m

RN
A

 
ex

pr
es

sio
n 

of
 F
S
T
L
1

SVH UMUC3 SW780 5637
0.0

0.5

1.0

1.5

T24

(b)

FSTL1

Tubulin
Re

la
tiv

e m
RN

A
 

ex
pr

es
sio

n 
of

 F
S
T
L
1

SVH UMUC3 SW780 5637
0.0

0.5

1.0

1.5

T24

(c)

Figure 7: FSTL1 expression was detected in bladder cancer tissues and cell lines. (a) Relative mRNA expression of FSTL1 in fifteen BC
tissues and their adjacent normal tissues was examined by RT-qPCR (normalized to β-actin). (b, c) The relative expression of FSTL1 in
the SV-HUC-1 cell line and four human BC cell lines was tested by (b) RT-qPCR and (c) Western blot. (∗p value < 0.05, ∗∗p value <
0.01, ∗∗∗p value < 0.001, and #p value ≥ 0.05). t-test was performed to analyze statistical significance. Values are presented as mean ±
SEM.
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validation strategy, we calculated AUC in the testing dataset
to characterize the ability of the model to distinguish
between nonrecurrent and recurrent cases. The combination
of FSTL1 and clinical information demonstrated higher
AUC values in predicting recurrent status than using clinical
information or FSTL1 alone (Figures 6(c)–6(e)).

3.5. Validation of FSTL1 Expression in Bladder Cancer
Tissues and Cell Lines. To validate FSTL1 gene expression
in BLCA clinical specimens, 15 paired cancer and normal
tissue specimens were collected and analyzed using RT-
qPCR. As depicted in Figure 7(a), there was an overall
decrease in the mRNA expression of FSTL1 in cancer tissues
compared to their adjacent normal tissues (p value < 0.05).
However, 3 cancer tissues presented higher FSTL1 expres-
sion. The subsequent in vitro validation of the FSTL1 gene
and protein expression was carried out in SVH and different
BLCA cell lines. The results demonstrated that FSTL1
expression was downregulated in terms of mRNA and pro-
tein level compared to that in SVH cells (Figures 7(b) and
7(c)).

3.6. Virtual Screening and Molecular Docking. To find poten-
tially approved drugs that target FSTL1, 1615 FDA-
approved small molecules were selected to perform virtual
screening. AutoDock VINA from the PyRx tool generated
9 different conformations for each small molecule, which
were ranked by binding affinity (kcal/mol). The top 3 ranked
small molecules with the lowest binding energy were
ZINC242548690 (-9.1 kcal/mol), ZINC3978005 (-8.9 kcal/
mol), and ZINC169677008 (-8.9 kcal/mol). The binding sites
and interactions between these three small molecules and
FSTL1 are displayed in Figures 8(a)–8(c). Based on the 3D
view of the best selected conformations, six, four, and two
hydrogen bonds were found in the bindings of FSTL1-
ZINC242548690 (Figure 8(a)), FSTL1-ZINC3978005
(Figure 8(b)), and FSTL1-ZINC169677008 (Figure 8(c)).
The 2D view of the best selected conformations for FSTL1-
ZINC242548690 (Supplementary Figure 8A), FSTL1-
ZINC3978005 (Supplementary Figure 8B), and FSTL1-
ZINC169677008 (Supplementary Figure 8C) were shown.

4. Discussion

Bladder cancer (BLCA) is one of the leading causes of cancer
morbidity and death worldwide [39]. The high recurrence
rate poses a significant challenge in BLCA treatment. Inci-
dentally, most patients with the less invasive NMIBC form
of BLCA progress into invasive MIBC that overtly recur
and/or metastasize. Metastasis and recurrence of BLCA
worsen the prognostic outcome of patients [7]. Thus, it is
imperative to predict the recurrence of BLCA based on accu-
rate models. In this current study, we identified six hub ECM
genes to construct the ECM score to predict the prognosis of
bladder cancer. FSTL1, one of the hub ECM-related genes,
was used to construct machine learning models to precisely
predict BLCA recurrence and therapy.

The ECM is involved in the general pathogenesis and is
therefore a target in cancer therapy. A growing body of evi-

dence reveals that the ECM is an integral part of TME [40,
41]. The ECM is involved in the initiation and development
of cancer and is associated with a poor prognosis [42]. A
variety of proteins regulating ECM have been linked to the
development and poor outcome of BLCA. In the current
study, we developed a new ECM score based on six genes
(CTHRC1, MMP11, COL10A1, FSTL1, SULF1, and
COL5A3). These six genes were observed to correlate posi-
tively with tumor stage and negatively correlated with prog-
nosis in bladder cancer samples from GSE32894, GSE13507,
GSE31684, GSE32548, and TCGA-BLCA.

Individual studies have similarly reported elevation and/
or association of the six selected genes in BLCA. CTHRC1,
one of the glycosylated proteins, has been found to be ele-
vated in multiple cancer types and linked to tumor develop-
ment and metastasis [43]. MIBC presented higher mRNA
and protein expression of CTHRC1 than NMIBC, and sur-
vival analysis demonstrated that patients with high CTHRC1
were easily exposed to a poor prognosis [43]. MMP11 is a
matrix metallopeptidase that regulates ECM proteins.
MMP11 expression in BLCA is significantly higher than that
in normal bladder tissues [44], and MMP11 expression is
positively linked to an aggressive cancer subtype and a poor
prognosis in BLCA [45]. COL10A1, one of the collagen fam-
ily proteins, has been accumulated in tumors, and an earlier
study found that COL10A1 was utilized to predict the prob-
ability of lymph node metastasis in bladder cancer [46].
FSTL1, a transmembrane extracellular glycoprotein, is a reg-
ulator for the expression of ECM molecules [47]. FSTL1 was
found to be correlated with a negative prognosis for bladder
cancer [4]. SULF1 is one of the regulators of the constituent
molecules of the ECM [48], and upregulation of SULF1 is
linked to tumor progression and a negative prognosis for
bladder cancer [49]. COL5A3 is a member of the collagen
family and is associated with metastatic tumor growth [50].
Therefore, the elevation of the six ECM-related genes is
linked to the development and metastasis of BLCA.

Infiltration of immune cells is linked to ECM score,
according to the findings of ssGSEA. Tumor-infiltrating
lymphocytes (TILs), such as activated CD8 T cells, have been
linked to a better clinical outcome in a variety of cancer
types, including BLCA [51]. In contrast, in the high ECM
score group, we found high levels of immunosuppressive
cells, such as regulatory T cells (Tregs). Previous studies
have shown the association of a high number of Tregs in
TME with BLCA recurrence [52]. Therefore, the increased
immunosuppressive cells observed in the high ECM score
group suggest a reason for the poor prognosis of the patients
with high ECM scores. However, the treatment of BLCA
patients with PDL1 antibodies in the high ECM group
showed a better prognostic outcome than that of the patients
in the low ECM score group (Figure 6(b)). Therefore these
results suggest that the ECM score could serve as a screening
tool for cancer patients to undergo immunotherapy.

Subsequent prediction of BLCA recurrence with FSTL1
and clinical parameters by standard machine learning algo-
rithms, including GLM, ANN, SVM, and RF, demonstrated
the utility of machine learning models. Carefully avoiding
overfitting situations by using 5-fold cross-validation, we
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found that the combination of FSTL1, stage, age, and gender
achieved the highest AUC value of 0.76 in the testing dataset,
which was higher than that of the machine learning models
using clinical parameters or FSTL1 alone (AUCs of 0.71 and
0.57, respectively). Thus, the data of FSTL1 and three clinical
parameters could accurately predict the recurrence of BLCA
using the machine learning model.

In contrast to the five ECM-related genes assessed
(CTHRC1, MMP11, COL10A1, SULF1, and COL5A3),
BLCA samples/cells had greater levels of FSTL1 mRNA
and protein than normal bladder samples/cells (Figure 7,
Supplementary Figure 1). The FSTL1 gene is located on
chromosome 3q13.33 and consists of 11 exons. The FSTL1
protein structure includes a secretory signal, a follistatin-
like domain, a duplicated EF-hand domain, and a VWFC
domain [53]. The correlation of FSTL1 with tumorigenesis
is complex and disease-specific. For example, FSTL1 has
been found to be reduced in a variety of cancer types,
including prostate and kidney cancers, but elevated in
brain tumors and hepatocellular carcinoma [53]. In our
study, we found that FSTL1 was positively associated with
fibroblasts and negatively associated with tumor purity
(Figure 5). A previous study observed that FSTL1 was
expressed in fibroblasts and correlated with metastasis of
hepatocellular carcinoma but was barely detectable in
cancer cell lines [54]. Therefore, secretion of FSTL1 by
primary fibroblasts from normal bladder samples resulted
in the expression level of FSTL1 being higher in normal
bladder samples than in tumor samples, while the secretion
of FSTL1 by cancer-associated fibroblasts (CAF) from the
bladder tumors increases the carcinoma malignancy and
decreases the prognosis of bladder cancer.

The antitumor potential of digoxin, dihydroergotamine,
and everolimus is being researched in cancer therapy
[55–60]. Digoxin (ZINC242548690), a cardiac glycoside,
has recently been proposed as one of the new therapeutic
drugs for cancers [55]. The results of the cell function assays
revealed that digoxin inhibited the proliferation and migra-
tion of lung cancer cells [55]. It also could significantly
inhibit the growth of pancreatic cancer cells [56] and inhibit
primary tumor growth and the metastasis of breast cancer
[57]. Dihydroergotamine (ZINC3978005) is an ergot alka-
loid medicine that is used to treat a migraine or cluster head-
ache attack. Findings demonstrate that dihydroergotamine
can induce lung cancer cell death by promoting apoptosis
and mitophagy [58]. Everolimus (ZINC169677008) is one
of the mTOR inhibitors and has been approved for the treat-
ment of multiple cancers such as breast cancer and renal cell
carcinoma [59]. A phase II study demonstrated that it pos-
sesses meaningful antitumor activity in a subset of patients
with advanced bladder cancer [60].

Despite the significant findings of the study, we identify
potential drawbacks. First, in the dataset, only 19 normal
bladder tissues were identified in the TCGA database and
were not enough for a broader comparative assessment. Sec-
ond, the relationship between the ECM score and the
immune cell infiltration has not been thoroughly studied.
Third, only FSTL1 expression values of mRNA and protein
were validated by RT-qPCR and Western blot. Therefore,

future experiments will increase the sample size of the data-
set and investigate the relationship between the ECM score,
ECM-related genes, and immune cells and the correlation
between FSTL1 and BLCA clinical parameters.

5. Conclusion

The challenge in the management and prognosis of BLCA
could be addressed by ECM-related genes using a machine
learning model. We identified six ECM-related genes that
are better correlated with tumor stage and prognosis. A high
ECM score is also associated with immune cells in BLCA,
demonstrating a better response rate to immunotherapy.
The ECM score could therefore be a promising predictive
biomarker for the response to immunotherapy in BLCA.
Machine learning models could predict the recurrence of
BLCA patients. Therefore, this study contributes to a better
understanding of the relationship between ECM and TME
cells and offers a way to predict bladder cancer recurrence.
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Supplementary Materials

Table S1: sequences of primer. Table S2: Encyclopedia of
Genes and Genomes (KEGG) analysis of differentially
expressed genes (DEGs) and stage-associated genes (SAGs)
from GSE32894 and TCGA-BLCA. Table S3: the informa-
tion of immunohistochemistry (IHC) images from the
Human Protein Atlas (HPA) dataset. Figure S1: comparison
of gene expression values of COL5A3 (A), COL10A1 (B),
CTHRC1 (C), FSTL1 (D), MMP11 (E), and SULF1 (F) in
bladder cancer and normal bladder samples. Figure S2: the
association of ECM hub genes (COL10A1, COL5A3,
CTHRC1, FSTL1, MMP11, and SULF1) with the stage and
prognosis of bladder cancer of GSE13507. (A) Gene expres-
sion of genes in bladder cancer patients by clinical stage.
Analysis of the relationship between COL5A3 (B),
COL10A1 (C), CTHRC1 (D), FSTL1 (E), MMP11 (F), and
SULF1 (G) and bladder cancer survival prognosis based on
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the Kaplan-Meier. Figure S3: the association of ECM hub
genes (COL10A1, COL5A3, CTHRC1, FSTL1, MMP11,
and SULF1) with stage and prognosis of bladder cancer from
GSE31684. (A) Gene expression of genes in bladder cancer
patients according to clinical stage. Analysis of the relation-
ship between COL5A3 (B), COL10A1 (C), CTHRC1 (D),
FSTL1 (E), MMP11 (F), SULF1 (G), and bladder cancer sur-
vival prognosis based on the Kaplan-Meier. Figure S4: the
association of ECM hub genes (COL10A1, COL5A3,
CTHRC1, FSTL1, MMP11, and SULF1) with stage and
prognosis of bladder cancer from GSE32548. (A) Gene
expression of genes in bladder cancer patients according to
clinical stage. Analysis of the relationship between COL5A3
(B), COL10A1 (C), CTHRC1 (D), FSTL1 (E), MMP11 (F),
SULF1 (G), and bladder cancer survival prognosis based
on the Kaplan-Meier. Figure S5: the association of ECM
hub genes (COL10A1, COL5A3, CTHRC1, FSTL1,
MMP11, and SULF1) with stage and prognosis of bladder
cancer from GSE32548. (A) Gene expression of genes in
bladder cancer patients according to clinical stage. Analysis
of the relationship between COL5A3 (B), COL10A1 (C),
CTHRC1 (D), FSTL1 (E), MMP11 (F), SULF1 (G), and
bladder cancer survival prognosis based on the Kaplan-
Meier. Figure S6: Protein expression values of COL5A3,
CTHRC1, FSTL1, MMP11, and SULF1. Immunohistochem-
istry images of COL5A3 in the normal bladder (A) and the
bladder cancer samples (B). Immunohistochemistry images
of CTHRC1 in the normal bladder (C) and the bladder can-
cer samples (D). Immunohistochemistry images of FSTL1 in
the normal bladder (E) and the bladder cancer samples (F).
Immunohistochemistry images of MMP11 in the normal
bladder (G) and the bladder cancer samples (H). Immuno-
histochemistry images of SULF1 in the normal bladder (I)
and the bladder cancer samples (J). Figure S7: ECM score
and hub genes are significantly positively correlated with
stromal and immune cell abundance in multiple datasets
including GSE32894 (A), GSE13507 (B), GSE31684 (C),
GSE32548 (D), and TCGA-BLCA (E) dataset. Figure S8:
the 2D view of the best selected conformations for FSTL1-
ZINC242548690 (A), FSTL1-ZINC3978005 (B), and
FSTL1-ZINC169677008 (C) were shown. (Supplementary
Materials)

References

[1] S. Antoni, J. Ferlay, I. Soerjomataram, A. Znaor, A. Jemal, and
F. Bray, “Bladder cancer incidence and mortality: a global
overview and recent trends,” European Urology, vol. 71,
no. 1, pp. 96–108, 2017.

[2] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer
statistics, 2021,” CA: a Cancer Journal for Clinicians, vol. 71,
no. 1, pp. 7–33, 2021.

[3] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN esti-
mates of incidence and mortality worldwide for 36 cancers in
185 countries,” CA: a Cancer Journal for Clinicians, vol. 68,
no. 6, pp. 394–424, 2018.

[4] Z. Chen, G. Liu, A. Hossain et al., “A co-expression network
for differentially expressed genes in bladder cancer and a risk
score model for predicting survival,” Hereditas, vol. 156,
no. 1, p. 24, 2019.

[5] H. W. Herr, Z. Dotan, S. M. Donat, and D. F. Bajorin, “Defin-
ing optimal therapy for muscle invasive bladder cancer,” The
Journal of Urology, vol. 177, no. 2, pp. 437–443, 2007.

[6] J. A. Witjes, T. Lebret, E. M. Compérat et al., “Updated 2016
EAU guidelines on muscle-invasive and metastatic bladder
cancer,” European Urology, vol. 71, no. 3, pp. 462–475, 2017.

[7] K. Yoshida, M. Tsuda, R. Matsumoto et al., “Exosomes con-
taining ErbB2/CRK induce vascular growth in premetastatic
niches and promote metastasis of bladder cancer,” Cancer Sci-
ence, vol. 110, no. 7, pp. 2119–2132, 2019.

[8] B. W. van Rhijn, M. Burger, Y. Lotan et al., “Recurrence and
progression of disease in non-muscle-invasive bladder cancer:
from epidemiology to treatment strategy,” European Urology,
vol. 56, no. 3, pp. 430–442, 2009.

[9] F. Li, J. Zeng, Y. Gao et al., “G9a inhibition induces Autophagic
cell death via AMPK/mTOR pathway in bladder transitional
cell carcinoma,” PLoS One, vol. 10, no. 9, article e138390, 2015.

[10] K. E. van der Vos, D. J. Vis, E. Nevedomskaya et al., “Epige-
netic profiling demarcates molecular subtypes of muscle-
invasive bladder cancer,” Scientific Reports, vol. 10, article
10952, 2020.

[11] Y. Ye, X. Kuang, Z. Xie et al., “Small-molecule MMP2/MMP9
inhibitor SB-3CT modulates tumor immune surveillance by
regulating PD-L1,” Genome Medicine, vol. 12, no. 1, p. 83,
2020.

[12] P. Sharma, M. Retz, A. Siefker-Radtke et al., “Nivolumab in
metastatic urothelial carcinoma after platinum therapy
(CheckMate 275): a multicentre, single-arm, phase 2 trial,”
The Lancet Oncology, vol. 18, no. 3, pp. 312–322, 2017.

[13] Y. Lei, X. Li, Q. Huang, X. Zheng, and M. Liu, “Progress and
challenges of predictive biomarkers for immune checkpoint
blockade,” Frontiers in Oncology, vol. 11, article 617335, 2021.

[14] Z. Chen, G. Liu, G. Liu et al., “Defining muscle-invasive blad-
der cancer immunotypes by introducing tumor mutation bur-
den, CD8+ T cells, and molecular subtypes,” Hereditas,
vol. 158, no. 1, p. 1, 2021.

[15] M. Binnewies, E. W. Roberts, K. Kersten et al., “Understanding
the tumor immune microenvironment (TIME) for effective
therapy,” Nature Medicine, vol. 24, no. 5, pp. 541–550, 2018.

[16] S. Majo and P. Auguste, “The yin and yang of discoidin
domain receptors (DDRs): implications in tumor growth and
metastasis development,” Cancers, vol. 13, no. 7, p. 1725, 2021.

[17] D. F. Quail and J. A. Joyce, “Microenvironmental regulation of
tumor progression and metastasis,” Nature Medicine, vol. 19,
no. 11, pp. 1423–1437, 2013.

[18] E. Henke, R. Nandigama, and S. Ergun, “Extracellular matrix
in the tumor microenvironment and its impact on cancer ther-
apy,” Frontiers in Molecular Biosciences, vol. 6, p. 160, 2020.

[19] J. Liu and G. Li, “Identification and validation of a risk signa-
ture based on extracellular matrix-related genes in gliomas,”
Medicine (Baltimore), vol. 100, no. 16, article e25603, 2021.

[20] G. Sjödahl, M. Lauss, K. Lövgren et al., “Amolecular taxonomy
for urothelial carcinoma,” Clinical Cancer Research, vol. 18,
no. 12, pp. 3377–3386, 2012.

[21] J. S. Lee, S. H. Leem, S. Y. Lee et al., “Expression signature of
E2F1 and its associated genes predict superficial to invasive
progression of bladder tumors,” Journal of Clinical Oncology,
vol. 28, no. 16, pp. 2660–2667, 2010.

[22] M. Riester, J. M. Taylor, A. Feifer et al., “Combination of a novel
gene expression signature with a clinical nomogram improves

14 Journal of Immunology Research

https://downloads.hindawi.com/journals/jir/2022/1793005.f1.zip
https://downloads.hindawi.com/journals/jir/2022/1793005.f1.zip


the prediction of survival in high-risk bladder cancer,” Clinical
Cancer Research, vol. 18, no. 5, pp. 1323–1333, 2012.

[23] D. Lindgren, G. Sjödahl, M. Lauss et al., “Integrated genomic
and gene expression profiling identifies two major genomic
circuits in urothelial carcinoma,” PLoS One, vol. 7, no. 6, article
e38863, 2012.

[24] S. Davis and P. S. Meltzer, “GEOquery: a bridge between the
Gene Expression Omnibus (GEO) and BioConductor,” Bioin-
formatics, vol. 23, no. 14, pp. 1846-1847, 2007.

[25] M. Mounir, M. Lucchetta, T. C. Silva et al., “New functionali-
ties in the TCGAbiolinks package for the study and integration
of cancer data from GDC and GTEx,” PLoS Computational
Biology, vol. 15, no. 3, article e1006701, 2019.

[26] M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edgeR: a
Bioconductor package for differential expression analysis of
digital gene expression data,” Bioinformatics, vol. 26, no. 1,
pp. 139-140, 2010.

[27] G. Yu, L. G. Wang, Y. Han, and Q. Y. He, “clusterProfiler: an R
package for comparing biological themes among gene clus-
ters,” OMICS, vol. 16, no. 5, pp. 284–287, 2012.

[28] A. Naba, K. R. Clauser, H. Ding, C. A. Whittaker, S. A. Carr,
and R. O. Hynes, “The extracellular matrix: tools and insights
for the "omics" era,” Matrix Biology, vol. 49, pp. 10–24, 2016.

[29] E. Becht, N. A. Giraldo, L. Lacroix et al., “Estimating the pop-
ulation abundance of tissue-infiltrating immune and stromal
cell populations using gene expression,” Genome Biology,
vol. 17, no. 1, p. 218, 2016.

[30] K. Yoshihara, M. Shahmoradgoli, E. Martínez et al., “Inferring
tumour purity and stromal and immune cell admixture from
expression data,” Nature Communications, vol. 4, no. 1,
p. 2612, 2013.

[31] A. V. Balar, M. D. Galsky, J. E. Rosenberg et al., “Atezolizumab
as first-line treatment in cisplatin-ineligible patients with
locally advanced and metastatic urothelial carcinoma: a sin-
gle-arm, multicentre, phase 2 trial,” Lancet, vol. 389,
no. 10064, pp. 67–76, 2017.

[32] Y. Zhao, J. Zhou, L. He et al., “MyoD induced enhancer RNA
interacts with hnRNPL to activate target gene transcription
during myogenic differentiation,” Nature Communications,
vol. 10, no. 1, p. 5787, 2019.

[33] S. Dallakyan and A. J. Olson, “Small-molecule library screen-
ing by docking with PyRx,” Methods in Molecular Biology,
vol. 1263, pp. 243–250, 2015.

[34] J. Jumper, R. Evans, A. Pritzel et al., “Highly accurate protein
structure prediction with AlphaFold,” Nature, vol. 596,
no. 7873, pp. 583–589, 2021.

[35] T. Sterling and J. J. Irwin, “ZINC 15 – Ligand Discovery for
Everyone,” Journal of Chemical Information and Modeling,
vol. 55, no. 11, pp. 2324–2337, 2015.

[36] O. Trott and A. J. Olson, “AutoDock Vina: improving the
speed and accuracy of docking with a new scoring function,
efficient optimization, and multithreading,” Journal of Compu-
tational Chemistry, vol. 31, 2010.

[37] G. M. Morris, R. Huey, W. Lindstrom et al., “AutoDock4 and
AutoDockTools4: automated docking with selective receptor
flexibility,” Journal of Computational Chemistry, vol. 30,
no. 16, pp. 2785–2791, 2009.

[38] D. Seeliger and B. L. de Groot, “Ligand docking and binding
site analysis with PyMOL and Autodock/Vina,” Journal of
Computer-Aided Molecular Design, vol. 24, no. 5, pp. 417–
422, 2010.

[39] M. Burger, J. W. Catto, G. Dalbagni et al., “Epidemiology and
risk factors of urothelial bladder cancer,” European Urology,
vol. 63, no. 2, pp. 234–241, 2013.

[40] R. O. Hynes, “The extracellular matrix: not just pretty fibrils,”
Science, vol. 326, no. 5957, pp. 1216–1219, 2009.

[41] M. W. Pickup, J. K. Mouw, and V. M. Weaver, “The extracel-
lular matrix modulates the hallmarks of cancer,” EMBO
Reports, vol. 15, no. 12, pp. 1243–1253, 2014.

[42] A. M. Socovich and A. Naba, “The cancer matrisome: from
comprehensive characterization to biomarker discovery,”
Seminars in Cell & Developmental Biology, vol. 89, pp. 157–
166, 2019.

[43] H. Yin, C. Zhang, X. Gou, W. He, and D. Gan, “Identification
of a 13‑mRNA signature for predicting disease progression
and prognosis in patients with bladder cancer,” Oncology
Reports, vol. 43, pp. 379–394, 2020.

[44] C. Chen, X. Liu, J. Jiang et al., “Matrix metalloproteinase 11 is a
potential biomarker in bladder cancer diagnosis and progno-
sis,” Oncotargets and Therapy, vol. 13, pp. 9059–9069, 2020.

[45] W. M. Li, Y. C. Wei, C. N. Huang et al., “Matrix
metalloproteinase-11 as a marker of metastasis and predictor
of poor survival in urothelial carcinomas,” Journal of Surgical
Oncology, vol. 113, no. 6, pp. 700–707, 2016.

[46] S. X. Wu, J. Huang, Z. W. Liu et al., “A genomic-
clinicopathologic nomogram for the preoperative prediction
of lymph node metastasis in bladder cancer,” eBioMedicine,
vol. 31, pp. 54–65, 2018.

[47] Y. Chaly, H. C. Blair, S. M. Smith et al., “Follistatin-like protein
1 regulates chondrocyte proliferation and chondrogenic differ-
entiation of mesenchymal stem cells,” Annals of the Rheumatic
Diseases, vol. 74, no. 7, pp. 1467–1473, 2015.

[48] E. Hammond, A. Khurana, V. Shridhar, and K. Dredge, “The
role of heparanase and sulfatases in the modification of hepa-
ran sulfate proteoglycans within the tumor microenvironment
and opportunities for novel cancer therapeutics,” Frontiers in
Oncology, vol. 4, p. 195, 2014.

[49] H. Y. Lee, B.W. Yeh, T. C. Chan et al., “Sulfatase-1 overexpres-
sion indicates poor prognosis in urothelial carcinoma of the
urinary bladder and upper tract,” Oncotarget, vol. 8, no. 29,
pp. 47216–47229, 2017.

[50] G. Huang, G. Ge, V. Izzi, and D. S. Greenspan, “α3 chains of
type V collagen regulate breast tumour growth via glypican-
1,” Nature Communications, vol. 8, no. 1, article 14351, 2017.

[51] A. Fernandes, M. Carvalho, E. Avvad-Portari et al., “A prog-
nostic value of CD45RA+, CD45RO+, CCL20+ and CCR6+

expressing cells as ‘immunoscore’ to predict cervical cancer
induced by HPV,” Scientific Reports, vol. 11, no. 1, p. 8782,
2021.

[52] M.Miyake, Y. Tatsumi, D. Gotoh et al., “Regulatory T cells and
tumor-associated macrophages in the tumor microenviron-
ment in non-muscle invasive bladder cancer treated with
intravesical Bacille Calmette-Guérin: a long-term follow-up
study of a Japanese cohort,” International Journal of Molecular
Sciences, vol. 18, no. 10, 2017.

[53] O. K. Parfenova, V. G. Kukes, and D. V. Grishin, “Follistatin-
like proteins: structure, functions and biomedical importance,”
Biomedicines, vol. 9, no. 8, 2021.

[54] J. J. Loh, T. W. Li, L. Zhou et al., “FSTL1 secreted by activated
fibroblasts promotes hepatocellular carcinoma metastasis and
stemness,” Cancer Research, vol. 81, no. 22, pp. 5692–5705,
2021.

15Journal of Immunology Research



[55] S. Y. Lin, H. H. Chang, Y. H. Lai et al., “Digoxin suppresses
tumor malignancy through inhibiting multiple Src-related sig-
naling pathways in non-small cell lung cancer,” PLoS One,
vol. 10, no. 5, article e123305, 2015.

[56] I. Prassas, G. S. Karagiannis, I. Batruch, A. Dimitromanolakis,
A. Datti, and E. P. Diamandis, “Digitoxin-induced cytotoxicity
in cancer cells is mediated through distinct kinase and inter-
feron signaling networks,” Molecular Cancer Therapeutics,
vol. 10, no. 11, pp. 2083–2093, 2011.

[57] H. Zhang, C. C. Wong, H. Wei et al., “HIF-1-dependent
expression of angiopoietin-like 4 and L1CAMmediates vascu-
lar metastasis of hypoxic breast cancer cells to the lungs,”
Oncogene, vol. 31, no. 14, pp. 1757–1770, 2012.

[58] S. H. Chang, A. Y. Lee, K. N. Yu, J. Park, K. P. Kim, and M. H.
Cho, “Dihydroergotamine tartrate induces lung cancer cell
death through apoptosis and mitophagy,” Chemotherapy,
vol. 61, no. 6, pp. 304–312, 2016.

[59] J. Hasskarl, “Everolimus,” Recent Results in Cancer Research,
vol. 211, pp. 101–123, 2018.

[60] M. I. Milowsky, G. Iyer, A. M. Regazzi et al., “Phase II study of
everolimus in metastatic urothelial cancer,” BJU International,
vol. 112, no. 4, pp. 462–470, 2013.

16 Journal of Immunology Research


	Prediction of Prognosis and Recurrence of Bladder Cancer by ECM-Related Genes
	1. Introduction
	2. Materials and Methods
	2.1. Gene Expression Data Gathering and Processing
	2.2. Identification of Differentially Expressed Genes (DEGs) and Stage-Associated Genes (SAGs)
	2.3. Hub ECM-Related Genes
	2.4. Calculation of ECM Score
	2.5. Association of ECM Score with TME Cell Populations
	2.6. Association of ECM Score with ICB Response
	2.7. Prediction of Tumor Recurrence in BLCA by Random Forest Classifiers
	2.8. Specimen Collection and Preparation
	2.9. Cell Culture
	2.10. Gene Expression Analysis
	2.11. Western Blot Analysis
	2.12. Virtual Screening and Molecular Docking

	3. Results
	3.1. Identification of DEGs and SAGs
	3.2. Selection of Hub ECM Genes and Calculation of ECM Score
	3.3. TME Cell Populations and Response to Immunotherapies
	3.4. Construction of Machine Learning Models to Predict the Survival of BLCA Patients
	3.5. Validation of FSTL1 Expression in Bladder Cancer Tissues and Cell Lines
	3.6. Virtual Screening and Molecular Docking

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Supplementary Materials

