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Abstract: Chronic hepatitis C virus (HCV) infection is an important cause of morbidity 

and mortality in people coinfected with human immunodeficiency virus (HIV). Several 

studies have shown that HIV infection promotes accelerated HCV hepatic fibrosis 

progression, even with HIV replication under full antiretroviral control. The pathogenesis 

of accelerated hepatic fibrosis among HIV/HCV coinfected individuals is complex  

and multifactorial. The most relevant mechanisms involved include direct viral effects, 

immune/cytokine dysregulation, altered levels of matrix metalloproteinases and fibrosis 

biomarkers, increased oxidative stress and hepatocyte apoptosis, HIV-associated gut 

depletion of CD4 cells, and microbial translocation. In addition, metabolic alterations, 

heavy alcohol use, as well drug use, may have a potential role in liver disease progression. 

Understanding the pathophysiology and regulation of liver fibrosis in HIV/HCV co-infection 

may lead to the development of therapeutic strategies for the management of all patients 

with ongoing liver disease. In this review, we therefore discuss the evidence and potential 

molecular mechanisms involved in the accelerated liver fibrosis seen in patients coinfected 

with HIV and HCV. 
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1. Introduction 

Hepatitis C virus (HCV) infection is prevalent among human immunodeficiency virus (HIV)-infected 

populations, with about 7 million people worldwide being coinfected [1]. The risk of liver-related 

mortality, predominantly attributed to HCV, has decreased since potent antiretroviral therapy (ART) 

became available and among the non-AIDS causes of death malignancies are nowadays the leading 

cause of death. The introduction of ART and the greater understanding of the life cycle of HCV and its 

interactions with the host have resulted in a reduction of hepatic decompensation and mortality in 

HIV/HCV coinfected subjects. However, liver-related mortality remains still higher among coinfected 

individuals compared with those with only HIV or HCV monoinfection [2]. 

Interestingly, natural history studies have shown that HIV coinfection promotes accelerated  

HCV-related hepatic fibrosis progression, even with HIV replication under full control by ART [3]. 

Although complex and multifactorial, the pathogenesis of accelerated hepatic fibrosis among 

HIV/HCV coinfected individuals is beginning to come to light [4]. HIV alters the natural history of 

HCV-related liver disease through mechanisms that are independent of its effects on T cell-mediated 

immunity [5]. The most relevant mechanisms involved include direct viral effects, immune/cytokine 

dys-regulation, altered levels of matrix metalloproteinases and fibrosis biomarkers, increased oxidative 

stress and hepatocyte apoptosis, HIV-associated gut depletion of CD4 cells, and microbial translocation. 

HIV also generates a metabolic pathway that leads to liver toxicity and processes such as steatosis and 

insulin resistance, which may aggravate liver disease. Finally, the potential role in liver injury of heavy 

alcohol consumption, as well drug use, should be taken into consideration [3,6]. 

In this review, we discuss the evidence and potential molecular mechanisms involved in the 

accelerated liver fibrosis seen in patients coinfected with HIV and HCV. 

2. Pathophysiology of Liver Fibrosis in Chronic Hepatitis C Virus (HCV) Infection 

2.1. Background Issues 

Liver fibrosis is a reversible and dynamic response to hepatic injury. It can be caused by toxic, 

metabolic, or viral insult, and occurs when there is an imbalance in extracellular matrix (ECM) protein 

turnover, i.e., enhanced synthesis and reduced degradation. If, as in chronic HCV infection, the injury 

is prolonged, inflammation persists and accumulation of ECM proteins exceeds their degradation [7], 

directly stimulating fibrogenesis [8] and leading to a progressive substitution of liver parenchyma by 

scar tissue. This in turn causes nodules of regenerating hepatocytes to develop, a feature that defines 

the progression of fibrosis to cirrhosis [9]. 

Although recent studies have demonstrated that various types of liver cells are involved in hepatic 

fibrogenesis, the driving force behind this process is the hepatic stellate cells (HSCs), the primary cell 

sources of ECM [10–13]. HSCs are generally quiescent in the hepatic perisinusoidal space [14],  

but become active in response to chemical stimuli produced by hepatocytes or Kupffer cells following 

cell injury; these stimuli include reactive oxygen species (ROS), lipid peroxides, growth factors and 

inflammatory cytokines [10]. The most influential growth factors involved in HSC activation and 

collagen synthesis are transforming growth factor-β1 (TGF-β1) [15,16] and platelet-derived growth 

factor (PDGF), which are secreted by hepatocytes and platelets, respectively, during liver injury and 
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inflammation [7,17,18]. Levels of both TGF-β1 and all PDGF isoforms are upregulated during HSC 

activation, correlating with the development of liver fibrosis and hepatocellular carcinoma (HCC) [19–26]. 

Once activated, HSCs convert into highly proliferative, myofibroblast-like cells, which produce 

inflammatory and fibrogenic mediators [7,18]. Myogenic HSCs can differentiate to myofibroblasts, 

which possess pro-fibrogenic potential; in fact, myofibroblasts actively secrete ECM, including  

α-smooth-muscle actin (α-SMA) and fibrillar collagens (collagens I and III) [27]. HSCs also produce 

tissue inhibitors of metalloproteinases (TIMPs), which may reduce ECM degradation through 

suppression of the matrix metalloproteinase (MMP) activity [28]. 

2.2. Interplay between HCV and Liver Inflammation and Fibrosis 

Chronic HCV is characterized by progressive damage to liver tissue that leads to progressive 

fibrosis, potentially resulting in cirrhosis, liver failure and HCC [29]. Chronic inflammation is a major 

contributor to such diseases, and is the basis of HCV-mediated liver damage (Figure 1) [30]. 

Immunophenotyping of lymphocytes that infiltrate the liver during HCV infection show that they 

include natural killer (NK), natural killer T (NKT), regulatory T cells, monocytes/macrophages, dendritic 

cells (DC) and, predominantly, CD4+ and CD8+ cells, suggesting that the host immune system is 

involved in the pathogenesis of the resulting liver disease [31–35]. 

The T-cell response is essential for identification and clearance of HCV, either by cytolysis of 

virus-infected cells or non-cytolytic clearance via cytokine or chemokine-mediated effects. A greater 

T-cell response (both virus-specific CD4+ and CD8+ cells) during acute, rather than chronic, HCV has 

been reported [36–38], and a strong influence of chemokine-chemokine receptor interactions on the 

recruitment of T cells to sites of inflammation in the liver during chronic HCV infection has been 

reported [39]. Some genetic studies have found that polymorphisms in the HLA class I and class II 

molecules on chromosome 6, which are linked to CD8 and CD4 responses, respectively, are associated 

with spontaneous HCV clearance, thereby confirming the importance of T cells in the elimination of 

HCV infection [40–43]. 

Expression of intrahepatic chemokine ligands and their receptors has been associated with severe 

HCV-induced liver inflammation [44–46]. The release of inflammatory cytokines and chemokines is 

induced by the crosstalk between HSCs and HCV-infected hepatocytes [47]. It is likely that inflammatory 

cell activation is triggered by HCV core and NS3 proteins inducing interleukin (IL)-1 receptor-associated 

kinase (IRAK) activity through toll-like receptor 2 (TLR)-2 [48]. HCV-associated IRAK activation 

may also contribute to the induction of cytokines and chemokines by HSCs. 

The expression of C–C chemokine receptor type 5 (CCR5) on activated T cells relies upon their 

recruitment to the liver [49]. Indeed, intrahepatic expression of the ligands for CCR5 (RANTES,  

MIP-1β, and MIP-1α), which have been linked to a high grade of liver inflammation [50], is elevated 

in HCV-infected patients. Chronic HCV infection is also known to be associated with increased levels 

of tumor necrosis factor (TNF)-α in the liver and serum of patients [51,52]. Considering that TNF-α 

elevation may interfere with insulin signaling [53], this cytokine could be the key molecular link 

between inflammation, steatosis, and fibrosis in chronic HCV infection. At present, however, we can 

state that HCV infection induces the generation of inflammatory cytokines and chemokines, potentially 
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leading to the recruitment of inflammatory cells such as cytotoxic T lymphocytes (CTL), neutrophils, 

monocytes, DCs, and NK cells to the liver, causing liver cell injury and chronic hepatitis [33–35]. 

Figure 1. Immunopathogenesis of hepatitis C virus (HCV)-induced liver damage. HCV directly 

interacts with monocytes/macrophage/dendritic cell compartment via CD81 or toll-like receptor 

(TLR)-7 inducing a pro-inflammatory state and allowing the presentation to naive T and B 

cells. The increased circulation of chemokines leads to the migration of all these cells into 

the liver. Natural killer (NK) cells play a central role in control viral replication, but HCV 

is able to inhibit NK functions. HCV in the liver causes infection of hepatocytes that are a 

target for the activated effector cells, such as cytotoxic T lymphocytes (CTL), NK, myeloid 

dendritic cells (mDC) inducing apoptosis. A complex state of chronic immune activation is 

maintained in the liver and includes also Kupffer cells. In this milieu of pro-inflammatory 

cytokines (interleukin (IL)-1, tumor necrosis factor (TNF)-α, transforming growth factor 

(TGF)-β1, IL-12) and oxidative stress (ROS), hepatic stellate cells (HSC) are activated to 

produce extracellular matrix and to induce a dysregulation of the imbalance between 

matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases 

(TIMPs), thus leading to liver fibrosis. Th, T helper; IFN, interferon; sCD, soluble CD; 

RANTES, regulated on activation normal T cell expressed and secreted; CCR5, C–C 

chemokine receptor type 5; ECM, extracellular matrix; LPS, lipopolysaccharide; pDC, 

plasmacytoid dendritic cells; IP, Interferon-gamma-induced protein; TCR, T-cell receptor. 
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HCV infection also promotes the activation of macrophages, in particular Kupffer cells, which 

release ROS and large amounts of proinflammatory and fibrogenic mediators [54–57], such as TGF-β1. 

Several studies have demonstrated increased TGF-β1 secretion from HCV-infected cells, feasibly 

driving HSC activation and hepatic fibrogenesis [58–62]. In addition, both Kupffer cells and activated 

human HSCs express TLR4—the main target of lipopolysaccharide (LPS), which is released in great 

amounts during microbial translocation associated with both HCV and HIV infections. 

The inflammation and fibrosis of the liver seen during chronic HCV infection is also closely  

related to the increased apoptosis of damaged hepatocytes. Indeed, a growing body of evidence from  

both experimental and clinical studies suggests that hepatocyte apoptosis may contribute to liver 

fibrogenesis by promoting the activation of Kupffer cells and stimulating the fibrogenic action of liver 

myofibroblasts [63]. Following the uptake of apoptotic bodies [64], Kupffer cells express death ligands 

such as TNF-α, TRAIL and FasL [65–70]. All these death ligands can induce apoptosis in hepatocytes 

via death-receptor-induced signaling cascades, and thereby aggravate liver injury [71]. In addition, 

activated myofibroblasts are able to engulf apoptotic bodies and subsequently produce profibrogenic 

factors such as TGFβ-1 [65]. 

3. Accelerated Liver Fibrosis in Human Immunodeficiency Virus (HIV)/HCV Coinfection 

Multiple factors are implicated in the mechanisms of liver fibrosis progression in patients with 

HIV/HCV coinfection (Table 1). 

3.1. Direct Effects of HIV 

Several epidemiological and clinical findings indicate a direct role of HIV in inducing liver 

fibrinogenesis [72,73] even in patients with no concomitant viral hepatitis coinfection. In a large  

North American study in four groups of women (HCV monoinfected, HIV monoinfected, HIV/HCV 

coinfected and HIV-seronegative/HCV-seronegative women), HIV-RNA plasma levels were associated 

with increased FIB-4 score in the absence of HBV, HCV, ART or alcohol use [74]. Using transient 

liver elastography, liver damage has been frequently detected in HIV-monoinfected patients [75–77] 

and correlated with high plasma HIV-RNA levels [78]. In addition, the benefit that ART has on the 

progression of liver damage (both on biopsies and on clinical events) is well documented [79]. The control 

of HIV replication by ART dramatically reduces risk of hepatic decompensation and risk of dying 

from liver disease. In biopsy studies this has been correlated also with less inflammation in the 

histologies obtained. 

Therefore, the increased risk of liver disease progression in HIV-monoinfected patients emphasizes 

the impact of a direct role of HIV in the induction of liver fibrinogenesis (Figure 2) [72,73]. Indeed, 

hepatocytes (and other resident liver cells) are known to express key HIV co-receptors, including 

CCR5 and C–X–C chemokine receptor type 4 (CXCR4) [80–83] and HIV itself has direct cytopathic 

effect on hepatocytes [73]. A productive HIV infection was demonstrated in hepatocytes, through 

identification of hepatotropic variants of HIV in autopsied liver tissues [84] and, more recently,  

in HSC by detection of p24 antigen and HIV-RNA [85]. 
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Table 1. Factors associated with liver fibrosis in HIV, HCV and HIV/HCV co-infection. 

Markers HIV HCV HCV/HIV 

Immune cells    
NK ↓ ↓ ↓↓ 
DC ↓↓ ↓ ↓↓↓ 
CD4 T cell ↓↓ ↓ ↓↓↓ 

Immune activation    
CD4 T cell DR/38+ ++ + +++ 
CD8 T cell DR/38+ +++ +++ +++ 
Macrophage (Kupffer cells) + ++  +++ 
Cytokines and chemokines    
IP-10 ++ ++ ++++ 
IL-1β + + ++ 
IFN-γ ↓ ↓ ↓ 
TGF-β + ++ +++ 
TNF-α ++ + +++ 
MIP-1α ↓↓↓ ↓↓ ↓↓ 
MIP-1β ↓↓↓ ↓ ↓↓ 
RANTES +++ + ++ 

Microbial translocation    
sCD14 ++ + +++ 
LPS ++ + +++ 

Fibrosis mediators    
MMP ++ ++ +++ 
TIMPs ++ ++ +++ 
HA + ++ +++ 

Apoptosis and ROS    
TRAIL/FAS ++  ++ ++++  
ROS ++ ++ +++ 

Metabolic parameters    
Insulin resistance ++ + +++ 
Adiponectin ↓ ↓↓ ↓↓↓ 
Resistin + ++ +++ 
Leptin + ++ +++ 

↓, decrease; ↓↓, moderate decrease; ↓↓↓, marked decrease; +, increase; ++, moderate increase; +++, marked 

increase; HCV, hepatitis C virus; HIV, human immunodeficiency virus; NK, natural killer; DC, dendritic cell; 

IP-10, Interferon-gamma-induced protein 10; IL-1β, interleukin-1β; IFN-γ, interferon gamma; TGF-β, 

transforming growth factor-β; TNF-α, tumor necrosis factor-α; MIP-1α, macrophage inflammatory protein-1α; 

MIP-1β, macrophage inflammatory protein-1β; RANTES, regulated on activation normal T cell expressed 

and secreted; sCD14, soluble CD14; LPS, lipopolysaccharide; MMP, matrix metalloproteinase; TIMPs, 

tissue inhibitors of metalloproteinases; HA, hyaluronic acid; ROS, reactive oxygen species; TRAIL, tumor 

necrosis factor-related apoptosis inducing ligand. 
  



Int. J. Mol. Sci. 2014, 15 9190 

 

Figure 2. Effect of human immunodeficiency virus (HIV) on liver fibrosis. HIV may 

induce a direct effect on both hepatic stellate cells and hepatocytes by the interaction 

between viral proteins (gp 120) and CCR5 (C–C chemokine receptor type 5) (left panel).  

On the other hand, liver fibrosis could be accelerated by indirect mechanisms, such as HIV 

immune activation, immune dysfunction and immune deficiency, microbial translocation 

and toxic effect of antiretroviral drugs (right panel). 

 

Both HIV and its envelope protein gp 120 have been shown to induce cell signaling in the liver through 

interactions with the CCR5 and CXCR4 expressed on the surface of hepatocytes, HSCs and other immune 

cells [60,85–89], and in vitro models have shown that both inactivated HIV and gp 120 enhance HCV 

viral replication and TGF-β1 expression [57,85,88,90]. This effect of HIV and gp 120 on HCV 

replication is blocked by antibodies for CCR5 or CXCR4, indicating that CXCR4 or CCR5 co-receptor 

engagement by HIV is essential for stimulation of HCV replication [57]. The effect of HIV on HCV 

replication is also blocked by a neutralizing antibody to TGF-β1, one more indicator that HIV itself could 

directly contribute to hepatic fibrosis and increased HCV replication in a TGF-β1-dependent manner [57]. 

Transcripts for the chemokine receptors CCR5 and CXCR4 (which bind gp 120) are detectable in 

human HSCs [89,91,92]. Upon exposure to CCR5-tropic recombinant gp 120, a significant increase in 

HSC chemotaxis has been observed, as has increased expression of the proinflammatory chemokine 

monocyte chemoattractant protein-1 (MCP-1), interleukin-6, and tissue inhibitor of metalloproteinase-1 

(TIMP-1) [88]. It has therefore been speculated that gp 120 may induce HSC accumulation through 
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direct chemotaxis and secretion of MCP-1 by HSCs themselves, and by activated macrophages, 

thereby leading to increased liver inflammation and fibrogenesis [85,93–95]. Recent experiments using 

in vitro models have also suggested that concurrent exposure of hepatocytes to HCV-E2 protein and 

HIV gp 120 can directly promote hepatocyte apoptosis through upregulation of FasL expression via 

the STAT1-dependent pathway. This occurs in a CXCR4-independent manner [81,96] and results in 

higher viral loads through induction of TGF-1β, a cytokine that dampens the immune response and 

promotes fibrosis and transformation towards HCC [57,97]. 

The fibrogenic response by HSCs seems to be mediated by the activation of an autocrine loop 

involving the chemokine receptor CCR5 [89,98]. Recent experiments in animal models have detected 

significant reductions in the levels of IL-6, MMP-9, and TGF-β1 when animals were treated with 

CCR5 antagonists, indicating that these molecules are key regulatory factors of fibrosis through 

CCR5-signaling interference [99–101]. The potential anti-fibrotic effects of maraviroc (MVC),  

a CCR5-specific HIV-entry inhibitor currently in use in antiretroviral therapy, are currently being 

investigated in HIV/HCV coinfected patients [102,103]. There is some preliminary evidence that 

maraviroc, given to such patients to reduce their HIV load, also leads to a reduction in liver  

stiffness [104]. In addition, treatment with MVC, a CCR5 inhibitor, has also been shown to significantly 

reduce fibrosis and tumour load in a mouse model of HCC [99]. 

NALP (NACHT, LRR and PYD-containing protein) 3 inflammasome is a critical step in the 

proinflammatory signal generation pathway during liver injury, and a possible direct link between the 

inflammasome pathway in monocytes and HSC and HIV proteins is currently under evaluation. 

Another likely contributory mechanism to liver fibrosis is the production of reactive oxygen species in 

HSCs, known to be triggered by both X4-tropic and R5-tropic HIV [87]. Both HIV and HCV act upon 

hepatocytes and HSCs to stimulate the generation of ROS, which in turn induces p38 mitogen-activated 

protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 

(ERKs), followed by activated nuclear factor kappa (NF-κB). This supports the pro-fibrogenic TGF-β1 

genes, which encode collagen and TIMP-1, as well as down-regulating MMP-3 synthesis. Hence both 

HCV and HIV are directly involved in liver damage by triggering apoptosis and down-regulating 

antioxidant protective mediators. 

3.2. HIV-Associated Dysregulation of the Immune Response and Cytokine Network 

The quantitative and qualitative impairment of T-cell responses associated with HIV infection may 

have a negative impact on HCV disease progression. Considering both the critical role of the adaptive 

immune system in the clearance of HCV and the detrimental effect of HIV infection on T-cells, it is 

not surprising that HCV persistence in HIV/HCV coinfection is more common than in patients infected 

with HCV alone. Several lines of evidence indicate that HIV-induced CD4 depletion is independently 

associated with the severity of liver fibrosis in chronic HCV infection. In particular, a recent study has 

demonstrated that both HIV-induced loss of CD4+ T cells and dysregulated CD4+ T cell function lead 

to a reduction in the anti-fibrotic activity of NK cells, which plausibly results in the accelerated 

progression of liver fibrosis seen in patients with HIV/HCV co-infection [105]. In addition, a marked 

intrahepatic CD4 T-cell depletion, associated to an increase in apoptotic lymphocytes in the liver 

lobule, has been demonstrated in HIV/HCV coinfected patients. 
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The altered balance between CD4 and CD8 response in HIV infection may be ascribable to a 

profound dysregulation of the peripheral and intrahepatic cytokine networks, which plays an important 

role in the accelerated evolution of liver fibrosis (Figure 2). A potential mechanism by which reduced 

CD4 cell counts promote hepatic fibrosis is a reduction in the secretion of T-helper (Th) 1 cytokine 

IFN-γ, a well-known anti-fibrotic cytokine. On the other hand, the increased Th2 response seen in HIV 

infection is associated with secretion of Th2 cytokines (IL-4, IL-5, IL-10, and IL-13), which are 

known to play a pro-fibrotic role in liver fibrosis [106]. As mentioned above, an important mediator of 

liver fibrogenesis is the cytokine TGF-β1, which favors activation of hepatic HSC and stimulates ECM 

production [107]. Significant increases in TGF-β1 expression have been reported in the liver and 

serum of patients with HIV/HCV coinfection; HIV enhances HCV-related increases in TGF-β1 from 

hepatocytes, thereby enhancing fibrogenesis. 

Another cytokine associated with liver inflammation and immunoregulatory pathways in the liver 

parenchyma is IP-10 (CXCL10). IP-10 is a CXC chemokine that binds to the CXCR3 immune system 

receptor present on a number of cells, including monocytes, NK cells and T cells. Various studies have 

identified elevated IP-10 levels as a negative prognostic indicator for both HCV infection and HIV 

infection, and it has also been proposed as a negative predictor of response to antiviral therapy in  

HCV mono-infected and HIV/HCV co-infected patients [108,109]. A high rate of inflammation,  

and subsequent activation of the endogenous IFN system, as well as significant levels of oxidative 

damage [110], have been proposed as mechanisms behind IP-10 elevation. It is believed that elevated 

IP-10 could recruit T cells from the periphery and within the liver, mediating the damage seen in 

advanced fibrosis [19]. The mechanism by which elevated levels of IP-10 may affect HCV infection in 

individuals with HIV and HCV coinfection is, however, unknown. Nevertheless, it has recently been 

suggested that the regulatory protein HIV tat is able to induce IP-10 expression and subsequently 

increases the replication of HCV and HCV/HIV in coinfected individuals [111]. 

IL-1 dysregulation may also play a role in maintaining the HSCs in the proliferative state 

responsible for hepatic fibrogenesis in HCV/HIV coinfection, as shown in a rat model. IL-1β is a 

central component of the cytokine milieu that accompanies both acute and chronic inflammation  

and viral disease [112,113]. As a pleiotropic inflammatory factor, IL-1β has also been implicated in 

promoting tissue pathology and inducing the production of pro-fibrogenic mediators [114–117]. 

Inflammasome and IL-1β have also been recognized as potentially key factors in an innate mechanism, 

alternative to type I interferon, able to recognize nucleic acids (DNA or RNA) and cytoplasmatic viral 

particles and consequently induce a pro-inflammatory response [118]. Indeed, several viruses are able 

to activate caspase-1 and induce IL-1β production through inflammasome signaling, highlighting the 

potential role of inflammasomes in the immune response to viruses [119]. In fact, a recent study has 

shown that IL-1β production and hepatic inflammation in HCV infection, induced by phagocytic 

uptake of the virus, are linked and driven through endosomal TLR7 and NLRP3 inflammasome 

signaling in liver macrophages/Kupffer cells [30]. Moreover, HCV products induce intracellular 

reactive oxygen species and ion flux, both of which trigger the NLRP3 inflammasome during virus 

infection. Finally, the HCV p7 protein is a transmembrane cation channel that also drives ion flux, and 

is thereby also a potential mediator of NLRP3 inflammasome activation during HCV infection [120]. 

In fact, high levels of IL-1β have been observed in patients from the early stages of HIV infection, 
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suggesting a role of NLRP3 inflammasome in driving the inflammatory response and subsequent  

liver fibrosis [121]. 

Finally, recent studies have highlighted the impact of IL-6 levels on liver fibrosis in HIV and HCV 

coinfected patients. IL-6 is secreted by T cells and macrophages in response to microbial products and 

other stimuli and it represents a marker of systemic immune activation and liver inflammation [122].  

It has been shown that high circulating levels of IL-6 are associated with portal hypertension and 

decompensated liver cirrhosis in both HIV-infected and -uninfected patients [123]. In a large study on 

biomarkers of inflammation, it has been reported that higher concentrations of IL-6 in HIV-infected 

individuals coinfected with HBV and/or HCV were associated with death within 4 years of ART 

initiation. Moreover, high levels of IL-6 are predictive of failure to antiviral therapy in HIV/HCV 

coinfected patients [124]. 

3.3. Role of Immune Activation and Microbial Translocation 

It has long been recognized that HIV infection is characterized not only by the development  

of profound immunodeficiency, but also by a marked and persistent cellular immune activation.  

The central role of immune activation in the pathogenesis and progression of HIV disease has been 

highlighted by both animal and human studies. It has been demonstrated that the major driving force 

behind chronic immune activation is the translocation of microbial products from the damaged 

gastrointestinal (GI) tract to the portal and systemic circulation. During HIV infection, the massive 

depletion of CD4 T cells in the intestine leads to an alteration of the immune component of the surface 

of the GI mucosa that can induce greater translocation of LPS [125]. Increased levels of circulating 

LPS have been shown during HIV infection, suggesting greater immune activation and a consequent 

progression of the disease, alongside CD4+ T cell depletion [126]. LPS also raises levels of macrophage 

activation marker sCD14, also considered an indicator of inflammation [127]. Interestingly, high 

plasma levels of sCD14 have been correlated to an increased risk of mortality in HIV-infected  

patients [128], while LPS has been proposed as a useful biomarker of progression of the disease, 

regardless of CD4+ T cell count or viral load [129]. sCD14 and LPS are undoubtedly important 

indicators of liver disease progression in HIV/HCV-co-infected persons [129]. LPS has been shown to 

accelerate liver fibrosis through engagement of TLR-4 on hepatocytes and HSC following membrane 

binding via LPS-binding protein (LBP) and CD14. These events lead to simultaneous TGF-β1 stimulation 

through an NF-κB-dependent pathway and Kupffer cell activation, which, in turn, induces the 

generation of superoxide and the release of pro-inflammatory and pro-fibrogenic cytokines such as 

TNF-α, IL-1, IL-6, and IL-12, all of which induce liver damage [130]. 

Microbial translocation in the host with severe liver fibrosis leads to a reduced clearance of 

bacterial products and increased immune activation (Figure 2) [131]. Consistent with these findings, 

the high degree of microbial translocation and immune activation observed in patients with both HIV 

and HCV infection has a great impact on the progression of liver fibrosis. Therapeutic strategies 

designed to down-regulate the state of immune activation and to counteract microbial translocation 

may therefore be potentially useful for keeping liver fibrosis in HIV/HCV co-infection under control. 
   



Int. J. Mol. Sci. 2014, 15 9194 

 

4. Dysregulation of Matrix Metalloproteinases and Role of Fibrosis Biomarkers 

To reiterate, liver fibrosis is characterized by a pathological accumulation of the extracellular 

matrix, reflecting the imbalance between enhanced matrix synthesis and reduced breakdown of 

connective tissue proteins. Extracellular degradation of matrix proteins is regulated by the matrix 

metalloproteinases (MMPs), a large family of zinc-dependent endopeptidases. Different levels of 

MMP regulation ensure the constant remodeling of the ECM, including regulation at the gene 

expression level, cleavage of the pro-enzyme to an active form, and specific inhibition of activated 

forms by TIMPs [132]. It is feasible that excessive or inappropriate expression of MMPs and/or a 

reduction in TIMP production could contribute to different pathological conditions, not only infectious 

diseases and liver fibrosis, including inflammation, wounds, and invasion of cancer cells [11–13]. 

MMP-1/-13 levels do not change in human and animal models of chronic liver disease, but there is a 

progressive increase in TIMP-1 and TIMP-2 as the fibrosis advances [133]. There is also evidence that 

activation of HSC in tissue culture models and during fibrotic liver injury in vivo is associated with the 

expression of potent matrix-degrading MMP inhibitors, including TIMP-1 and TIMP-2. With regard to 

chronic hepatitis C, an association between hepatic fibroproliferation and alterations in circulating and 

hepatic MMP and TIMP expression has been reported (Figures 1 and 2). HIV/HCV coinfected patients 

also exhibit a striking increase in circulating TIMP-1 levels, which is more evident in patients with 

more advanced CD4 depletion. On the other hand, there is no increase in the plasma concentrations of 

MMP-9, suggesting an imbalance between circulating TIMP-1 and MMP-9 during HIV infection [134]. 

It is possible that this altered balance may play a potential role in exacerbating the progression of liver 

fibrosis in HIV patients coinfected with HCV [133]. 

Cytokines such as TNF-α, TGF-β, IL-1, and IL-6 are involved in the expression pattern of both 

MMPs and TIMPs. It is conceivable that the cytokine dysregulation documented in HIV contributes to 

the activation of HSC [135] and the upregulation of TIMPs, which, in turn, promote the progression of 

hepatic fibrosis by inhibiting matrix degradation. Finally, translocated LPS, which directly correlate with 

several independent aspects of innate and adaptive immune activation, might also be involved in the 

regulation of MMP and TIMP expression. Due to its potential role in HIV-associated immunopathology, 

MMP enzyme activity might constitute a novel therapeutic target in HIV infection [136]. 

As for fibrosis markers, some studies on patients infected with HCV report that hyaluronic acid 

(HA) is an accurate indicator of fibrosis and predictor of individual hepatic complications. HA is a 

biomarker component of the extracellular matrix that is eliminated from the bloodstream by the liver 

sinusoids [137]. High CD4 counts in patients with HCV/HIV coinfection have been associated with a 

reduced risk of substantial increases in HA levels and hepatic fibrosis. Indeed, patients with low and 

stable plasma HA levels have a very low risk of liver disease progression. HA is also a strong predictor 

of later development of hepatic encephalopathy or liver-related death in HIV-1/HCV coinfection, and a 

higher annual increase of HA has been reported in patients experiencing liver-related events during 

follow-up, as compared with those who did not. Hence HA plasma detection, alone or in combination 

with other non-invasive methods, may be a useful means of monitoring the progression of liver disease 

and predicting the risk of hepatic complications in HIV/HCV coinfected patients [138]. 
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4.1. Role of Metabolic Alterations 

Metabolic alterations are common during HIV/HCV coinfection, and play an important role in the 

genesis of hepatic steatosis, which is closely related to liver fibrosis progression (Figure 3) [139–142]. 

These alterations, including dyslipidaemia and insulin resistance (IR), are due to a direct role of the 

virus, as well as chronic inflammation, deterioration of immunological status, and toxic exposure to 

antiretroviral therapy. Both HIV itself and the antiretrovirals given to mitigate its effects promote the 

development of IR and the abnormal deposition of fatty acids in hepatocytes through mitochondrial 

dysfunction. With regard to antiretroviral drugs and their risk for causing insulin resistance, there are 

evidence that protease inhibitors, such as indinavir [143] and lopinavir/ritonavir [144], have effects on 

peripheral lipolysis through inhibition of glucose transporter type 4 (GLUT-4) activity. On the other 

hand, transcriptase inhibitors (NRTIs), such as zidovudine/lamivudine [145] may affect mitochondrial 

function which further contribuite to the induction of hepatic insulin resistance in HIV patients receiving 

ART [146]. Insulin resistance itself may play a key role in the pathogenesis of so-called virus-associated 

fatty liver disease (VAFLD), which in turn leads to liver steatosis and inflammation [147–151]. 

Furthermore, high levels of insulin and glucose stimulate HSC proliferation and increase the 

expression of one of the major factors involved in the progression of fibrosis—connective tissue 

growth factor (CTGF) [152]. Moreover, there is strong evidence for a central role of mitochondrial 

dysfunction in the pathophysiology of hepatic steatosis [153]. A recent study also showed that HIV 

infection has direct effects on mitochondria [154]—HIV and its polypeptides seem to undermine 

mtDNA and provoke other mtDNA-independent mitochondrial alterations [155]. 

Figure 3. Impact of metabolic alterations and insulin resistance on liver fibrosis 

progression. Interplay between HIV/HCV coinfection, toxic effects of antiretroviral drugs, 

and chronic inflammation may play a critical role in the development of hepatic steatosis 

and fibrosis progression. 
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Emerging evidence suggests that there is a link between immunological and metabolic perturbations.  

In particular, the increased production of proinflammatory cytokines and perturbance in adipokines 

(including adiponectin, leptin, resistin, and visfatin) detected in HIV/HCV coinfected patients [141,156] 

may have an effect on insulin resistance, even promoting metabolic syndrome [139,140]. Another recent 

study also found that lower levels of adiponectin are associated with advanced hepatic injury [156]. 

Adiponectin reduces body fat and enhances insulin sensitivity [157], but also reduces inflammation  

by stimulating secretion of anti-inflammatory cytokines, such as IL-10, inhibiting the release of  

pro-inflammatory cytokines like IL-6 and TNF-α and blocking nuclear factor κB activation [157]. 

As previously discussed, HIV/HCV coinfection and the consequent low levels of adiponectin may 

induce hepatic and systemic inflammation, which could lead to increased expression of resistin and 

leptin. Several studies have shown that resistin and leptin have a pro-fibrogenic and pro-inflammatory 

role [158]. Resistin causes expression of pro-inflammatory chemokines and IL-8, induces activation of 

transcription factor NF-κB, and has pro-inflammatory actions in HSCs [159]. Leptin mediates HSC 

activation and liver fibrosis through indirect effects on Kupffer cells partially mediated by TGF-β1 [160]. 

Unsurprisingly, therefore, low serum levels of resistin and leptin could contribute to controlling 

inflammation and reducing hepatic damage [155]. 

4.2. Role of Alcohol and Drug Use 

Most HIV and HCV coinfected individuals, at least in the developed world, are former or active 

intravenous injection drug users (IVDU) [3]. In addition to heroin, other substances, such as cannabis, 

amphetamine and cocaine, cause liver injury and fibrosis progression [161]. A study of 272 untreated 

patients with HCV hepatitis demonstrated that daily cannabis smoking is a risk factor for progression 

of liver fibrosis [162]. Amphetamines have an extensive hepatic metabolism and the generation of a 

toxic metabolite may be the cause of hepatic injury [163]. Cocaine can lead to a range of liver abnormalities 

and its metabolites are involved in oxidative stress and lipid peroxidation in hepatocytes [164,165]. 

On the other hand, among HIV/HCV coinfected drug users there is a high prevalence of heavy 

alcohol use [6,166] which plays a potential role in liver disease progression. Indeed, it is known that 

alcohol is metabolized in the liver and promotes glutathione depletion and lipid peroxidation leading to 

mitochondrial damage [167,168] and local lymphocyte recruitment [169]. Furthermore, acetaldehyde 

plays a central role in fibrogenesis by increasing the expression of collagen during HSC activation [170]. 

Alcohol use may also inhibit the anti-fibrotic action of NK cells [171] and it increases gut permeability 

and translocation of bacterial products such as LPS [172] which is also involved in fibrogenesis. 

5. Conclusions 

The pathophysiology of accelerated liver fibrosis in patients with HIV and HCV coinfection is a 

complex and multifactorial process involving viral factors, the immune system, and fibrinogenetic/ 

inflammatory mediators. Hence advances in the understanding of fibrosis pathophysiology and regulation 

are critical for the development of therapeutic strategies. As new information regarding fibrogenesis 

comes to light, the key challenge will be translating such advances into the development of anti-fibrotic 

therapies useful for patients with chronic liver disease, such as that seen in HIV/HCV coinfection. 
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