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Abstract

Gonorrhoea infections are on the increase and strains that are resistant to all antimicrobials used to treat the disease have

been found worldwide. These observations encouraged the World Health Organization to include Neisseria gonorrhoeae on

their list of high-priority organisms in need of new treatments. Fortunately, concurrent resistance to both antimicrobials

used in dual therapy is still rare. The fight against antimicrobial resistance (AMR) must begin from an understanding of how

it evolves and spreads in sexual networks. Genome-based analyses have allowed the study of the gonococcal population

dynamics and transmission, giving a novel perspective on AMR gonorrhoea. Here, we will review past, present and future

treatment options for gonorrhoea and explain how genomics is helping to increase our understanding of the changing AMR

and transmission landscape. This article contains data hosted by Microreact.

DATA SUMMARY

1. Metadata for the genomic epidemiology studies reviewed
in this work can be found in the respective citations (see
data bibliography).

INTRODUCTION

The diplococcoid, betaproteobacterium Neisseria gonor-
rhoeae is the causative agent of gonorrhoea, one of the most
common sexually transmitted infections (STIs) worldwide.
Nearly 80million cases are recorded each year with 45% of
those in the Western Pacific region alone [1]. Although
gonorrhoea infection is rarely fatal, the burden of disease is
high [2], particularly among men. However, women are
more often subject to problematic infections due to higher
rates of chronic infection. This is because urogenital infec-
tion is initially asymptomatic in more than 50% of women
but only 10% of men [3], leading to missed opportunities
for treatment. Complications include damage to the upper
genital tract such as pelvic inflammatory disease in women
or more rarely epididymitis in men, which can lead to
reproductive problems and even infertility [3]. High-risk
populations for gonorrhoea infection include sexual net-
works that partake in unprotected sex with multiple part-
ners, particularly commercial sex workers, men who have
sex with men (MSM) and young heterosexuals [4, 5],
although recent work suggests that it is the frequency of

antimicrobial treatment, and not the number of sexual part-
ners, which really contributes to its successful spread [6].
Here, we will review the past and novel potential treatment
options for gonorrhoea infections as well as illustrate how
whole-genome sequencing (WGS) has provided insight into
the population and transmission dynamics of N. gonor-
rhoeae within different sexual networks.

RAPID ACQUISITION OF ANTIMICROBIAL

RESISTANCE

Various antimicrobials have been used to treat gonorrhoea
over the past century. Since the introduction of sulfona-
mides in the 1930s, penicillins, tetracyclines, fluoroquino-
lones, macrolides and cephalosporins have all been used to
treat the disease [3]. According to recommendations of the
World Health Organization (WHO), a treatment stops
being recommended when the prevalence of resistance is
over 5% [7], which has already occurred for many antimi-
crobials, in some cases very rapidly after their introduction
[8]. The fluoroquinolone ciprofloxacin was very widely used
to treat gonorrhoea in the 1980s, but resistant cases
appeared during the following decade and in 2007 it was
removed as first-line treatment [8]. This was replaced with
the oral extended-spectrum cephalosporin (ESC) cefixime,
which was itself deemed to be failing in 2011 due to global
reports of resistance following an initial case described in
Japan [9]. The current recommended treatment in many
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countries is a dual therapy of the macrolide azithromycin
and the ESC ceftriaxone [10]. Strains harbouring resistance
to either ceftriaxone or azithromycin are not uncommon,
however. Since 2009, ceftriaxone-resistant strains have been
found in Japan [11], France [12], Spain [13], Australia [14]
and very recently Canada [15]. Azithromycin resistance is
also on the increase [16], with high-level resistant [mini-
mum inhibitory concentration (MIC)�256mg l�1] isolates
causing sporadic infections in several parts of the world
[17–21] and even an ongoing outbreak that started in 2014
in Leeds, UK [22]. Interestingly, ceftriaxone is also used to
treat diseases of the urinary tract and azithromycin mono-
therapy is often used to treat other STIs, such as Chlamydia
trachomatis infection. In fact, its use to treat parallel co-
infections with other STIs has been hypothesized to play a
role in the increase of resistance to azithromycin in gonor-
rhoea infections [16]. Fortunately, concurrent resistance to
both antimicrobials in the dual therapy is rare [23]. In fact,
it was recently observed that coexistence of the genetic
determinants that cause azithromycin and ESC resistance
appear to confer a fitness decrease, although further work is
required in this area [24]. The existence of N. gonorrhoeae
strains that are resistant to even the last-line antimicrobials
and the fear of not having a suitable alternative to treat the
disease led the WHO to include gonorrhoea on its 2017 list
of ‘high-priority’ pathogens for which there is a need for
research and development of new antimicrobials [25].

GENOMIC INSIGHT INTO AMR GONOCOCCUS

WGS has provided further insight into antimicrobial resis-
tance (AMR) in the gonococcus, and several genetic deter-
minants have been found associated with decreased
susceptibility and resistance to key antimicrobials [8]. In
addition, WGS of large collections of isolates around the
world has revealed details on the evolution of AMR, but
also on gonorrhoea population structure, intercontinental
spread and transmission in different risk groups (Table 1).
A compilation of the geographical source and genotypic
AMR of the genomes of N. gonorrhoeae isolates sequenced
to date is shown in Fig. 1.

Genomic epidemiology has been used to study the emer-
gence, evolution and spread of the gonococcus in different
parts of the world, with particular focus on AMR strains.
Grad et al. [26] were the pioneers in studying the genomic
epidemiology of AMR gonococcus in the USA, first with
isolates with reduced susceptibility to cefixime, helping to
understand its transmission within the USA. Following pre-
vious observations of mosaic penA alleles linked to reduced
susceptibility to ESCs [27], they found a strong association
between resistance and the presence of the mosaic penA
XXXIV allele in two different lineages. These mosaic penA
alleles are known to be formed via recombination with other
Neisseria species [28]. A later, broader study on fluoroquin-
olone-, macrolide- and ESC-resistant gonococcus in the
USA by the same group [24] revealed novel loci that may be
involved in reducing susceptibility to ceftriaxone and azi-
thromycin. In contrast, fluoroquinolone resistance could be

explained in >95% of cases using only one genomic marker
(gyrA 91F) [29]. Decreased susceptibility to ESCs and azi-
thromycin has also been examined using genomic epidemi-
ology in Canada by Demczuk et al. [30, 31]. Their results
showed multiple independent acquisitions of ESC and azi-
thromycin resistance over time followed by clonal expan-
sion within high-risk sexual networks [31]. In Europe, N.
gonorrhoeae AMR has been shown to follow the same pat-
tern [16, 32, 33]. However, a recent analysis of isolates from
a 2013 ECDC Euro-GASP survey in 20 European countries
[34] revealed a decrease in the ESC-resistant genogroup
G1407 from a 2011 survey, traditionally linked to MSM
populations but associated with heterosexuals in 2013. As
part of the 2013 survey, the genomics used to assess the two
main typing schemes, multilocus sequence typing (MLST)
and N. gonorrhoeae multi-antigen sequence typing (NG-
MAST), showed that they do not provide enough resolution
to confidently identify isolates from particular lineages, yet
can often erroneously cluster highly divergent lineages due
to the considerable level of recombination in the
gonococcus.

WGS provides a level of discrimination among strains that
allows analysis down to the level of transmission clusters. Grad
et al. [26] detected introductions from MSMs into the hetero-
sexual population in the USA using WGS, while two other
studies focused on gonorrhoea transmission in different
regions and sexual networks in the UK. Both highlighted the
importance of combining genomic data with contact tracing
and epidemiological information to more accurately infer
transmission [32, 33]. Didelot et al. analysed a set of NG-
MAST sequence type 12 (ST12) isolates from a single clinic
collected over 6 years in a mostly heterosexual population in
Sheffield, UK, for which contacts reported by patients were
known. They were able to show that sexual contacts between
cases of transmission occurred a mean of 3.4months before
sampling. Applying this threshold to another collection con-
ducted over 6months in several clinics in London, UK, without
using contact tracing information, predicted transmission links
that correlated accurately with the available epidemiological
information [33]. Transmission was also investigated by De
Silva et al. in a large collection of isolates from a single year
fromBrighton, UK. They developed a new tool called a ‘nomo-
gram’ to predict transmission links by comparing the number
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The rise of gonococcal strains that are resistant to last-
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of SNPs between the infecting isolates with the time between
sampling dates [32]. Their results showed that over 70% of the

isolates sampled within 3months were expected to be linked
either by direct or by indirect transmission. Further work on

Table 1. List of publications that use WGS to study the population dynamics and distribution of antimicrobial resistance in different parts of the

world

Regions

covered

Publication Ref. Main aim Main findings

Worldwide Ezewudo

et al.

2015

[55] Study the population structure, dynamics and the evolution

of antimicrobial resistance in N. gonorrhoeae.

Population grouped into five clusters, involved in a

considerable level of recombination and two of them

harbouring mostly resistant strains to azithromycin and

cefixime.

S�anchez-

Busó

et al.

2018

[29] Study when and where modern gonococcal populations

(1960–2013) emerged and what has been the impact of

antimicrobial usage and transmission in different sexual

networks.

Modern gonococcus was estimated to have emerged in the

16th century in Africa or Europe. AMR determinants

probably emerged in Asia and spread worldwide. The

existence of two (multi-resistant and multi-susceptible)

lineages of N. gonorrhoeae with different AMR patterns,

different recombination rates and adapted to different

sexual networks with variable chance of co-infection and

treatment.

Canada Demczuk

et al.

2015

[30] Study the genomic variability of N. gonorrhoeae with

decreased susceptibility to cephalosporins in Canada

(1989–2013).

Canadian gonococcal population grouped into 12 clusters.

Decreased susceptibility to ESCs emerged during the 1990s

followed by the introduction of penA mosaics X and

XXXIV.

Demczuk

et al.

2016

[31] Study the genomic epidemiology and AMR mechanisms of

azithromycin-resistant N. gonorrhoeae in Canada (1997–

2014).

Geographical and temporal clustering indicated multiple

independent acquisitions of azithromycin resistance, with a

subsequent rapid clonal expansion through local sexual

networks.

USA Grad et al.

2014

[26] Study the genomic epidemiology of N. gonorrhoeae strains

with reduced susceptibility to cefixime in the USA (2009–

2010) to reconstruct the likely spread of lineages through

different sexual networks.

Mosaic penA XXXIV is significantly linked to cefixime

resistance. A lineage of strains harbouring reduced

susceptibility to this antibiotic was observed to have spread

eastward, including several cases of transmission from

MSM to heterosexual populations.

Grad et al.

2016

[24] Study the genomic epidemiology of N. gonorrhoeae strains

resistant to cephalosporins, macrolides and

fluoroquinolones in the USA (2000–2013).

Reduced susceptibility to ESCs is mostly clonal and associated

with penA XXXIV, while azithromycin resistance has arisen

through several mechanisms and showed limited clonality.

Fluoroquinolone resistance has also arisen multiple times

and extensively spread in a clonal manner.

Europe Jacobsson

et al.

2016

[16] Study the genomic epidemiology of azithromycin-resistant

(MIC>2mg l�1) N. gonorrhoeae in Europe (2009–2014).

Reduced number of azithromycin-resistant strains spread

clonally. Two previously described 23S rRNA mutations

explained most of the observed resistance.

Harris et al.

2018

[34] Use WGS to analyse a European survey of N. gonorrhoeae

conducted during 2013 in terms of genomic epidemiology

and AMR

Genogroup G1407 was predominant and accounted for most

cases of cephalosporin resistance, although it reduced since

the previous survey in 2009–2010. Also, the association of

G1407 to MSMs changed to heterosexuals in the survey

presented in this study.

UK Didelot

et al.

2016

[33] Study two local collections of isolates from the UK: one from

Sheffield collected over 6 years from a mostly heterosexual

population, and another one from London during 6months

mostly associated with MSMs.

The Sheffield set showed transmission was associated with a

median time to the most recent common ancestor of about

3months. This threshold applied to the London dataset

revealed transmission occurring among cases of similar age,

sexual orientation, location and human immunodeficiency

virus (HIV) serostatus.

Chisholm

et al.

2016

[22] Use WGS to analyse eight strains with high-level

azithromycin resistance from Leeds (2014–2015) in the

context of other UK cases.

An outbreak was confirmed using epidemiological,

microbiological and also genomic information.

De Silva

et al.

2016

[32] Use WGS to study transmission among patients attending

sexual health clinics in Brighton (2011–2015) including

intercontinental transmissions (other UK sites and USA).

Multiple samples were observed to be related across

geographical locations. A transmission nomogram was

described that can be used to determine direct or indirect

transmission between two cases using genetic data and the

time between both cases. Most of the detected clusters with

>10 patients comprised only men.

New

Zealand

Lee et al.

2017

[39] Study the genomic epidemiology and antimicrobial resistance

of N. gonorrhoeae in New Zealand (2014–2015).

Eleven clusters were identified, with decreased susceptibility

to ESCs in only 3.5% of isolates. Clusters contained a high

proportion of females, suggesting transmission in New

Zealand does not occur exclusively among MSM.
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this dataset showed that phenotypic resistance in gonorrhoea
could be accurately predicted from the known AMR genomic
determinants usingWGS [35].

Gonorrhoea with novel AMR phenotypes has often been
first reported in Asia. Genomic data have provided a possi-
ble explanation for this, identifying that an AMR-associated

Fig. 1. Distribution of AMR determinants on N. gonorrhoeae isolates from genome-based published papers. The most relevant known

mutations [3] were tested from raw WGS data using ARIBA [53]. Those reported to produce the highest increase in MIC [29, 34] are

coloured in red, while other associated mutations reported to cause a reduced susceptibility phenotype are coloured in orange and no

known mutation in blue. Some mutations have not been proven to cause an MIC increase above the breakpoints. Note that some publi-

cations used a biased sampling to fulfil their particular work aims, so the maps are not fully representative of the incidence of the

resistance mutations in particular locations. Maps were obtained using Microreact [54], and a dynamic version that includes the indi-

vidual tested determinants can be found at https://microreact.org/project/rJQ6FGj8G. Grey represents isolates with missing metadata.
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lineage, which emerged in Asia, has subsequently repeatedly
disseminated globally [29]. Genetic analysis of target genes
combined with phenotypic information conducted by Shi-
muta et al. [36] revealed the first cefixime-resistant isolate
containing a mosaic penA X allele in 1997 in Japan,
although a previous isolate with reduced susceptibility and
without genotypic information had already been detected in
1995. These two instances of cefixime resistance were fol-
lowed by an increase in the number of isolates with reduced
susceptibility over time in Japan and subsequently globally
[36]. In the period from 2000 to 2015, 5–10% of Japanese
isolates were resistant to at least one of the antimicrobials in
the current dual therapy [37]. In the same period, China
also reported an increasing number of isolates with
decreased susceptibility to ceftriaxone and at least one with
an azithromycin MIC of 1mg l�1 [38]. The only genomic
analysis from the West Pacific region came from a recent
analysis by Lee et al. [39], who looked at the gonococcal
population in New Zealand. Their study revealed highly
clonal clusters with a significant proportion of isolates com-
ing from females, suggesting the sexual networks driving
gonorrhoea transmission in this region are less dominated
by MSM, but instead were mostly made up by a combina-
tion of MSM with heterosexual or bisexual networks. Very
few isolates with decreased susceptibility to ESCs were
found, some of them with penA XXXIV as an associated
genetic determinant. Only two azithromycin-resistant iso-
lates contained the low-level 23S mutation (C2611T),
although more than 10% of all the isolates revealed a
reduced susceptibility due to mutations in mtrR or its
promoter.

On a global scale, S�anchez-Busó and colleagues revealed the
population structure of a broader globally isolated set of N.
gonorrhoeae isolates from the 1960s until 2013 [29]. Inter-
estingly, genome-based phylogenetics revealed the probable
existence of two lineages of the pathogen, one of them asso-
ciated with a higher recombination rate, harbouring more
AMR determinants and probably associated with high-risk
groups that are more often subjected to antimicrobial treat-
ment for gonorrhoea and other STIs. By contrast, the sec-
ond lineage was associated with a lower recombination rate,
fewer AMR determinants and networks which may be sub-
jected to higher rates of asymptomatic infections, particu-
larly in women. The 2013 European survey of gonorrhoea
infections [34] clearly supports this observation, showing
that the multi-susceptible lineage is significantly associated
with women and heterosexual populations in general. Fur-
ther studies will be needed to characterize this lineage,
which is potentially silently spreading worldwide.

NEW ANTIMICROBIALS AND POINT-OF-CARE

TESTING

A suitable vaccine to prevent gonococcal infections is cur-
rently not available. Previous attempts to develop a vaccine
have not produced sufficient protection because the targeted
gonococcal surface antigens are too rapidly evolving, and

there is a lack of a suitable animal model for systematic test-
ing of protective responses on a larger panel of antigens
[40]. Interestingly, a recent study in New Zealand suggested
that the group B meningococcal outer membrane vesicle
vaccine could reduce the risk of gonorrhoea infection [41].
This provides hope that comparative genomics can support
the development of novel vaccination strategies by provid-
ing data on antigenic variation and immune selection in cir-
culating strains [42]. In the absence of a suitable vaccine,
there are ongoing efforts to find alternative antimicrobials.
A phase 3 randomized controlled trial (RCT) is evaluating
the effectiveness, tolerability and safety of solithromycin as
an azithromycin [43] or ceftriaxone [44] replacement. Zoli-
flodacin and gepotidacin are other antimicrobials under
clinical evaluation for the treatment of gonococcal infec-
tions [45, 46]. Alternatively, a non-inferiority phase 3 RCT
is assessing intramuscular gentamicin plus oral azithromy-
cin for uncomplicated anogenital and pharyngeal gonor-
rhoea [47]. Spectinomycin is being re-evaluated due to the
high level of global susceptibility, although there is fear that
resistances could be rapidly selected unless it is included in
a dual therapy with, for example, solithromycin [45]. Sev-
eral other new antimicrobials have also proven efficient in
vitro [45, 48], such as the fluoroquinolone sitafloxacin [49].
One important consideration is that treatment should
potentially be adjusted to the type of infection, as pharyn-
geal infections are more difficult to treat than urogenital
infections [50]. Tuite and colleagues [51] highlighted the
importance of a rapid point-of-care (POC) test for personal-
ized diagnosis, and showed that the current non-individual-
ized treatment could result in >5% strains being resistant to
the current dual treatment in the next 15 years, while the
use of a POC test could delay this event. POC tests could
additionally detect susceptibilities to antimicrobials that are
no longer recommended, e.g. fluoroquinolones, and thus
allow treatment of individual infections without contribut-
ing to increased pressure on the last-line treatments. The
increasing availability of genomic data has the potential to
enable development of POC tests and could inform on resis-
tance pathways to these new antimicrobials. Current tools
used for pathogen surveillance and resistance prediction,
such as WGSA (www.wgsa.net), Mykrobe [52], ARIBA [53]
and several others, can be used in this development process
as well as for surveillance of AMR strains.

CONCLUSION

AMR tracking is of utmost importance for the control of
gonorrhoea and to avoid reaching a point where the disease
becomes untreatable. Resistance to the last-line antimicro-
bials, especially azithromycin, is occurring globally,
although resistance to dual therapy is still rare. Fortunately,
genomics is a step change in the fight against AMR, allow-
ing detection of known genotypic determinants and the dis-
covery of novel ones. This also allows detection of
discordances between resistance phenotypes and genotypes
that was difficult using traditional targeted molecular ampli-
fication. Furthermore, genomic studies have unveiled the
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population structure and dynamics of this sexually trans-
mitted pathogen and have provided insight into how it is
being transmitted in different networks. Having a resolved
population structure allows reconstruction of events from
the fine scale, i.e. transmission, up to the very large scale,
such as the recognition that there are two main lineages in
the current population that diverged hundreds of years ago.
The multi-resistant lineage, mostly spread in high-risk
groups, has been the main focus for WGS studies to date.
However, just as importantly, a second, multi-susceptible
lineage seems to be silently spreading in lower-risk, poten-
tially undertreated groups, and although they do not pose a
challenge for AMR, they do pose a public health risk, and
further work to survey the behaviour of this lineage and
potential interaction with AMR strains may be necessary.
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