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Abstract: In the case of a contamination event in water distribution networks, several studies have
considered different methods to determine contamination scenario information. It would be greatly
beneficial to know the exact number of contaminant injection locations since some methods can only
be applied in the case of a single injection location and others have greater efficiency. In this work,
the Neural Network and Random Forest classifying algorithms are used to predict the number of
contaminant injection locations. The prediction model is trained with data obtained from simulated
contamination event scenarios with random injection starting time, duration, concentration value,
and the number of injection locations which varies from 1 to 4. Classification is made to determine if
single or multiple injection locations occurred, and to predict the exact number of injection locations.
Data was obtained for two different benchmark networks, medium-sized network Net3 and large-
sized Richmond network. Additionally, an investigation of sensor layouts, demand uncertainty, and
fuzzy sensors on model accuracy is conducted. The proposed approach shows excellent accuracy in
predicting if single or multiple contaminant injections in a water supply network occurred and good
accuracy for the exact number of injection locations.

Keywords: water distribution networks; water network contamination; machine learning; random
forest; neural network

1. Introduction

Contamination in water distribution networks can occur due to deliberate or unin-
tentional intrusions and it is of extreme importance to determine the contamination event
parameters so it can be detected which parts of water distribution networks have been
exposed to the contaminant and needed measures can be conducted. This is considered to
be an inverse problem since injection location, injection starting time, injection duration,
and contaminant chemical concentration value needs to be predicted based on sensor
measurements. Numerical simulations are used to determine these parameters, but model
limitations need to be taken into consideration. EPANET [1] is the most commonly used
software for water distribution network simulations and uses an advective approach which
cannot efficiently analyze contaminant dispersion in the networks. Piazza et al. [2] con-
ducted experiments where it was shown that dispersive and diffusive processes must be
incorporated in the transport model for less turbulent fluid flows to achieve more accurate
results than the pure advection model. Also, EPANET assumes complete mixing in all
network junctions, which can be valid only in the case of a single outlet or if there is con-
siderable distance between two junctions. Therefore, EPANET extension EPANET-BAM [3]
was proposed which uses experimentally calibrated mixing model parameter to more
accurately model mixing in network junctions. A number of studies investigated mixing
behavior for different conditions, both experimentally and numerically, to further enhance
these simpler 1D numerical models [4–9].
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Huang and McBean [10] investigated a data mining approach for identifying possible
sources of intrusion where single and multiple injection scenarios were considered. In the
case of multiple injection scenario, the method provided a limited number of nodes with
the probability of them being the true contamination source. However, in their work, it is
not predicted what is the true number of injection locations. In Wang and Harrison [11] a
Bayesian approach was coupled with Support Vector Regression to provide a probability
distribution of water network nodes being contaminant sources. However, a single injection
is assumed, and it is noted that multiple contaminant sources should be considered in future
work where the likelihood evaluation needs to be adjusted. Seth et al. [12] investigated
the efficiency of three different methods for source detection; Bayesian probability-based
method, backtracking method (using contaminant status algorithm), and optimization-
based method where accuracy in case of multiple injection locations was investigated for
two and three contamination injection locations. It was noted that the Bayesian method is
designed only for a single contamination location while the contaminant status algorithm
used in De Sanctis et al. [13] provides a list of possible solutions that narrow down search
space for the optimization method; however, it also does not identify the possible number
of injection locations. In Lučin et al. [14] a new search space reduction method was
proposed, which can eliminate a considerable number of source nodes for both single and
multiple injection locations, but with considerably greater reduction for single injection
scenario. A number of different optimization approaches were considered to determine the
contamination source, an overview of proposed methods can be found in Adedoja et al. [15].
Optimization approach can be easily extended to consider multiple contamination sources,
as mentioned in [16–18].

If considering the optimization approach with multiple injection locations, with each
additional source of contamination, the complexity of search space increases with an in-
crease of optimization variables. Since the number of injection locations is not known,
as a precaution, multiple injection locations should be allowed, since optimization can
set variables to zero (which eliminates that source node and eliminates the number of
injection locations), but it cannot add additional variables (injection locations) during the
optimization process. In this way, in the case of a single injection location, optimization can
eliminate other source nodes (all contamination parameters would be set to 0). However,
this considerably increases the complexity of the considered problem since unnecessary fit-
ness function evaluations would be conducted due to greater search space. Thus, it would
be greatly beneficial to determine the number of injection locations before the optimization
algorithm is employed. Also, if it is known that a single injection event occurred, a number
of methods can be used more efficiently to reduce the complexity of the problem. For ex-
ample, the machine learning approach provides probabilities for each network node being
the true contamination scenario, which greatly reduces the number of suspect nodes and
helps in quicker detection of true contamination location. However, in the case of multiple
injections, different likelihood evaluation is needed which increases the complexity of
the machine learning approach. Prediction of the number of contamination sources has
previously been conducted for air pollution in Wade and Senocak [19], but to authors
knowledge was not conducted for water distribution network contamination scenarios.

Machine learning tools have been increasingly used in contamination detection,
where Random Forest has been used for groundwater source of contamination detec-
tion [20] and source detection in a river [21]. In Grbčić et al. [22] Random Forest algorithm
was used to predict contamination event parameters in water distribution networks and in
Grbčić et al. [23] new machine learning-based algorithm was proposed. A great advantage
of prediction models is that they can be constructed before an accident occurs, so when
a contamination event is detected prediction can be made even for large networks in a
computationally efficient way. Thus, the proposed model which predicts number of injec-
tion locations can be used prior to conducting approaches that search for contamination
parameters, without influencing the reaction time needed to contain the contamination
event. However, in accident situations hydraulic conditions can greatly differ from those
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on which model was trained, thus, a wrong prediction could be made. This can be handled
with the preparation of multiple prediction models with different hydraulic conditions
or by using a prediction model that achieves great accuracy with the small number of
inputs so time for prediction also becomes negligible considering the benefit of search
space reduction when redundant optimization parameters are not used.

In this paper, the Random Forest and Artificial Neural Network classifier are used to
predict the number of contamination sources based on contamination sensor measurements
in the water distribution network. Sensor measurements of contamination needed for
model teaching are obtained from contamination scenarios simulated using EPANET2 with
Monte Carlo generated contamination parameters. An investigation was conducted for
two different sized benchmark water distribution networks with different sensor layouts,
to examine the efficiency of the proposed machine learning approach. Investigation of
demand uncertainty and fuzzy sensors is also estimated.

2. Materials and Methods
2.1. Benchmark Water Supply Networks

Prediction of the number of injection sources is conducted for two benchmark different
sized networks. Investigated networks are Net3 EPANET2 example consisting of 92 nodes
and Richmond network consisting of 865 nodes, obtained from The Centre for Water
Systems (CWS) at the University of Exeter [24]. For the Net3 network, two different sensor
layouts are investigated. In first layout four sensors were placed in network nodes 117,
143, 181, and 213 as in [25] and in second layout four sensor were placed in network
nodes 115, 119, 187, and 209 as in [26]. Additionally, an investigation of the number of
sensors was conducted. For the first layout, two sensors were placed in network nodes
117 and 181, and for the second layout sensors were placed in network nodes 119 and
209. For Richmond network five sensors were placed in network nodes 93, 352, 428, 600,
and 672 where sensor layout was taken from [27]. Layout with three sensors placed in
network nodes 93, 428, and 672 was also considered. Considered networks with sensor
layouts can be seen in Figures 1 and 2.

Contamination scenarios are simulated using EPANET2 version 2.0.12. where for both
networks, simulation time is 24 h with a hydraulic time step of 10 min, quality time step
5 min, pattern time step 10 min and report time step 1 h. For all conducted simulations,
the EPANET2 flow paced method is used for the contaminant injection. Contamination
scenario parameters are chosen randomly. The number of injection locations is chosen from
1 to 4 nodes. The starting time and duration of contamination injection are chosen from 0
to 24 h. Concentration was randomly chosen from 10 to 2000 mg/L. For contamination
scenarios with multiple injection locations starting time, duration, and concentration was
kept the same for every injection location.

Prior to simulating multiple injection scenario, independent simulations for each
randomly chosen node as a source of contamination are conducted. If contamination is not
registered for the investigated node with chosen contamination parameters, that node is
eliminated as source location and only nodes for which contamination was detected in at
least one sensor are kept as a source of contaminant. For example, if four source nodes are
randomly chosen to be the source of contamination, but only two source nodes influence
sensor detection of contaminant, the same time series of sensor measurements would be
obtained for two, three, and four injection locations since the latter two do not influence
contamination measurements. If four sources are given to the prediction model as input,
where contamination can be measured only from two sources, that would significantly
reduce the accuracy of the prediction model. Thus, only nodes which contribute to the
contamination measurements in sensors are considered for multiple injection scenario.
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Figure 1. Net3 network with sensor layouts.

Figure 2. Richmond network detail with sensor layout.

An example of the proposed methodology can be seen for arbitrarily chosen Net3
contamination scenario in Figure 3. Randomly chosen contamination scenario parameters
are 3 source nodes (159, 151 and 123), with contamination value of 200 mg/L, starting time
13 h and 20 min and injection duration 2 h. Sensor measurements for chosen contamination
scenario can be seen in Figure 4. It can be observed that for source node 151 contamination
scenario remains undetected in all sensors placed in the water distribution network, thus for
multiple sources scenario only source nodes 123 and 159 are further considered.
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Figure 3. Contours of chemical for randomly chosen Net3 contamination scenario 90 min after injection starting time.
Contamination from source node 151 remains undetected, so the source node is not included for multiple injections scenario.
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(a) (b)

(c) (d)
Figure 4. Sensor measurements for Net3 contamination scenario with (a) injection node 159, (b) injection node 123,
(c) injection nodes 123 and 159 and (d) contamination measurements in the sensor in node 181.

2.2. Demand Uncertainty and Sensor Type

To investigate demand uncertainty, for both Net3 and Richmond networks, for every
network node first it was randomly chosen if demand will be altered or not. If node
base demand was to be altered, the percentage from 0–5% is randomly chosen for each
network node, to reduce or increase base demand by the chosen percentage, resulting in
a random demand span of 10%. To further investigate influence of demand uncertainty,
the percentage from 0–10% is randomly chosen to reduce or increase base demand, resulting
in a random demand span of 20%. All network demand patterns were kept the same,
only base demand was changed. This method was conducted for every contamination
scenario, thus resulting in different hydraulic conditions for each contamination scenario.

For sensor type influence, fuzzy sensor measurements were made where sensor
detection was considered either low, medium, or high. Chemical concentration value C
in range 0 < C < 300 mg/L was considered low, in range 300 < C < 1000 mg/L was
considered medium and high if C > 1000 mg/L. Prediction model input features were
defined as 0 if no contaminant was detected, 1 for low measurements, 2 and 3 for medium
and high measurements, respectively.

2.3. Machine Learning Classifiers

Two different machine learning classifiers, Random Forest and Artificial Neural Net-
work were used to compare the efficiency of the proposed method. Random Forest al-
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gorithm [28], based on multiple decision trees is used, with 250 estimators (trees) with a
maximum depth of 30 and the minimum number of samples required to split an internal
node 8. An artificial neural network with three hidden layers with 100 nodes in each layer,
with hyperbolic tangent activation function and Adam solver for weight optimization is
used. Proposed parameters were chosen with the grid search hyperparameter optimization
method, while other parameters, which are not mentioned, are kept constant. Imple-
mentation in the Python library Scikit-learn [29] version 0.20.3 is used for both classifiers.
Obtained data was split 70% for teaching and 30% for model testing. Flowchart of the
prediction model can be seen in Figure 5. Data generation and prediction model training
was done using the supercomputing resources at the Center for Advanced Computing and
Modelling, University of Rijeka.

Figure 5. Flowchart of Machine Learning algorithm for prediction of number of contamination
sources.
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Input data for the prediction model is the time series of sensor measurements. For both
Net3 and Richmond network, 25 features per sensor are obtained, which resulted in
100 features for Net3 and 125 features for Richmond network. The output of the machine
learning model is the number of injection locations where two different prediction models
are used. The first prediction model was used to predict the exact number of injection
locations, i.e., 4 different classes are predicted. In the second model it is predicted only if
single or multiple injections occurred, i.e., 2, 3 and 4 injection locations are treated as same,
multiple injections class, thus only 2 different classes are predicted (single and multiple
injections). To further increase the accuracy of the latter prediction model, the threshold
value is introduced. Only if the model predicts a single source scenario with a probability
greater than the chosen threshold value, single source prediction is made. In other cases,
the scenario is treated as multiple sources. Threshold values of 50%, 60%, 70%, 80%, 90%,
and 95% are investigated.

3. Results
3.1. Model Accuracy

The influence of input data on prediction model accuracy is investigated for both
benchmark networks where data ranged from 50,000 to 500,000 inputs (Figure 6). An inves-
tigation is conducted for prediction model with 2 categories (model predicts only if single
or multiple injection locations are present) and with 4 categories (model predicts an exact
number of injection locations). For each model and each number of inputs, 20 runs were
conducted to take into consideration the influence of random seed. For the Net3 network
second sensor layout with sensors placed in nodes 115, 119, 187, and 209 was considered.
For Net 3 results are presented for both RF and NN prediction models. Standard deviation
ranged from 0.63% for 50,000 to 0.33% for 500,000 inputs for NN model, and from 0.33%
for 50,000 to 0.1% for 500,000 inputs. It can be observed that the RF model has slightly
better accuracy for all investigated models. Also, due to the faster execution time of the RF
model, for all further analyses, only RF results will be presented. For Richmond network,
standard deviation ranged from 0.28% for 50,000 inputs to 0.12% for 500,000 inputs which
indicates the stability of the model. Presented results are an average of all 20 runs.

(a)

Figure 6. Cont.
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(b)

Figure 6. Accuracy of prediction models for different number of inputs for (a) Net3 network and
(b) Richmond network.

It can be observed that even for a small number of input data considerable accuracy
can be achieved. For model with 2 categories even with 50,000 inputs accuracy of the model
is above 85% for both considered networks. After 200,000 inputs accuracy of the models
for both networks tend to only slightly increase with the further increase of the number of
input data. For 500,000 inputs accuracy of the Net3 network is 66.83% and for Richmond
network 72.96%. When simplification is made, and the model only needs to predict single
or multiple injection locations, accuracy significantly increases and for 500,000 inputs for
the Net3 network is 91.46% and for the Richmond network 93.4%.

3.2. Threshold Influence

To further increase the accuracy of the prediction model, the threshold value is introduced
for the model which predicts 2 categories. Detailed results are presented for models with
500,000 inputs for Net3 (Tables 1 and 2) and Richmond network (Tables 3 and 4). Presented
results are the average of values obtained from 20 runs. As expected, with the increase in
threshold value accuracy of the prediction model increases. However, with a greater threshold
value, a greater number of single injection scenarios, as a precaution, are classified as multiple
sources, thus a smaller number of true single injection scenarios are detected. For both
networks, when the threshold value is 95%, a very low percentage of correct prediction of
single source scenarios can be observed when prediction model parameters chosen with grid
search optimization method (250 estimators, maximum depth 30, minimum samples for split
8) were used (Tables 1 and 3). Thus, different prediction model parameters (180 estimators,
maximum depth 80, minimum samples for split 10) were also investigated to test its influence
on model accuracy when threshold values are considered. In Tables 2 and 4 it can be observed
that for the greatest threshold value (95%) correct prediction of single sources scenarios greatly
increases, and is around 30% of the total number of single source scenarios. As threshold
value decreases, similar percentages are observed for both models, which indicates that model
accuracy is similar for different RF parameters. However, when greater prediction certainty is
expected, model parameters must be carefully considered.
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For both networks, accuracy with threshold value 95% is above 99.5%. It can be observed
from Table 2 that for Net3 only 36% of total number of single source scenarios are correctly
predicted where for Richmond network (Table 4) that value is 37%. For threshold value 50%
for Net3 94.5% of single injection scenarios are correctly predicted; however, the number of
wrong predictions increases. The same can be observed for the Richmond network where
for threshold value 50%, 97.8% of single injection scenarios are correctly predicted but the
percentage of wrong single injection scenarios increases from 0.8% to 12.7%.

The problem remains with scenarios that are wrongly predicted even for a threshold
value of 95%. With further increase of threshold value, the number of wrongly predicted
scenarios would decrease, but only because ultimately all scenarios would be classified as
multiple sources (this can also be observed in Tables 1 and 3 for first chosen RF parameters).
Thus, optimum threshold value should be chosen to both provide a reasonable number
of single injection scenario predictions but with a high model accuracy. In-depth analysis
of scenarios where the model wrongly predicts a single injection scenario with a high
threshold value should be conducted. Also, it should be investigated how much accuracy
of the model can be further increased with a larger number of inputs and with the usage of
different classifiers.

Table 1. Influence of threshold value on model accuracy for Net3 network (250 estimators, maximum depth 30, minimum
samples for split 8). Percentage indicates number of predicted simulations based on total number of single source scenarios.

Threshold Value Accuracy Single Source Scenarios Correct Prediction Wrong Prediction

95% 99.98% 48,682 3307 (6.8%) 36 (0.07%)
90% 99.73% 48,682 15,388 (31.6%) 405 (0.8%)
80% 98.6% 48,682 34,717 (71.3%) 2085 (4.3%)
70% 97.5% 48,682 41,204 (84.6%) 3683 (7.6%)
60% 96.7% 48,682 44,334 (91.1%) 4914 (10.1%)
50% 95.7% 48,682 46,388 (95.3%) 6390 (13.1%)

Table 2. Influence of threshold value on model accuracy for Net3 network (180 estimators, maximum depth 80, minimum
samples for split 10). Percentage indicates number of predicted simulations based on total number of single source scenarios.

Threshold Value Accuracy Single Source Scenarios Correct Prediction Wrong Prediction

95% 99.7% 48,783 17,458 (35.8%) 508 (1%)
90% 99.4% 48,783 25,426 (52.1%) 863 (1.8%)
80% 98.9% 48,783 35,197 (72.2%) 1667 (3.4%)
70% 98.2% 48,783 40,640 (83.3%) 2636 (5.4%)
60% 96.7% 48,783 43,977 (90.2%) 3737 (7.7%)
50% 95.7% 48,783 46,091 (94.5%) 5072 (10.4%)

Table 3. Influence of threshold value on model accuracy for Richmond network (250 estimators, maximum depth 30,
minimum samples for split 8). Percentage indicates number of predicted simulations based on total number of single
source scenarios.

Threshold Value Accuracy Single Source Scenarios Correct Prediction Wrong Prediction

95% 99.9% 52,911 375 (0.7%) 5 (0.001%)
90% 99.8% 52,911 10,889 (20.6%) 303 (0.6%)
80% 97.9% 52,911 37,463 (70.8%) 3076 (5.8%)
70% 95.8% 52,911 49,149 (92.9%) 6269 (11.9%)
60% 94.8% 52,911 51,427 (97.2%) 7819 (14.8%)
50% 93.9% 52,911 52,198 (98.65%) 9178 (17.3%)
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Table 4. Influence of threshold value on model accuracy for Richmond network (180 estimators, maximum depth 80,
minimum samples for split 10). Percentage indicates number of predicted simulations based on total number of single
source scenarios.

Threshold Value Accuracy Single Source Scenarios Correct Prediction Wrong Prediction

95% 99.7% 52,941 19,499 (36.8%) 435 (0.8%)
90% 99.3% 52,941 30,305 (57.2%) 1085 (2.1%)
80% 98.3% 52,941 42,000 (79.3%) 2567 (4.9%)
70% 97.3% 52,941 47,654 (90%) 4061 (7.7%)
60% 96.4% 52,941 50,433 (95.3%) 5433 (10.3%)
50% 95.5% 52,941 51,775 (97.8%) 6703 (12.7%)

3.3. Sensor Layout

The influence of sensor layout was tested for both Net3 and Richmond networks.
20 runs were conducted for the model with 500,000 inputs and average accuracy for all
runs can be seen in Table 5. It can be observed that for the same number of sensors, their
layout influences the accuracy of prediction models. This is expected, since the same
behavior can be seen when the detection rate of contamination event is investigated for
different sensor layouts. In the paper by Ostfeld et al. [30] for the same network and the
same number of sensors detection likelihood of contamination event greatly differs for
different sensor layouts. Results show that the prediction model for 2 categories (predicts
single or multiple injections) is less influenced by sensor layout and all sensor layouts have
accuracy around 90% or higher.

Interestingly, greater model accuracy can be observed when a smaller number of
sensors is placed for Net3 layout with sensors in nodes 117, 143, 181, and 213 and for
Richmond network. However, it can be explained with the fact that a greater number
of contamination events remain undetected. i.e., with the greater number of sensors,
contamination events from the greater number of network nodes are detected, resulting in
more combinations when considering multiple injection locations. When sensor placement
is sparser, a smaller number of network nodes can be detected when the contamination
event occurs, resulting in a smaller number of combinations for multiple injection locations
and consequently providing better model accuracy with 500,000 inputs.

Table 5. Influence of sensor layout for Net3 and Richmond networks on prediction model accuracy.

Sensors Locations
Accuracy

4 Categories 2 Categories

Net3

117, 143, 181, 213 71% 94%
115, 119, 187, 209 67% 91%

117, 181 75% 89%
119, 209 63% 89%

Richmond 93, 352, 428, 600, 672 73% 93%
93, 428, 672 83% 92%

3.4. Demand Uncertainty and Fuzzy Sensors

Influence of demand uncertainty and fuzzy sensors was investigated for Net3 network
with 4 sensors in nodes 117, 143, 181 and 213 and for Richmond network with 5 sensors
in nodes 93, 352, 428, 600 and 672. 20 runs were conducted for RF models with 500,000
inputs and average accuracy can be observed in Table 6. When demand uncertainty is
considered the accuracy of RF models slightly decreases for both networks. The influence
of fuzzy sensors is more prominent, where the greater reduction in prediction accuracy
can be observed for the Net3 network. When considering both demand uncertainty and
fuzzy sensors in the same model, accuracy further slightly decreases. However, it can be
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observed that for both networks model which predicts 2 categories has accuracy above 90%
for all cases. This shows that the proposed model could be applied in a real case scenario.

Table 6. Influence of demand uncertainty and fuzzy sensors for Net3 and Richmond network on
prediction model accuracy.

Net3

4 Categories 2 Categories

perfect sensors 71% 94%
demand uncertainty (±5%) 69% 93%

demand uncertainty (±10%) 69% 93%
fuzzy sensors 65% 91%

demand uncertainty (±5%) and fuzzy sensors 64% 90%
demand uncertainty (±10%) and fuzzy sensors 63% 90%

Richmond

4 Categories 2 Categories

perfect sensors 73% 93%
demand uncertainty (±5%) 72% 93%

demand uncertainty (±10%) 72% 93%
fuzzy sensors 72% 93%

demand uncertainty (±5%) and fuzzy sensors 71% 93%
demand uncertainty (±10%) and fuzzy sensors 71% 92%

4. Discussion

Accuracy of prediction models for both networks has similar results with small differ-
ences, which shows that the proposed methodology could be successfully applied to other
networks. Further investigation should be conducted for large size water distribution net-
works and different sensor placements, to fully investigate the robustness of the proposed
method. Also, it must be noted that simplification was used in this study, where all source
nodes had the same parameters (injection starting time, duration, and concentration value),
thus, it should be investigated how the model predicts if those parameters are different for
each injection node.

Although slightly, with the increase of input data model accuracy still increases, so in
further study a greater number of data inputs should be investigated. Also, in the proposed
scenarios report time step was chosen to be 1 h, resulting in 25 features per sensor. It should
be investigated if a greater number of features, i.e., smaller report time step would increase
model accuracy and if similar model accuracy could be achieved with a smaller number of
contamination readings. The optimal number of features and inputs should be investigated
to achieve great accuracy but with reasonable execution time. However, to obtain a greater
number of inputs a greater amount of time is needed, so the model should be trained
before the actual contamination event occurs. In that case, the model would be trained
with simulation results with average demand patterns. This surely would mean that true
contamination event will have different demands which would influence the accuracy
of the prediction model. Investigation of demand uncertainty with arbitrarily chosen
demand variation spans showed that small differences of base demands slightly influence
prediction model accuracy. However, it must be taken into consideration that when base
demand variation is defined with percentage, small demand variation is achieved when
base demand is small and greater demand variation only when base demand is greater.
Greater difference in demands should be further investigated since the usual variability
of consumption can be greater than considered in this paper. Different machine learning
models, with different expected demand patterns, can be prepared for contamination
event so prediction can be obtained instantaneously. However, in case of contamination
event, greater oscillations in the hydraulics of water distribution network could occur, such
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as pipe burst or some other unplanned event, which would greatly influence change in
demand patterns. Thus, it would be beneficial to investigate other algorithms that could
increase accuracy with a smaller number of input data. In that case, input data can be
obtained after the contamination event occurred, in a reasonable amount of time. That
would be greatly beneficial since the simulation model can then be calibrated with sensor
measurements from the field and input data would be more precise. The proposed method
can be easily coupled with other machine learning approaches since inputs obtained for
this model can also be used for teaching model that predicts injection location.

Investigation of different sensor layouts, demand uncertainty, and fuzzy sensors
showed that sensor layout and type of sensors have the greatest impact on prediction model
accuracy. Demand uncertainty slightly decreases model accuracy. However, model ac-
curacy can be greatly reduced when a real case event is considered since both demand
uncertainty and measurement errors can be greater than considered in this work. Thus,
a threshold value is introduced which can help increase model accuracy. Greater thresh-
old value increases model accuracy; however, it also leads to a greater number of single
injection scenarios classified as multiple injections. It is also observed that prediction
models are not very sensitive to model parameters; however, when threshold value is
used, i.e., model prediction certainty is evaluated, model parameters are very important
for method efficiency. Thus, the investigation of different machine learning approaches
should be further investigated to increase model accuracy.

When observing presented results it must be taken into consideration that numerical
model simplifications are made, where EPANET was used which assumes complete mixing
in all network junctions and uses pure advection transport model. Also, in the presented
study benchmark networks are used, and numerical simulations are conducted for only
24 h, where more than 24 h are needed to obtain stable contamination scenario results.
However, the functionality of the presented machine learning approach is not dependent
on the numerical model setup, and it is assumed that the same numerical approach that is
chosen for the optimization process is to be also chosen for the prediction model preparation.
In this way, all discrepancies due to numerical model simplifications would be also present
in the optimization and as such are not the result of using the proposed machine learning
approach. Furthermore, network uncertainties were not considered regarding internal pipe
diameter and pipe roughness which should be considered in the further research.

5. Conclusions

In this paper, the machine learning approach is presented which helps identify the
number of injection locations based on sensor measurements. Random Forest classifier and
Neural Network classifier are used on medium-sized benchmark network, where Random
Forest classifier provided better accuracy and faster execution time, thus is used for all
other investigations. Two different sized benchmark networks are considered, where it is
shown that the machine learning approach can be successfully used to predict the number
of injection locations. This can help define the number of optimization parameters, where
redundant parameters can be avoided which needlessly increase the complexity of the
problem. The prediction model shows great accuracy when it predicts only if single or
multiple injection locations occurred. The threshold value is proposed which further
increases model accuracy since the single injection scenario is assumed only if the model
predicts with certainty greater than the threshold value. Lower accuracy is obtained
when the exact number of injection locations is predicted. The accuracy of the prediction
model is investigated for different sensor layouts and in case of demand uncertainties and
fuzzy sensors. Conducted research showed promising results, where exploration of other
algorithms and increased number of input data should be investigated to further increase
the accuracy of both models.

Author Contributions: Conceptualization, I.L. and L.G.; Data curation, I.L.; Formal analysis, I.L;
Investigation, I.L. and L.G.; Methodology, I.L. and L.G.; Resources, Z.Č. and L.K.; Software, I.L.;
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