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Introduction
The evolving genetic diversity and phenotypic plasticity of 
cancer cells make cancer a moving target for therapeutic inter-
ventions. Despite the increasing efficacy of available cancer 
therapies, resistant cancer cells persist after remission as a min-
imal residual disease which would ultimately lead to recurrence, 
therapeutic resistance and metastasis. Constraints on cancer 
evolutionary dynamics, such as the incidence order of genetic 
alteration events, may point to vulnerabilities that can be tar-
geted to achieve effective management or cure.

Cancer is a nonlinear dynamical system driven by sto-
chastic genetic events involving driver and passenger somatic 
mutations,1 copy number alterations,2 and structural variations, 
including translocations, chromosomal loss or gain and whole 
genome doubling.3 A recent high accuracy DNA duplex 
sequencing of colorectal tumors shows that every DNA base is 
mutated in at least one cancer cell.4 The assertion of such hyper 
genotypic diversity at diagnosis highlights the near boundless 
potential of tumor cells for phenotypic transformations and the 
vast space of possible trajectories of survival and proliferation 
they could explore under environmental and therapeutic selec-
tion pressures. Herein lies the limitations of therapeutic inter-
ventions that do not integrate the evolutionary perspective of 
cancer, first proposed by Nowell5 and increasingly recognized 
as the most fitting viewpoint in the search for effective cancer 
treatments.6 In particular, cancer evolutionary dynamics impose 
an intrinsic barrier to the cure or effective management of can-
cer using the common therapeutic paradigm of killing as many 
cancer cells as possible, argued to be evolutionary unsound.7 
Indeed, traditional therapeutic strategies, which are often based 
on genotoxic agents, eradicate therapy-sensitive cancer cells, 
leaving therapy-resistant cells to subsequently fuel resistance 
and disease recurrence,8 as the most critical challenges in the 

fight against cancer. Treatment strategies that are designed to 
anticipate the evolutionary dynamics of tumor progression and 
accordingly preempt the adaptive survival of cancer cells are 
expected, in principle, to yield improved patient outcomes. 
However, this will hinge on the feasibility of predicting tumor 
progression trajectories. Genome wide studies have revealed 
genotypic patterns underlying cancer progression, whereby dif-
ferent cancer stages involve different sets of driver mutations 
and copy number alterations.9-11 Although uncovering geno-
typic patterns in tumors’ histories may inform the design of 
therapeutic strategies, predicting the course of tumor evolu-
tion would require delineating the dynamics of cancer pro-
gression as they relate to what evolution acts on, that is, the 
phenotype. Furthermore, while stochastic genetic events 
shape the emergence of distinct metabolic and cell prolifera-
tion phenotypes, the evolutionary dynamics of tumor pro-
gression are ultimately determined by selection pressures of 
the tumor microenvironment (TME) and therapeutic inter-
ventions acting on the phenotypic diversity of cancer cells. 
However, this does not preclude the existence of cell-intrinsic 
mechanisms that shape cancer cell fitness and modulate 
selection pressures. Indeed, whereas cancer evolutionary driv-
ers are stochastic, the nonlinear tumor response to therapy is 
predictably adaptive to therapeutic challenges and fosters 
therapeutic resistance. The cell signaling and metabolic net-
works are the integrators of genetic alterations into observa-
ble phenotypes and hence constitute an appropriate level of 
abstraction to reason about potential mechanisms underlying 
any cell-intrinsic fitness adaptation modulating evolutionary 
selection. The adaptive fitness of cancer cells is ultimately man-
ifested through the emergence of trajectories of confluence 
between metabolic reprograming and cell fate choices that sup-
port clonal proliferation.
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The proposed necessity of concordance between cell fate 
decision-making and altered metabolism to support cancer 
proliferative growth is rather intuitive given the feedback loops 
that couple the cell signaling and metabolic networks12,13. In 
other words, the set of potential cell fate choices of cancer cells 
may be limited by the integrated effects of genetic alterations 
on oncogenic signaling in closed loop with altered metabolism. 
The limitation on cancer cell fate choices, would ultimately 
translates into evolutionary constraints on tumor progression. 
That is, the signaling-metabolism feedback loop dampens the 
stochastic effect of genetic alterations, limiting as a result the 
set of possible cell fate trajectories that would be available to 
drive tumor proliferative growth. Characterizing the corre-
sponding constraint as a function of genetic alterations may 
provide an avenue for one-step ahead predictions of evolution-
ary dynamics, which would be instrumental to the rational 
development of adaptive cancer therapies.

Phenotypic Measure of Genetic Alterations
Recent studies of cancer evolutionary history have shed light 
on the sequence of genetic events implicated in different cancer 
types.9,11 Although trends and patterns of cancer evolution 
may be used to stratify patients for treatments, the semblance 
of order represented by such patterns is still wrapped in a sto-
chastically driven evolution whose prediction would require the 
definition of measures that go beyond the stochasticity of the 
genotypic drivers and focus rather on the phenotypic diversity 
on which evolution acts. The generation of such phenotypic 
diversity is necessarily bound to the pathway-integrated effects 
of genetic alterations and to the dynamics of the closed loop 
system that couples the signaling and metabolic networks of 
cancer cells (see Figure 1) and lead to the reprograming of 
metabolism, cell death evasion, and sustained proliferation.14

The intertwined metabolic and cell fate decision-making 
pathways (eg, cell division, differentiation, senescence and 
apoptosis) constitute clearly delineable dimensions along 
which the effects of genetic alterations are integrated to yield 

the survival and proliferation potentials of cancer cells, which 
ultimately determine their evolutionary fitness. This highlights 
the need to quantify the dysregulation of signaling and meta-
bolic pathways in order to characterize the phenotypic trends 
of cancer evolution. Network entropy, defined based on 
Kolmogorov–Sinai entropy,15 has been applied to the study of 
various aspects of protein-protein interaction networks, includ-
ing their robustness and the evolution of their structures.16 
Network entropy was also used to discriminate between cancer 
and normal cells17 and predict sensitivity to cancer drugs.18 
Given the dominance of various set of oncogenic pathways in 
the oncogenesis and progression stages of different cancers, the 
notion of pathway entropy is introduced with the explicit con-
sideration of oncogenic pathways that are relevant to the can-
cer at hand. It is used as a measure of the rewiring of oncogenic 
signaling pathways which drives clonal exploration of prolif-
eration trajectories that feed tumor growth. The cell signaling 
network is modeled as a directed graph where nodes represent 
signaling proteins, while directed edges represent protein-pro-
tein interactions. Pathway entropy Q  is defined for a system of 
m  directed graph paths channeling signals from cell receptors 
to end-effector proteins such as RB (retinoblastoma) and 
AMPK ( AMP-activated protein kinase) as follows19 :
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Figure 1. Cell cycle regulation. The cell cycle is under the regulatory control of the signaling network and is dependent for its progression on the output of 

the metabolic network. On the other hand, the signaling and metabolic networks are coupled through feedback signals, making the effect of genetic 

alterations reverberates through the entire signaling-metabolic system. The resulting perturbations of the coupling between signaling and bioenergetics 

would expectedly be a determinant of the growth and proliferation dynamics of cancer.
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Rx  and Ry  are the mRNA expression levels of genes x  and y  
for a given tumor sample, while R x0  and R y0  are the respec-
tive averages of mRNA expressions of these genes in a normal 
tissue.

Pathway entropy was shown to discriminate between cancer 
and normal cells for lung squamous cell carcinoma (LUSC) 
and colorectal adenocarcinoma (COADREAD).19 It can be 
computed for any set of signaling pathways as a measure of the 
effect of genetic alterations on the proliferative potential and 
therapeutic resistance of cancer cells. Depending on the cancer 
type under consideration, pathway entropy may be used as a 
resistance biomarker by focusing on the most relevant onco-
genic pathways, such as the consideration of the MET, ALK, 
and EGFR pathways in the treatment for NSCLC (Non-
Small Cell Carcinoma) using tyrosine kinase inhibitors. 
Ultimately, pathway entropy is a phenotypic measure of genetic 
alterations, formulated at the pathway level of abstraction con-
sidered for reasoning about the hallmarks and treatments of 
cancer and is hence plausible as a source of insight into cancer 
evolutionary dynamics.

Cell Adaptive Fitness
The entropy of cell signaling pathways provides a quantifica-
tion of the genetically-induced perturbations to cell fate deci-
sion-making and bioenergetics in cancer cells. The regulation 
of the cell life-cycle, cell fate decision-making, and metabolic 
activities depend on the processing of signals and cues from the 
environment. The underlying cell information processing 
capacity is represented by the cell information state, denoted 
H t( ) , and is defined as an instantaneous quantity that is 
inversely varying with respect to the entropy of signaling path-
ways. This definition is built on the classical interpretation of 
entropy as a measure of uncertainty created, in this case, by the 
increase in the number of possible wiring configurations of 
oncogenic pathways that result from genetic alterations. The 
uncertainty about the state of oncogenic pathways, with their 
promiscuous cross-talk and rewiring, leads to a stochastic per-
turbation of the cell’s ability to process signals and environ-
mental cues, driving as a result cell fate decision-making and 
metabolic control away from the regulation regime typical of 
normal cells. One of the critical functions of the cell signaling 
network and its underlying information processing capacity is 
the regulation of metabolic activities to meet the bioenergetic 
needs of the cell. The corresponding metabolic capacity is rep-
resented by the cell’s energy or metabolic state, denoted by 
E t( ) , and is defined as the instantaneous bioenergetic output 
of the cell at time t , representing the totality of biosynthesis 
and energy outputs, including proteins, lipids, amino-acids and 
Adenosine Triphosphate (ATP) molecules.

Cells are nonlinear, stochastic dynamical systems that can 
be described using the trajectories of their information and 
energy states. The cumulative increase of genetic alterations in 
cancer cells perturb signaling regulation and lead to a rise in 
signaling entropy and a higher instability of the metabolic 

output. On the other hand, an increase in signaling entropy 
induces a weakening of the cell information processing capac-
ity, leading to a higher irregularity of cancer cell-fate decisions 
compared to normal cells. The corresponding stochasticity of 
information and energy states enables transformed cells to 
sample a large space of phenotypes and adapt their survival 
trajectories under the selective pressure of temporally and spa-
tially changing nutritional and stimulatory conditions of the 
tumor microenvironment. Such cell-level stochasticity under-
lies the emergence of population-level (i.e., tumor) evolution-
ary dynamics, including therapeutic resistance. Evolutionary 
models of tumor progression often assume driver mutations to 
confer a fixed average selective advantage.21 However, any reg-
ulatory constraints imposed by the feedback loops between 
signaling and metabolism on cell-fate decision-making and 
metabolic states will translate into constraints on the set of 
viable clonal growth and proliferation trajectories. This would 
modulate the selective advantage conferred by genetic altera-
tion events, including passenger mutations, whose contribu-
tions are also implicated in tumorigenesis.1 In particular, we 
propose that the increase of signaling entropy due to genetic 
alterations will lead to a decline of the information processing 
capacity of cancer cells and an increase of their bioenergetic 
capacity, which will eventually peak and begin declining when 
the cell information processing capacity becomes insufficient 
to support the normal regulation of cellular processes. This 
proposition, that we call the cell adaptive fitness, is an expres-
sion of a presumed imperative of growth that is hard wired in 
the genetic and proteomic circuitry of living organisms, 
whereby cellular bioenergetic processes evolve to transform all 
available nutrients unless otherwise regulated by the signaling 
network. In other words, cells optimize their energy production 
and consumption for metabolic sufficiency when their life-
cycle processes are regulated, which corresponds to high cell 
information states. In contrast, cancer cells have varying degrees 
of dysregulated signaling pathways and obstructed flows of 
regulatory information that translate into relaxed metabolic 
regulation. This permits cancer cells to indulge in siphoning 
more nutritional resources through runway metabolic activities, 
achieving as a result higher metabolic states to support fast 
growth and proliferation. However, the inverse variation 
between cell information and energy states is expected to break 
down at lower information states. Indeed, as the entropy of the 
signaling network increases with the increasing burden of 
genetic alterations, the information processing capacity of cor-
responding clones and sub-clones will eventually dip below a 
putative minimum threshold necessary to achieve a homeo-
static regulation of the cell life-cycle. Below such putative 
threshold, cell fate decision-making capability would become 
too compromised to sustain a stable growth and proliferation 
program. By the same token, the signaling-regulated enzymatic 
co-cooperativity of the metabolic network would also break 
down and would no longer be able to yield the high metabolic 
output needed by fast proliferating cancer cells. This transition 
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point ushers the convergence of cancer cells toward lower 
energy and information states (see Figure 2), characterized by 
high genomic instability where successful replications would be 
rare.22

Although direct measurements of cell energy and informa-
tion states may not be currently feasible, the profiles of their 
trajectories as functions of signaling entropy provide an insight 
into the multi-stage clonal evolution shaped by accumulating 
genetic alterations. The proposed relationships between 
entropy, energy and information (see Figure 2) may be partially 
corroborated by reconstructed cancer mutational histories 
through whole-genome sequencing analysis.9 For instance, 
only 9 genes are affected by 50% of early clonal driver muta-
tions compared to 35 genes for 50% of late clonal driver muta-
tions,9 indicating that the arrow of tumor evolution corresponds 
to higher numbers of genes and signaling pathways being 
affected, driving as a result the increase of cell signaling entropy, 
and eventually affecting the viability of cancer cells23. In addi-
tion, mutational signatures such as defective mismatch repair 
exhibit a directed temporal increase from clonal to sub-clonal 
evolutionary stages of tumor progression.9 Furthermore, while 
the increased diversity of genes affected in the late stages of 
tumor progression may be a source of clonal adaptation, high 
genomic instability compromises the viability of cancer cells. 
Taken together, these observations inspired the proposed phe-
nomenological relationships between bioenergetics, signaling 
entropy, and information processing as an explanation of the 
potential mechanisms linking the accumulation of genetic 
alterations to the dynamics of clonal evolution.

Evolutionary Dynamics of Cancer
The nonlinear relationship between cell information and 
energy states is explored as a potential evolutionary constraint 

that modulates the selective advantage conferred to cancer cells 
by acquired genetic alterations. More specifically, clonal evolu-
tion is proposed to be characterized by a multi-stage progres-
sion trajectory where each stage is delineable by phenotypes 
that are determined by the dynamics of coupling between cell-
fate decision making and metabolism. As cancer cell entropy 
increases with the number of driver mutations, the coupling 
between cell bioenergetics and cell-fate decision-making 
enforces an upper limit on clonal potential for expansion. 
While accumulating driver mutations are permissive of inten-
sified bioenergetic activities, they are also the source of high 
genetic instability that leads to metabolic insufficiency and 
replication failures. This proposition is explored using an 
extension of the tumor progression model of Bozic et al.21 The 
model is built on a Galton-Watson branching process,24 start-
ing with a single cell that either divides or takes an alternate 
fate of “stagnation,” which may be differentiation, senescence 
or death.21 The model tracks the number of cells having k  
driver mutations, after being initiated using one cell having a 
single driver mutation. Each division is assumed to yield a 
daughter cell that acquires an additional driver mutation with 
probability u , that is, assuming an average mutation rate u . 
The probabilities of stagnation and division of a cell with k  
mutations were set to d sk

k= −
1
2

1( ) , and b dk k= −1 , respec-
tively, where s  is the selective advantage assumed to be con-
ferred by a driver mutation.21 Unlike the original model, the 
proposed extension uses a clone-dependent selective advantage 
to account for the varying degrees of fitness associated with the 
phenotypic heterogeneity of cancer cells. This leads to the 
probability of stagnation d sk k

k= −
1
2

1( ) , where sk  is the 
selective advantage assumed to be conferred by a driver muta-
tion on the k -clone, that is, clone with k driver mutations, 
defined based on the conjectured constraint imposed by the 
coupling between cell fate decision-making and metabolism as 
follows:

 s s E Hk k k= 0  (3)

Here, Ek  and Hk  are the average metabolic and information 
processing capacities of the k -clone and s0  is a constant chosen 
so that the founding clone, that is, having a single driver muta-
tion, will have an average selection equal to the one used in the 
tumor progression model of Bozic et al.21 The clone selection 
coefficient is defined as the product of the energy and informa-
tion capacities, representing the first order dynamics of their 
coupling. It is objectively grounded in the dynamics of signaling 
and metabolic networks which constitute the biophysical sup-
port of cell life. Furthermore, the proposed definition of the 
clone selection coefficient embodies a tangible link between 
signaling pathways, which are the primary objects of therapeutic 
interventions, and the phenotypic realm upon which evolution 
acts. The conjectured relationships between signaling entropy, 
cell metabolic capacity and information processing capacity, 
illustrated in Figure 2, are modeled for clone k as follows:

Figure 2. Cell information and metabolic/energy states as functions of 

the entropy of signaling pathways. In cancer cells, the increase of 

signaling entropy, driven by the accumulation of driver mutations, 

corresponds to a decline in the information processing capacity underling 

cell fate decision-making and metabolic regulation. This decline 

translates into relaxed control over metabolic activities leading to the 

reprograming of metabolism with a corresponding high metabolic output 

characterizing the proliferative phenotype of cancer cells.
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Here n j  is the size of clone j , while K  is the carrying capac-
ity, that is, the total number of tumor cells that can be sup-
ported by the environment. Given k  driver mutations affecting 
m  directed graph paths in the cell signaling network, the prob-
ability πj that path j  is an oncogenic driver is estimated as 
π j

k
m= . Substituting this estimate of πj in equation (1) lead 

to the average entropy Qk  of the k-clone. Q2  and Q10  are the 
entropies of clones having 2 and 10 driver mutations respec-
tively. Drawing a parallel to Knudson two-hit hypothesis,25 the 
occurrence of the second driver mutation is assumed to be a 
critical event that ushers a phase of accelerated replication of 
cancer cells and a corresponding rise of their energy states. On 
the other hand, given the range of 1 to 10 driver mutations car-
ried by tumors,10 reaching the cumulative level of 10 driver 
mutations corresponds to a second critical event associated 
with the commencement of a tumor progression phase charac-
terized by high genomic instability, metabolic insufficiency and 
rare clone replications. E k0  represents the maximum metabolic 
capacity that can be harnessed by tumor clone k . It is defined 
on a scale of 0 to 1 as a function of the carrying capacity K . 
Hk  and Ek  are normalized quantities with values ranging 
from 0 to 1. They represent average values over the set of can-
cer cells making up clone membership. At zero entropy, the cell 
information processing capacity is at its highest, that is, 1, 
whereas its metabolic output is 0.36, or 36% of its maximum 
potential E k0 . At very high entropy, both information process-
ing and metabolic capacities converge to 0. These boundary 
conditions reflect the two starkly distinct phenotypes: the nor-
mal phenotype, endowed with a high information processing 
capacity judiciously using about a third of its metabolic capac-
ity, and the senescent phenotype where the high entropy result-
ing from extensive genetic alterations drives the information 
processing and metabolic capacities to 0, abrogating as a result 
the cell’s capacity to maintain a normal life-cycle. This model 
reflects the existence of a spectrum of cancer transformed and 
proliferative phenotypes flanked by normal and senescent phe-
notypes. The phenotypic spectrum as modeled above is discrete 
and tied to the number of driver mutations which represents 
the clone average state. In reality, however, there is an inherent 

diversity within each clone membership due to the stochastic-
ity of genetic alterations. The accumulation of passenger muta-
tions that are different and acquired at different rates within 
the same clone is one potential generator of such diversity. 
Contrary to the strongly held notion that passenger mutations 
do not confer fitness advantage, a recent study shows that pas-
senger mutations have an aggregated effect on tumorigenesis 
and cancer progression.1 This corroborates the proposed evolu-
tionary model of tumor progression, whereby genetic altera-
tions of any type would affect cell signaling and lead, under the 
pressures of an evolving, heterogeneous TME, to phenotypic 
diversity of cancer cells and a corresponding variability of their 
capacity to survive and proliferate.

Simulating the tumor evolutionary model using u = 0 000034.  
with each generation set to 3 days as was done in the original 
model,21 yields the tumor progression dynamics illustrated by 4 
examples shown in Figure 3, obtained after 3000 simulation 
runs of the model. The number of directed graph paths in the 
cell signaling network is set to m = 64  based on the considera-
tion of 10 canonical pathways26 (cell cycle, Myc, Hippo, Notch, 
Nrf2, PI-3Kinase/Akt, RTK-RAS, TGFB signaling, p53 and 
B-catenin/Wnt) involved in cross-talk, where each receptor 
(input) of the 10 canonical pathways reaches 64% of the down-
stream (output) nodes of these canonical pathways.27 The 
number of oncogenic directed paths having a significant impact 
on tumor progression dynamics may vary depending on the 
cancer type. However, such number is significantly larger than 
the presumed maximum number of driver mutations, justifying 
hence the assertion that k m/  1  and that entropy Qk  is 
monotonically increasing with the accumulation of new driver 
mutations and the progression through cancer stages.

The simulation illustrates the working of the conjectured 
cell-inherent adaptive fitness as a potential source of con-
straints on evolutionary dynamics of tumor progression. In 
particular, the overwhelming majority of simulation runs did 
not yield any tumors, highlighting the challenge of predicting 
cancer occurrence based on genomic profiling. The model reca-
pitulates the variability of tumor progression trajectories and 
points to a constrained clonal expansion. For instance, the final 
tumor size for the overwhelming majority of patients rarely 
reaches the carrying capacity K  which was set to 109 , while 
the most probable number of clones across all simulation runs 
is 4 and does not exceeds 6. This limitation on the number of 
emergent clones is in line with the observation of phenotypic 
convergence in multifocal lung cancer.28 The second corollary 
of the conjectured cell adaptive fitness is the predicted increase 
of the average tumor entropy QT  accompanying tumor growth 
progression (see Figure 4). The average entropy of a tumor is 

defined as Q
N

n QT
k

Nk

k k=
=
∑1

1

, where nk  is the size of the k -clone, 

Nk  is the total number of clones and N n
k

Nk

k=
=
∑

1

 is the 

total number of cancer cells in the tumor. According to the 
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simulation’s results, tumor progression is accompanied with a 
monotonically increasing average tumor entropy. However, 
there are short intervals of time such as those near year 5 
and year 10 for the hypothetical patients Patient_K9_1897 
(Figure 4a) and Patient_K9_993 (Figure 4d), respectively, 
where the average tumor entropy experienced transient local 
peaks before resuming its trend of monotonic increase. These 
instances correspond to the emergence of new clones that did 
not survive, leading to a transient contribution to the average 
tumor entropy. Given the highly differentiated patterns of 
tumor average entropy across patients, the rate of entropy 
change may be used to monitor tumor progression dynamics. 
This may be of particular utility to the design of cancer adap-
tive therapies, where the average entropy of a tumor could be 
estimated based on circulating tumor DNA (ctDNA) to serve 
as a proxy biomarker for tumor burden.

Implications for Therapeutic Strategies
The proposed perspective on tumor evolutionary dynamics has 
the potential to support the design of therapeutic strategies 
that are based on eco-evolutionary principles such as adaptive 
therapies.8 Adaptive combination therapies are promising 
approaches for the management of drug resistance and residual 
disease. Their effectiveness hinges on the accurate monitoring 

of tumor burden and requires, at a minimum, a one-step ahead 
prediction of clonal composition. Such monitoring enables the 
consideration of the disease’s evolutionary potential which lev-
erages genetic diversity and epigenetic plasticity to sustain 
robust trajectories of growth under therapeutic targeting.6,29-31 
Indeed, tumors with highly diverse clonal compositions are 
more likely to harbor malignant cell phenotypes,32,33 and are 
associated with worst outcomes for various cancers.34-39 
Estimating cancer evolutionary dynamics is therefore neces-
sary for the development of effective therapies, including adap-
tive therapies aiming to control cancer based on ecological 
principles of clonal competition.40,41 Although the nonlinear 
dynamics of cancer and the uncertainty on the knowledge of 
the initial conditions of carcinogenesis limit the predictability 
of cancer dynamics,42-45 the postulated existence of a cell-
inherent adaptive fitness may enable the estimation of clonal 
dynamics up to a time horizon that may be sufficient to sup-
port effective adaptive therapies. Monitoring tumor clonal and 
sub-clonal compositions using ctDNA liquid biopsy46 would 
provide the mean to estimate clonal and tumor average entro-
pies. Given the multi-stage clonal evolution, conjectured to be 
marked by a monotonically increasing clonal entropy, a one-
step-ahead prediction of stage-transitions could serve as a 
feedback for the adaptation of cancer therapy. In this context, 

Figure 3. Constrained evolutionary dynamics of tumor progression. Clone size (number of cells with a given number of driver mutations) versus the age 

of the tumor. Four simulation runs of the extended tumor progression model with a clone-dependent selective advantage. The widely varying dynamics of 

tumor growth is distinguished by a marked constraint on the number of emerging clones. Simulation runs are labeled as hypothetical patients.
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multiple drugs may be combined sequentially, concurrently or 
using a mixed schedule thereof to control the disease and pre-
vent the emergence of therapeutic resistance. Monitoring the 
patterns of expansion-stagnation of specific clones, would 
inform precision therapeutic targeting that needs to be applied 
at each round of therapy. This may involve continuing with the 
same drugs, switching between drugs used in previous rounds 
of therapy or introducing new drugs, based on the observed 
evolution stages of tumor clones. For example, when a clone is 
predicted to enter a stagnation stage based on their estimated 
signaling entropy and energy-information profile, targeting a 
driver mutation using TKIs (tyrosine kinase inhibitors) would 
increase toxicity without significant therapeutic benefits. On 
the other hand, targeting clones before an anticipated com-
mencement of expansion would have a more significant effect 
on outcome. However, given the evolutionary dynamics of 
tumor progression, every therapeutic action will have an adap-
tive tumor survival reaction. Therein lies the potential utility of 
the proposed evolutionary model as a predictive component of 
clinical decision-support systems that may be conceived to 
assist oncologists in the design of adaptive cancer treatment 
strategies that leverage the advantage of anticipating cancer 
evolution toward thwarting therapeutic resistance.

The prediction of clonal, evolutionary stage transitions 
would also be of utility to adjuvant therapies, which are 
designed to eliminate small residual populations of cancer cells 
associated with minimal residual disease (MRD). For instance, 
colorectal cancer (CRC) cells were shown to have an equal 
potential to become drug-tolerant persister (DTP) in response 
to therapy,47 and that such transitions to the DTP state is fos-
tered by an increase of mutation rate.48 In light of the proposed 
conjecture, the timing of clonal expansion would coincide with 
an increase of clonal signaling entropy induced by heightened 
mutability and a corresponding switch to a proliferative state. 
Given this observation, longitudinal MRD monitoring, using 
ctDNA liquid biopsies, could include the tracking of clonal 
signaling entropy to distinguish between high entropy clones 
converging toward senescence from the low entropy clones 
having a higher potential for drug resistance. This would 
inform the design of more effective adjuvant therapies that 
focus on the latter population of residual cancer cells (i.e., 
having lower entropy) to preempt the emergence of DTP 
clones. Such therapeutic approach, which may be qualified as 
a precision adjuvant therapy, would be an improvement on 
current adjuvant therapies used for various cancers to prevent 
recurrence and metastasis.

Figure 4. Tumor average entropy. (a) 11 patients, (b) 14 patients, (c) 24 patients, and (d) 24 patients. Four simulation runs (a–d) of the stochastic tumor 

progression model yielding different numbers of tumors, labeled as hypothetical patients. Each color represents the tumor average entropy as a function 

of time for one hypothetical patient. Patients are differentiated by starkly distinct trends of the tumor average entropy.
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Discussion
The proposed cell adaptive fitness conjecture implies that 
clonal architecture is characterized by an increasing average 
entropy and is shaped by a selective advantage s s E Hk k k= 0  
that leads to phenotypic convergence toward three broad can-
cer cell phenotypes, namely: (1) stem-like potentially therapy-
resistant tumor cells characterized by low signaling entropy 
with a fitness similar to that of normal cells, (2) proliferating 
cancer cells with entropy levels that yield a high energy/meta-
bolic state, and (3) a high-entropy senescent cancer cells with 
limited information processing capacity and a low energy state 
that abrogate their ability to replicate. The convergence toward 
PTEN loss in distinct metastatic sites having different PTEN 
alterations49 and the convergent activation of the MTOR 
pathway in clear cell renal cell carcinomas50 are examples of 
phenotypic convergence whose emergence may be explained by 
the proposed notion of cell adaptive fitness selecting for the 
loss of PTEN and the activation of the MTOR pathway as 
routes leading to the emergence of the proliferative phenotype. 
Recurrent evolutionary trajectories identified for different can-
cer types11 may also be explained by the cell-inherent adaptive 
fitness which would hence be universally relevant to all cancers. 
On the other hand, senescent tumor cells being present in the 
leading fronts of tumors,51 lends support to the prediction of 
the model that senescence is associated with high-entropy 
tumor cells from late clone variants. The conjectured direction-
ality of tumor progression along an increasing entropy of newly 
emerging clones and sub-clones suggests that early clone vari-
ants are likely to be harboring cancer cells that would be thera-
peutically resistant. Their low entropy afforded them with a 
wide-mouth funnel of potential evolutionary trajectories of 
adaptation to therapeutic interventions. Furthermore, given 
that most common cancer treatments involve the use of cyto-
toxic drugs that target fast proliferating cancer cells, that is, 
those with high energy/metabolic states, therapeutic strategies 
should include resistance management plans that focus on 
early clone variants that harbor stem-like low-entropy cancer 
cells.

The conjecture is an attempt to explain evolutionary dynam-
ics of tumor growth through the lens of the coupling between 
signaling and metabolic pathways as the mediator of dynamic 
interactions between the tumor and its co-evolving heteroge-
nous microenvironment. It is also an attempt to offer analytic 
insight into the causal chain linking pathways as targets of 
therapeutic actions, and tumor growth dynamics as indicators 
of clinical outcome. Full evidentiary support for the conjecture 
will ultimately rest on future clinical validations of its charac-
terization of clonal evolution and the extent to which such 
characterization is successful in enabling improvements of can-
cer treatment strategies. In this respect, longitudinal monitor-
ing of tumor mutational changes using liquid biopsies and 
next-generation sequencing (NGS) may be used in future 
efforts to build clinical support for the proposed conjecture and 

validate the corresponding model of tumor evolutionary 
dynamics. Data obtained through longitudinal tumor monitor-
ing may be used in conjunction with known patterns of cancer 
evolutionary histories9 and key oncogenic pathways to track 
clonal architecture and corresponding clonal and tumor entro-
pies. Conjecture-supported tumor evolutionary trajectories 
would then be analyzed in relation to disease progression states, 
to be asserted using currently applicable protocols, as a first 
step toward developing supporting evidence for the clinical 
validation of the proposed conjecture.

Conclusions
The cell adaptive fitness conjecture embodies, to the author’s 
knowledge, the first ever proposition put forth about the exist-
ence of an inherent cell adaptation mechanism wired in the 
coupling between cell signaling and metabolism to maintain 
the cell potential for survival, growth and replication. Although 
driver mutations underly oncogenesis and tumor evolutionary 
dynamics, their accumulation will ultimately engender the 
emergence of evolutionary constraints driven by the coupling 
between signaling and metabolism, and manifested as a cell 
adaptive fitness that confers a varying clonal selective advan-
tage and leads to phenotypic convergence. One of the conse-
quences of cell adaptive fitness is that the increasing entropy 
shapes the phenotypic landscape of clonal evolution with clear 
implications for therapy. Low-entropy early clone variants are 
likely to harbor stem-like therapy resistant tumor cells, while 
high-entropy late clone variants are overwhelmed with 
senescence. The focus of cancer treatments on the proliferat-
ing phenotype, that is, having an entropy that maximizes the 
proliferation potential, should therefore be complemented with 
resistance management strategies that target the stem-like, 
low-entropy early clone variants.
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