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a b s t r a c t 

Cardiovascular diseases remain a major global health concern, with epicardial adipose tissue 
(EAT) serving as a critical indicator for assessing cardiovascular risk. Performing manual delin- 
eation of epicardial adipose tissue (EAT) on cardiac CT scans is a labour-intensive process and 
can be susceptible to inaccuracies. This study presents an automated machine learning-based ap- 
proach to improve the accuracy and efficiency of EAT segmentation. A dataset of 878 cardiac 
CT images from 20 patients is used. Pre-processing involved contrast enhancement and feature 
extraction using the Grey-Level Co-occurrence Matrix (GLCM). An ensemble machine learning 
model combining Support Vector Machine (SVM) and Artificial Neural Network (ANN) is devel- 
oped for segmentation. The model’s performance was evaluated using accuracy, precision, recall, 
Dice score, and classification time. The key highlights of the proposed method are: 

• Automated EAT segmentation using a hybrid ensemble approach (SVM + ANN). 
• Feature extraction with GLCM enhances segmentation accuracy. 
• Improved performance over traditional methods, reducing processing time and increasing 

precision. 

This method offers a promising solution for automated EAT detection, enabling efficient cardio- 
vascular risk assessment. 
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Background 

Cardiovascular diseases arise from various factors such as obesity, diabetes, aging, and hypertension. Epicardial adipose tissue 
(EAT), located between the heart muscle and the outer layer of the heart, is recognized as an important factor in coronary artery
disease progression [ 1–5 ]. An excessive build-up of EAT has been linked to major heart-related disorders such as heart attacks [ 6 ],
irregular heart rhythms [ 7 ], arterial rigidity [ 8 ], and hardening of the arteries [ 9–11 ]. The growth of visceral adipose tissue (VAT)
alongside EAT can lead to systemic inflammation and metabolic disturbances, increasing the risk of cardiovascular events [ 12–16 ].
Moreover, EAT volume has been correlated with coronary artery calcification, a key predictor of cardiovascular events and certain
cancers [ 17 , 18 ]. Population studies have further highlighted a high incidence of sudden cardiac deaths linked to these risk factors
[ 19 , 20 ]. To assess adipose tissue structures, various imaging approaches including ultrasound, CT scans, and MRI are employed, with
CT being preferred due to its high spatial resolution [ 21–25 ]. Nonetheless, delineation of EAT through manual or semi-automatic
methods on CT images tends to be labor-intensive and inconsistent, highlighting the importance of developing fully automated and
accurate segmentation techniques [ 26–29 ]. 

Earlier methods for EAT segmentation showed limited success. A semi-automated approach with pericardium identification 
achieved only 10 % accuracy (4/40 images) [ 30 ]. A thresholding-based method using Otsu’s technique and the HARTA program
improved accuracy to 98.83 % with a Dice score of 77.30 % [ 31 ]. AI-based techniques have since gained traction for cardiac fat
segmentation, quantification, and diagnosis [ 32–34 ]. Larger datasets help reduce overfitting [ 35 , 36 ], and multi-atlas segmentation
has lowered failure rates to 3 % [ 37 ]. Random Forest models reached 98.4 % accuracy but required 1881 s per image, later optimized
to 163 s using atlas-based methods [ 29 , 38 ]. Rotation Forest with MLP halved processing time [ 39 ], and genetic algorithms (GA)
further reduced the processing time [ 40 ]. J48Graft achieved 99 % accuracy in 132.86 s, while Naïve Bayes was faster (55.48 s) but
less accurate (86 %) [ 41 ]. The Floor of Log (FoL) clustering method reduced segmentation time to just 2.01 s, with 93.45 % accuracy
and 95.52 % specificity [ 42 ]. Gabor filter and texture-based segmentation yielded 99.2 % accuracy within 1 min [ 43 ]. Modified
region-growing methods achieved Dice scores up to 98.7 % and high accuracy for both epicardial and mediastinal fat [ 44 ], while
fuzzy affinity-based methods showed a mean sensitivity of 85.63 % ± 7.42 % [ 45 ]. 

Deep learning has recently dominated EAT segmentation. Dual U-Nets with morphological processing layers [ 46 ] improved bound- 
ary accuracy but required large datasets and high computation. Pix2Pix-conditional generative adversarial network [ 47 ] achieved 
high accuracy (98.33 %) and Dice score (98.73 %) with fast processing (1.44 s), but lacked interpretability. Attention-based BMT-UNet
[ 48 ] enhanced fat quantification at the cost of increased model complexity. U-Net models [ 49 ] for low-dose CT struggled to balance
accuracy and speed. Similarly, recent architectures like Dynamic RU-Next [ 50 ] and MNR2 NeXt [ 51 ] offer enhanced segmentation
capabilities but demand significant computational resources. 

Based on the analysis of existing methods, it is inferred that most approaches struggle to balance segmentation accuracy with pro-
cessing time, limiting their clinical applicability. Classical machine learning (ML) techniques like Random Forest [ 38 ] and clustering
algorithms such as Floor of Log (FoL) [ 42 ] have shown reasonable accuracy but often involve high computational costs or reduced
precision. Although deep learning models like dual U-Nets [ 46 ], Pix2Pix GAN [ 47 ], and BMT-UNet [ 48 ] achieve high Dice scores,
their performance is often dependent on extensive labeled training data and high-end computing capabilities. 

To address these challenges, the current work introduces a novel ensemble-learning strategy that systematically evaluates ten 
SVM-based combinations with diverse classifiers, including Random Forest, CatBoost, XGBoost, LightGBM, K-Nearest Neighbors, 
Generalized Linear Model, RepTree, Artificial Neural Network, and hybrid variants. This novel approach uses the complementary 
strengths of these classifiers through a soft voting mechanism, which integrates their outputs to improve classification stability and
segmentation performance. Additionally, the method incorporates Grey-Level Co-occurrence Matrix (GLCM) texture attributes to 
enhance differentiation between fat and non-fat tissue regions. By combining texture features with ensemble learning, the framework 
offers an efficient and practical solution for automated epicardial fat segmentation. 

Method details 

The proposed method follows a structured workflow consisting of data preprocessing, texture attribute extraction utilizing the 
GLCM, and classified segmentation through an ensemble-based machine learning framework. The core innovation lies in combining 
Support Vector Machine (SVM) with ten different classifiers using a soft voting mechanism to improve segmentation accuracy and
model robustness. This ensemble is designed to exploit the strengths of both linear and nonlinear classifiers for effective classification
of EAT from input images. Among the combinations evaluated, the hybrid SVM–ANN model delivered the highest segmentation 
performance and computational efficiency. Therefore, the detailed methodological discussion in this study focuses primarily on the 
SVM–ANN framework. 

Dataset 

A cardiac CT dataset provided by O. Rodrigues et al. [ 29 ], has been considered for the study. This dataset has 878 cardiac CT scan
images of 20 different patients and their details are indicated in Table 1 . All the data images were rescaled to − 200 to − 30 Hounsfield
units (HU) for better visualization of the heart fat. These images are color-coded to distinguish between the different kinds of fats.
Red pixels indicate epicardial fat, whereas green pixels show mediastinal fat. Notably, the dataset provides expert-annotated ground 
truth (GT) images and includes image registration as part of the preprocessing, making it well-suited and readily usable for both
training and evaluation purposes. 
2
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Table 1 

Patient demographics of the dataset. 

Details No.of patients Mean age No.of slices per Image 

Men 11 55.4 42 
Women 9 53 43.9 

 

 

 

 

 

 

 

 

Evaluation metrics 

This subsection outlines key metrics for assessing machine learning model performance: accuracy, recall, Dice score, and precision. 
These metrics are derived from a confusion matrix with true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN). Precision assesses the correctness of positive identifications, while recall quantifies the ability to identify all positive instances 
in the dataset. The Dice similarity co-efficient (DSC) balances precision and recall by providing a harmonic mean, ensuring neither
metric is overlooked, especially in imbalanced datasets. Lastly, accuracy measures ratio of correct predictions, encompassing both 
true positives and true negatives, thereby providing a comprehensive evaluation of the model’s effectiveness in accurately segmenting 
EAT. 

Precision = 𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑃 
(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑁 

(2) 

𝐷𝑆𝐶 = 2 × ( 𝑅𝑒𝑐 𝑎𝑙𝑙 × 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 ) 
𝑅𝑒𝑐 𝑎𝑙𝑙 + 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 

(3) 

𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 𝑇 𝑃 + 𝑇 𝑁 

𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁 

(4) 

Pre-Processing and GLCM feature extraction 

The proposed method employs preprocessed cardiac CT images in BMP format, originally converted from DICOM and spatially 
registered by the dataset authors [ 29 ]. As all registration steps were completed in advance, no additional alignment is required.
Fat masks were then generated by thresholding to separate fat from non-fat regions. For texture analysis, features were extracted
using the Grey-Level Co-occurrence Matrix (GLCM), a statistical method that evaluates spatial relationships between pixel intensities. 
Four GLCM-based features were computed: energy, entropy, contrast, and correlation. Energy ( Eq. (5) ) reflects texture uniformity, 
with higher values indicating more homogeneity. Entropy ( Eq. (6) ) measures randomness, with greater values representing more 
complex textures. Contrast ( Eq. (7) ) captures intensity differences between neighbouring pixels, aiding edge detection. Correlation 
( Eq. (8) ) assesses the linear relationship between pixel intensities, revealing structural patterns. In these equations, 𝐹 (𝑎, 𝑏 ) denotes
the normalized co-occurrence probability between gray levels a and b, while 𝜇 and 𝜎 represent the mean and standard deviation of
gray levels, respectively. 

𝐸𝑛𝑒𝑟𝑔𝑦 =
∑
𝑎,𝑏 

𝐹 ( 𝑎, 𝑏 ) 2 (5) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
∑
𝑎,𝑏 

𝐹 ( 𝑎, 𝑏 ) log ( 𝐹 ( 𝑎, 𝑏 ) ) (6) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
𝑁−1 ∑
𝑎,𝑏 =0 

𝐹 𝑎, 𝑏( 𝑎 − 𝑏 ) 2 (7) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
𝑁−1 ∑
𝑎,𝑏 =0 

𝐹 𝑎, 𝑏

⎡ ⎢ ⎢ ⎢ ⎣ 
( 𝑎 − 𝜇𝑎 ) ( 𝑏 − 𝜇𝑏 ) √ (

𝜎𝑎2 
) (
𝜎𝑏2 

)
⎤ ⎥ ⎥ ⎥ ⎦ (8) 

Classified segmentation using ensemble combinations of SVM 

In classified segmentation, a machine learning algorithm identifies whether a pixel in a cardiac CT image represents fat (white)
or non-fat tissue (black) using feature vectors. This study evaluates SVM combined with ten algorithms: LightGBM, GBM, XGBoost,
CatBoost, GLM, RepTree, KNN, Random Forest, ANN, and a Random Forest-CatBoost combination. Fig. 1 demonstrates classified 
segmentation using SVM and these algorithms. The machine learning frameworks for SVM-ANN ensembles are detailed in subsequent 
sections. 
3



J. S and M. P MethodsX 14 (2025) 103410

Fig. 1. Depiction of the classified segmentation process, which takes a cardiac CT image in DICOM format as input and yields a binary representation 
as output. 

 

 

 

 

 

 

 

 

 

Support vector machine 

SVM is a method for supervised ML. specifically developed for accurate estimation and classification tasks. Its robustness and
adaptability make it well-suited for epicardial fat segmentation. Consider a linearly separable data set {𝑎𝑖 , 𝑏𝑖 } , 𝑖 = 1 , …… , 𝑁, 𝑏𝑖 ∈
{−1 , +1 } , 𝑎𝑖 ∈ 𝑅𝑑 . In a space with d dimensions, the linear classification function which is employed as a hyperplane is expressed
as: 

𝑤.𝑎 + 𝑐 = 0 (9) 

To ensure efficient dataset separation, the classification threshold vector ’b’ is optimized to enable the classifier to reliably distin-
guish all samples. 

𝑏𝑖 
(
𝑊 × 𝑎𝑖 + 𝐶 

)
− 1 ≥ 0 , 𝑖 = 1 , 2 … ., 𝑛. (10) 

The optimal categorization plane is a hyperplane that maximizes the classification margin and satisfies criteria (10) and (11), as
shown in Fig. 2 . Eq. (11) and (12) represents the expression for the function objective and the most optimal classification. 

𝜑 = min 
𝑤,𝐶 

1 
2 
‖𝑤 ‖2 = 1 

2 
( 𝑊 ⋅𝑤 ) (11) 

𝑓 ( 𝑋) = 𝑠𝑔𝑛( ( 𝑊 × 𝑎 ) + 𝐶 ) = 𝑠𝑔𝑛

( 

𝑁 ∑
𝑖 =1 

𝐴𝑖 𝑏𝑖 
(
𝑎𝑖 ⋅𝑋 

)
+ 𝐶 

) 

(12) 

In scenarios where linear separability is not possible, then Eqs. (11) and (12) can be solved with the inclusion of a relaxation
variable and another penalty function. As a result, the solution to the issue is rewritten as the minimization of Eq. (13) , where the
parameter ’K’ represents the penalty and is considered as a constant. 

𝜑( 𝑊 , 𝜉) = 1 
2 
( 𝑊 .𝑤 ) + 𝐾

( 

𝑛 ∑
𝑖 =1 

𝜉𝑖 

) 

(13) 

Artificial neural networks (ANN) 

Drawing inspiration from the biological neuron, ANNs comprise of interconnected neurons, arranged in layers called perceptrons. 
The MLP is a highly effective ANN structure with a feed-forward topology, typically trained using backpropagation and Levenberg- 
Marquardt optimization. As illustrated in Fig. 3 , the MLP architecture is composed of three main layers: an input layer, one or more
hidden layers, and an output layer. 

The size of the input stage is determined by the dimensionality of the input data. Consider a vector x that has p input variables,
represented as 𝑥 = [𝑥1 , 𝑥2 , ….., 𝑥𝑝 ] 𝑇 . In a neural network architecture designed for binary classification, the weight matrix is 𝑊 = [𝑊𝑖𝑗 ] ,
4
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Fig. 2. Classification model of the support vector machine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the dimension 𝑝 × 𝑞 connects the p inputs to the q hidden layer nodes. Additionally, the vector 𝑣 = [𝑣ℎ 1 , 𝑣
ℎ 
2 , …., 

𝑣ℎ 
𝑞 
] denotes the biases

associated with the nodes in the hidden layer. Similarly, The weights connecting the q nodes in the hidden layer to only one output
neuron are encapsulated inside the vector 𝑘 = [𝑘𝑜 1 , 𝑘

𝑜 
2 , …., 

𝑘𝑜 
𝑞 
] . As a result, the connection between input and output in the Multi-Layer

Perceptron (MLP) designed for binary classification may be clearly expressed as: 

𝑦 = 𝜎

( 

𝑞 ∑
𝑗=1 

𝑘𝑜 
𝑗 
𝑓

( ( 

𝑝 ∑
𝑖 =1 

𝑤𝑖𝑗 𝑥𝑖 

) 

+ 𝑣ℎ 
𝑗 

) 

+ 𝑣𝑜 

) 

(14) 

In the given equation, 𝜎() denotes the sigmoid-based activation method, which limits the result to the interval [0, 1], making it
appropriate for binary classification tasks. Meanwhile, f() indicates the activation mechanism employed in the hidden layer. 

Integration of SVM and ANN 

Voting classifiers are combined modelling approaches aimed at boosting predictive accuracy by integrating the outputs of multiple 
ML models. Among them, soft voting uses the probabilistic outputs of classifiers. Each classifier assigns probabilities to possible
outcomes, and the class with the highest average probability across classifiers is selected. Fig. 4 illustrates the soft voting mechanism.
In this study, we implemented a soft voting strategy to integrate SVM and MLP. SVMs are effective for separating classes in high-
dimensional spaces but may struggle with nonlinear boundaries. In contrast, Multilayer Perceptrons (MLPs), a class of ANN, capture 
nonlinear dependencies efficiently. By combining both classifiers in a soft voting ensemble, the proposed model benefits from the 
geometric interpretability of SVM and the nonlinear adaptability of ANN, which is especially beneficial for segmenting epicardial fat.
Table 2 provides pseudocode for the proposed ensemble learning approach. 

Experimental setup, training details, and hyperparameter tuning 

Experiments were conducted on an NVIDIA RTX A2000 GPU with an Intel Core i9 processor using the Cardiac CT Fat Dataset with
878 images. The dataset was split into 80 % training and 20 % testing. The method has been simulated, trained, and tested using
the Python programming language. A manual hyperparameter tuning process was performed to optimize the SVM + ANN ensemble
for epicardial fat segmentation. The tuning focused on SVM regularization parameter (C), gamma, kernel type, MLP hidden layer
size, activation function, and maximum iterations. The experiments were conducted on images of size 128 × 128, with the accuracy
varying across different configurations. The best accuracy of 98.57 % was achieved using C = 0.1, gamma = 10, RBF kernel, 100
hidden layers, ReLU activation, and 300 maximum iterations. These optimized hyperparameters significantly improved segmentation 
performance. 
5
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Fig. 3. Schematic representation of MLP. 

Fig. 4. Illustration of soft voting in ensemble machine learning techniques. 
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Table 2 

Pseudo code for ensemble ML using soft voting. 

Algorithm: ENSEMBLE COMBINATION OF SVM WITH ANN 

Procedure SPLITTING_DATASET (EAT_dataset) 

Training_data, Testing_data = assign (EAT_features,EAT_labels) 

return Training_data, Testing_dataVoting _technique = “soft ”
ML1 = SVM ( Training_data, labeled_ Groundtruth, Testing_data) 

ML2 = ANN ( Training_data, labeled_ Groundtruth, Testing_data) 

Procedure Ensemble_Technique ( Training_data, labeled_ Groundtruth, 

Test_samples) 

softvoting_classifier = concatenate (ML1, ML2) 
softvoting_classifier.fit ( X = Train_samples, Y = Groundtruth_labels) 

SVM_ANNclassification = soft_voting_classification.classify(Test_samples) 

Table 3 

Performance of various ensemble models associated with the SVM. 

Ensemble Combinations of SVM Accuracy (%) Precision (%) Recall (%) DSC (%) 

SVM 94.20 94.30 94.10 94.20 
SVM + RepTree 96.69 96.80 96.70 96.75 
SVM + LightGBM 96.95 97.00 96.90 96.95 
SVM + Gradient Boosting Machine (GBM) 96.95 97.10 97.00 97.05 
SVM + K -Nearest Neighbors (KNN) 97 97.50 97.13 97.31 
SVM + Generalized Linear Model (GLM) 97.05 97.39 97.24 97.31 
SVM + Xgboost 97.06 97.56 97.37 97.46 
SVM + CatBoost (CB) 97.085 97.59 97.48 97.53 
SVM + RandomForest + CatBoost 97.84 97.62 97.62 97.62 
SVM + RandomForest (RF) 98.13 97.70 97.70 97.70 
SVM + ANN(MLP) 98.57 98.00 98.00 98.00 

Table 4 

Comparison of epicardial fat segmentation techniques using CT images. 

Authors & Year Algorithm Performance Classification Time 
(Seconds) 

Accuracy (%) DSC (%) 

Barbosa et al., & 2011 Cubic interpolation [30] 52.5 – –
Shahzad et al., & 2013 Multi-Atlas [ 37 ] - 89.15 –
Zhang et al., & 2020 Dual U-Nets [ 46 ] – 91.19 ± 1.4 –
Rodrigues et al., & 2015 Random Forest [ 38 ] 98.4 96 1881 
Rodrigues et al., & 2016 Atlas approach with Random Forest [ 29 ] 98.5 98.1 163 
Rodrigues et al., & 2017 Random Forest + MLP [ 39 ] 98.5 – 81.5 
Kazemi et al., & 2021 Gabor Filter [ 43 ] 99.2 98.03 60 
Rodrigues et al., & 2017 GA [ 40 ] – – 54 
Rebelo et al., & 2022 Thresholding [ 31 ] 98.83 77.30 15.5 ± 2.42 
Priya and Sudha & 2019 Adaptive Fruitfly [ 44 ] 98.76 98.71 7.5 
Liu et al., & 2023 3D U-Net [ 49 ] – 70.97 6 
Albuquerque et al., & 2020 Clustering [ 42 ] 93.45 – 2.01 
Santos da Silva et al., & 2024 Pix2Pix Network [ 47 ] 98.33 98.73 1.44 
Wang et al., & 2025 BMT-U Net [ 48 ] 98.30 – 1.43 
Proposed SVM –ANN Ensemble 98.57 98 1.40 

∗ Entries are ordered from slowest to fastest reported processing times in the literature. 

 

 

 

 

Method validation 

This section compares the SVM + ANN ensemble with nine novel SVM-based ensembles to demonstrate its efficiency in EAT seg-
mentation. The performance is also evaluated against existing methods to highlight its accuracy and robustness. 

Performance of different ensemble combinations of SVM 

To assess the performance of ensemble ML algorithms for epicardial fat segmentation, the results of a stand-alone SVM were first
examined, which produced a classification accuracy of 94.20 %. Subsequently, ten distinct SVM ensemble configurations were inves- 
tigated. Combining SVM with Light GBM and GBM both resulted in an identical improvement in accuracy to 96.95 %, representing a
2.75 % increase compared to standalone SVM. Among the boosting algorithms, the SVM with the Cat Boost combination yielded the
7
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Fig. 5. The samples of (a)The input cardiac CT image, (b) Pre-processed cardiac CT image (c)The Labelled ground truth cardiac CT image, (d)The 
binary segmented image through the proposed SVM + ANN. 
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Fig. 6. Comparative analysis of the SVM-ANN ensemble with existing techniques (a) Analysis of accuracy (b) Analysis of Dice score. 

 

 

 

 

 

 

 

highest accuracy of 97.085 %. When SVM is combined with Random Forest, the accuracy increases to 98.13 %. It is also noted that
the accuracy increases to 97.84 % when the SVM with Random Forest combination is integrated with Cat Boost. The SVM with ANN
performed better than the other ensemble models, with a Dice score of 98 %, an accuracy of 98.57 %. This ensemble represents an
improvement of 4.37 % compared to the standalone SVM. A noteworthy observation is that all ensemble configurations yield higher
accuracy compared to the standalone SVM. The outcomes of ten distinct ensemble ML strategies are demonstrated in Table 3 , which
indicates that the optimal results are achieved through the integration of the SVM with ANN. 

Overall, SVM + ANN ensemble demonstrates an improvement in accuracy ranging from 0.44 % to 4.37 %, while the DSC improve-
ment falls within the range of 0.30 % to 3.7 % compared to other ensemble models. The segmentation outcomes of this optimal
combination are illustrated in Fig. 5 . 
9
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Performance comparison of SVM + ANN combination with existing methods 

Table 4 details the techniques that are reported in the literature for epicardial fatty tissue delineation using cardiac CT images and
compares them to the proposed better-performing SVM with the ANN ensemble technique. The SVM with ANN model demonstrates 
a high accuracy of 98.57 %, making it highly competitive among the listed models for epicardial fat segmentation. This ensemble
combination is only 0.63 % less accurate than cardiac fat segmentation using the Gabor filter, yet it is approximately 42.85 times
faster, with a negligible difference in the Dice score. Although the adaptive fruitfly algorithm achieves a marginally higher accuracy
of 0.19 %, the SVM with an ANN combination is about 5.35 times faster. 

While the pix2pix network is the fastest among existing models, segmenting a cardiac CT image in just 1.44 s, the proposed SVM
with the ANN method surpasses this speed by being approximately 1.02 times faster. On the other hand, the 3D U-Net model reported
a significantly lower Dice score of 70.97 and required 6 s per image for classification, making it approximately 4.3 times slower than
the SVM with ANN ensemble. 

The SVM with ANN model provides balanced and robust performance with high accuracy and Dice score and excels in classification
speed. This makes it particularly suitable for complex tasks like epicardial fat segmentation. Despite a minor trade-off in accuracy 
compared to the top-performing model, the significant improvement in speed positions the SVM with the ANN model as an efficient
and effective choice among these models. Figs. 6 a and 6 b provide graphical comparisons of the existing models with the proposed
one in terms of accuracy and Dice score, respectively. 

Key findings 

• The SVM + ANN ensemble achieved 98.57 % accuracy, improving by 4.37 % compared to standalone SVM, which had 94.20 %
accuracy. 

• The classification time was 1.40 s per image, making it 1.02 times faster than Pix2Pix Network, which required 1.44 s, and 1.028
to 1343.5 times faster than the techniques reported in literature. 

• The Gabor filter-based segmentation achieved 99.2 % accuracy, but it was 42.85 times slower, proving the proposed method offers
the best balance between accuracy and efficiency. 

Advantages of the proposed method 

The proposed approach offers several distinct strengths that contribute to its practical utility and technical effectiveness. By 
combining SVM with MLP through a soft voting mechanism, the method achieves greater classification consistency and improved 
segmentation accuracy compared to standalone classifiers. The utilization of GLCM texture attributes further refines the model’s 
capacity to distinguish between epicardial fat and other tissues by capturing meaningful spatial patterns that intensity values alone
may not reveal. 

Importantly, all ten ensemble configurations assessed in this work outperformed the baseline SVM model, underscoring the ad- 
vantage of incorporating ensemble learning for this application. In contrast to many deep learning-based methods, which often 
demand extensive computational resources and large annotated datasets, the proposed framework delivers comparable segmentation 
performance with a notably lower computational burden. Its lightweight structure and fast processing time make it well-suited for
integration into real-world clinical workflows, particularly in settings where rapid and reliable analysis is required without access to
high-end computing infrastructure. 

Limitations 

Despite its strong performance, the proposed approach has certain limitations. The dataset size was limited to 20 patients with
878 images, which may affect generalizability. Although ensemble models are designed for robustness, further multi-center validation 
across diverse populations is required. The manual hyperparameter tuning for SVM and ANN introduces additional computational 
effort, necessitating optimization techniques. Additionally, the method has only been validated on CT images and requires testing on
MRI and ultrasound to confirm its adaptability across different imaging modalities. 
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