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Abstract

Early detection of power transformer fault is important because it can reduce the mainte-

nance cost of the transformer and it can ensure continuous electricity supply in power sys-

tems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power

transformer fault type but utilisation of artificial intelligence method with optimisation meth-

ods has shown convincing results. In this work, a hybrid support vector machine (SVM) with

modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to deter-

mine the transformer fault type. The superiority of the modified PSO technique with SVM

was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM

and previous reported works. Data reduction was also applied using stepwise regression

prior to the training process of SVM to reduce the training time. It was found that the pro-

posed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient

(TVAC) technique results in the highest correct identification percentage of faults in a power

transformer compared to other PSO algorithms. Thus, the proposed technique can be one

of the potential solutions to identify the transformer fault type based on DGA data on site.

Introduction

Power transformer is a vital component in power system networks. Failure of power trans-

formers can interrupt power system network operation. Thus, any fault in a transformer

should be detected early. Electrical fault in a transformer occurs at high voltage and will even-

tually cause physical damage to the conductor and insulator of the transformer, leading to the

reduction of power quality, blackouts and fire, causing a substantial propriety loss. Damage in

a transformer is difficult to be repaired and the transformer replacement is very costly and

requires a lot of resources. Therefore, early detection of transformer fault is imperative in

the operation and maintenance process of power system networks. This is to ensure correct

transformer oil maintenance, cost reduction and good quality of electricity supply to power

systems.
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Exposure to electrical and thermal stress causes molecules of hydrocarbon of the mineral

oil decomposition and hydrogen and carbon are formed. Under high voltage, these gases can

react with each other to form various gases such as ethylene (C2H4), methane (CH4), acetylene

(C2H2), hydrogen (H2), and ethane (C2H6). Previous studies have revealed that as temperature

increases, gases are generated in the order of H2, CH4, C2H6, C2H4 and C2H2 [1]. Overheating

and corona typically lead to the insulation material decomposition [2]. Decomposition of insu-

lation materials such as paper and cellulose in a transformer can be analysed according to the

amount of carbon dioxide (CO2) and carbon monoxide (CO) present in the transformer oil.

This is due to depolymerisation causes breaking of glucose ring chains in the paper. CO2, CO

and H2O are emitted due to the presence of oxygen atoms in the cellulose materials.

The existing methods of detecting the incipient fault in transformer oil are IEC ratio

method, Rogers ratio method, key gas method and Doernenburg ratio method. However, gas

ratio usage is based on experience through correlating amount of gas concentration and the

type of fault. Each of this method has disadvantages, rigorous borderline and hidden relation-

ship [3]. For example, key gas method requires a gas of significant amount to exist in the oil

sample and is unable to give a conclusion in some cases. Thus, improvement on the accuracy

of the existing method to identify the fault type in transformer oil is important. Utilisation of

artificial intelligence and optimisation methods has shown convincing results in power trans-

former modelling [4, 5]. Artificial intelligence has also been widely applied in transformer

fault diagnosis and in power systems [6–9].

In An-xin Zhao’s work [10], four combustible gases and six combination of gas ratios,

which correlate to six fault types were considered. The accuracy rates were calculated for 117

cases by different methods. From this work, the best methods of thermal and electrical fault

diagnosis are found to be Duval Triangle and KimSW methods [11]. Each method achieves

accuracy higher than 55%. However, the accuracy according to the total number of cases

shows various results. Since there are many cases undistinguishable, the accuracy reduces less

than 55% for Roger and Doernenburg ratio methods.

Based on the work in [12], rules of IEC Code and Roger’s ratio were modified to enhance

the accuracy of the current version based on 320 samples with its actual fault type. The samples

were categorised into six fault types, which are high thermal fault (Tl), low thermal fault,

medium thermal fault (T2), low energy discharge (Dl), high energy discharge (D2) and partial

discharge (PD). The overall accuracy of the modified Roger’s four ratios increases from

45.62% to 75.62%. For IEC Code method modification, significant variation was observed

after modification for all transformer fault types, where the overall accuracy increases from

62.81% to 79.38%. Hence, the new version of Roger’s four ratios and IEC Standard Code meth-

ods have the ability to identify the transformer fault with higher accuracy than the unmodified

version.

In [13], genetic algorithm (GA) and support vector machine (SVMG) were employed on

power transformer fault identification, where GA was applied to optimise SVM parameters.

SVM classifiers were employed to identify the no-fault state, high-energy discharge, low-

energy discharge, high-temperature overheating, low- and mid-temperature overheating.

From the results obtained, it was found that SVMG achieves better diagnosis results compared

to the IEC method, back propagation neural network and SVM alone. Other works have also

shown that optimisation method can improve the performance of the system significantly [14,

15].

PSO and SVM were employed to predict dissolved gas contents in power transformers [16].

PSO was used to optimise the SVM parameters to avoid under or over-fitting of the SVM

model. It was found that the proposed method achieves better forecasting accuracy than grey

model and artificial neural network (ANN) under small number of samples. In [17], SVM was
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employed in transformer fault diagnosis on DGA data. One-against-all, one-against-one and

binary decision tree were applied. From the results, the highest accuracy was achieved by SVM

one-against-one method, which is 92%.

Identification of transformer fault was also proposed using different PSO and ANN tech-

niques [18]. The PSO optimisation methods employed were traditional PSO, evolutionary

PSO and iteration PSO. From the fault identification algorithm, ANN-EPSO results in the

highest correct identification percentage of transformer fault than the previously reported

works and existing DGA methods. In [19], ANN was employed to classify transformer condi-

tion based 3 combustible gas ratios. Three ratios of combustible gases were applied as the

input. From this method, the validation and test set errors have the same characteristics and

no overfitting.

Although SVM has been applied widely in classification of gas ratio, limited amount of

work has been reported on transformer fault identification using SVM combined with various

optimisation techniques. It is believed that there is room for improvement in combining SVM

with various optimisation techniques in identification of power transformer faults. Thus, this

work proposes a hybrid SVM with different particle swarm optimisation (PSO) techniques to

identify the transformer faults. Feature selection using stepwise regression was also applied

prior to the SVM training for data reduction. This was done to enable only meaningful sets of

data are used in the training of SVM. The effectiveness of each method was evaluated by com-

paring the results with the actual fault and existing methods, unoptimised SVM and previous

works using ANN. A better result of the proposed method than the previously reported work

will indicate that this method can be an alternative solution for transformer fault diagnosis on

site.

This work is organised as follows. Section 1 is the introduction of this work, which includes

problem statement and review of published related works. Section 2 describes the support vec-

tor machine and feature selection method used in this work. Section 3 explains different types

of particle swarm optimisation (PSO) techniques. In Section 4, all findings and analysis are

presented. Finally, Section 5 is the conclusions, which presents a summary of the key findings.

Intelligent classifier and feature selection

Support vector machine (SVM)

SVM was introduced by Vapnik and Chervonenkis, which was derived from statistical learn-

ing theory [20–22]. SVM is useful in dealing with non-linear separable cases [23]. SVM is a

powerful technique used for data classification and data prediction [24]. The training of SVM

was performed where the classified vector dimension has no distinct influence on the SVM

performance. Thus, SVM has the capability of handling a very large feature space, giving SVM

higher efficiency compared to other classification techniques especially when dealing with

large amount of classification data. Since the past, SVM has been employed widely to solve

many practical problems in various fields [25–28]. The flexibility of SVM makes it beneficial in

transformer fault identification due to the number of features that forms the fault diagnosis

basis is not limited.

In this work, radial basis function (RBF) kernel was employed. Two parameters in SVM

were optimised by different PSO algorithms in this work, σ and c. σ is a RBF kernel parameter

while c represents the misclassification parameter and determines the trade-off between the

size and margin of slack variables [29]. A large c means a higher penalty for non-separable

points. A small c is an indication that an under-fit process is occurring. Both c and σ are impor-

tant as the combination of these two parameters will influence the percentage of correct fault

identification by SVM.

Identification of transformer fault based on DGA using hybrid SVM-MEPSO
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Stepwise regression

Feature selection enables the selection of significant data for training and testing of transformer

fault type using SVM. This technique prevents the use of a large amount of redundant informa-

tion and insignificant features in the dataset, which often leads to greater complexity, longer

run time and lower accuracy [30]. In this work, stepwise regression technique was employed to

simplify the model to be interpreted by the SVM and to reduce the chance of overfitting, giving

a shorter run time while maintaining high percentage of correct fault identification.

Stepwise regression is a regression-based algorithm with automatic filtering features [31]. It

is utilised to select the important features of the training and testing dataset [32]. Hence, the

most significant statistical features are selected by the algorithm. Stepwise regression analyses

the significance of the model in term of statistical using partial F-statistic. Enabling users to

determine the type of gases has the greatest influence on the fault type identification.

In this work, the forward selection characteristic of stepwise regression was utilised. Each

term was removed from or added to the input feature vector with reference to the p-value of

exiting or entering input data. Null-hypothesis test probability is represented by p-value with α
tolerance for a term addition and β tolerance for a term removal. In this work, each input data

represents a type of gas obtained from DGA. The input data were selected based on the p-value
resulted from stepwise regression.

Input and output data for SVM classifier

Different PSO techniques were employed to optimise the SVM to identify transformer fault

type using DGA data obtained from an electrical utility in Malaysia. The parameters of each

method which give the highest percentage of correct fault identification and yield the shortest

test time were selected for the optimization objective. Feature selection of training and testing

data were carried out using stepwise regression to reduce the run time while maintaining a

high percentage of correct fault identification.

Numbers of run were tested to examine the performance of each method. The results were

compared between different PSO methods with the existing DGA method, which is IEC 60599

method. 400 data from the actual site diagnosis were used in this work. The raw data were clas-

sified into 64 cases of low and high intensity discharge each, 72 cases of thermal fault and 200

cases without fault. Table 1 shows the input (dissolved gas) and output data (fault type) used

for SVM training and testing. Seventy percent of the overall data was used to train the SVM

while for testing purpose, the remaining data were used.

Particle swarm optimisation techniques

Conventional PSO

PSO is an evolutionary computational algorithm to solve non-linear optimisation problems

[30, 33–36]. The advantage of PSO is the PSO parameters can be empirically adjusted to

Table 1. Data for input and output data for SVM.

Input data (dissolved gas) Output data (fault type)

Concentration of H2 (Hydrogen)

Concentration of C2H2 (Acetylene) Electrical Fault–Low energy

Concentration of CH4 (Methane) Electrical Fault–High energy

Concentration of CO (Carbon Monoxide) Thermal Fault

Concentration of C2H6 (Ethane) No fault

Concentration of C2H4 (Ethylene)

https://doi.org/10.1371/journal.pone.0191366.t001
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optimise its performance for the best results. Fig 1 shows a PSO algorithm flowchart to opti-

mise the performance of SVM. First, swarms were initialised randomly with velocity and initial

position of every particle. The swarms are the SVM parameters, c and σ. Then, the fitness for

every particle, which is the accuracy of SVM, was calculated with the initial position and veloc-

ity. After that, the fitness of every each particle was compared with its personal best pbid
k.

When the new fitness is better than pbid
k, it is set as pbid

k and Xid
k or the particle’s current posi-

tion. The overall best fitness is taken as the global best gbd
k. Next, the updated position and

velocity of every particle were calculated using

Xid
kþ1 ¼ Xid

k þ Vid
kþ1 ð1Þ

Vid
kþ1 ¼ wVid

k þ c2 r2ðgbd
k � Xid

kÞ þ c1 r1ðpbid
k � Xid

kÞ ð2Þ

where Xid
k+1 is the new position of particle i, Xid

k is the previous position of particle i at k-th

iteration, Vid
k+1 is the new particle i velocity in d dimension, Vid

k is particle i velocity at itera-

tion k, r2 and r1 are randomly generated number between 0 and 1 and c2 and c1 are the

Fig 1. Flowchart of SVM-PSO algorithm.

https://doi.org/10.1371/journal.pone.0191366.g001
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acceleration factors. In this work, the domains of Xi are two SVM parameters, c and σ. The

inertia weight, w is determined using

w ¼ wmax � k
wmax � wmin

kmax

� �

ð3Þ

where kmax is the final iteration, wmin is the minimum weight and wmax is the maximum

weight. If any particle moves out of the bounds, its position is set to the upper or lower bound-

ary. The algorithm was halted when the final number of iteration was reached.

Iteration particle swarm optimisation (IPSO)

IPSO incorporates the iteration best, Ib in the existing PSO algorithm. Ib is the optimum value

of fitness function by a particle in an iteration. IPSO improves the quality of the solutions and

efficiency of the existing PSO [37]. The new velocity equation for each particle in IPSO is given

by

Vid
kþ1 ¼ wVid

k þ c3 r3ðIbd
k � Xid

kÞ þ c2 r2ðgbid
k � Xid

kÞ þ c1 r1ðpbid
k � Xid

kÞ ð4Þ

where Ibd
k is the best fitness obtained by any particle at k-th iteration and c3 is the stochastic

acceleration weight to attract every particle towards Ibd
k. c3 is calculated using

c3 ¼ c1½1 � expð� kc1Þ� ð5Þ

Evolutionary particle swarm optimisation (EPSO)

EPSO is a meta-heuristic algorithm that combines the concept of PSO and Evolution Strategies

(ES). This algorithm was introduced by Miranda [38]. EPSO introduces a mutation operation

into PSO, causing each particle to have its weight mutated. EPSO provides a procedure of

explicit selection with self-adapting properties in its parameters. This allows the solution with

superior characteristic to be passed down from a generation to the next generation. Hence, the

equation of the updated velocity is modified to

Vid
kþ1 ¼ wi0

�Vid
k þ wi1

�ðpbid
k � Xid

kÞ þ wi2
�ðgbid

� � Xid
kÞ ð6Þ

where wi0
�, wi1

� and wi2
� are the mutated weight and gbid

� is the mutated global best position.

gbid
�, wi0

�, wi1
� and wi2

� are calculated using

gbid
� ¼ gbid

k þ t0N ð7Þ

wij
� ¼ wij þ tN ð8Þ

where j = 0, 1 and 2. N is a random number between 0 and 1 with Gaussian distribution, vari-

ance equals to 1 and zero mean. τ is the learning dispersion parameter and τ’ is the noise dis-

persion parameter. τ and τ’ are the learning parameters introduced in EPSO algorithm to

facilitate the search for the optimum values for the desired parameters.

Modified PSO (MPSO)-Time varying acceleration coefficient (TVAC)

In MPSO-TVAC, the main function of this technique is to avoid search form converging pre-

maturely and to enhance the convergence rate to the optimum global solution at the later

search stage [39–41]. A new term rb is added into the velocity equation of PSO to improve the

PSO robustness by providing additional information for every particle, where rb is selected

Identification of transformer fault based on DGA using hybrid SVM-MEPSO
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from other particles’ pb randomly. Hence, the premature convergence can be avoided and par-

ticles’ movement is diversified. The new updated velocity for MPSO-TVAC is given by

Vid
kþ1 ¼ wVid

k þ c3 r3ðrbid
k � Xid

kÞ þ c2 r2ðgbid
k � Xid

kÞ þ c1 r1ðpbid
k � Xid

kÞ ð9Þ

where

c1 ¼ c1i þ ðk=kmaxÞðc1f � c1iÞ ð10Þ

c2 ¼ c2i þ ðk=kmaxÞðc2f � c2iÞ ð11Þ

c3 ¼ c1½1 � expð� c2kÞ� ð12Þ

c3 is the TVAC for rbest, c2f and c2i are the final and initial values of the social coefficient

respectively, c2 is the social coefficient and c1 is the cognitive coefficient. c1f and c1i are the final

and initial cognitive coefficient values respectively.

Modified EPSO (MEPSO)-TVAC

By introducing time varying acceleration coefficient (TVAC), the updated velocity for EPSO

technique is improved. The updated velocity equation is obtained by

Vid
kþ1 ¼ wi0

�Vid
k þ wi1

�ðpbid
k � Xid

kÞ þ wi2
�ðgbid

� � Xid
kÞ þ wi3

�ðrbid
� � Xid

kÞ ð13Þ

where

wi0
� ¼ wþ Nt ð14Þ

wi1
� ¼ c1 þ Nt ð15Þ

wi2
� ¼ c2 þ Nt ð16Þ

wi3
� ¼ c3 þ Nt ð17Þ

wi1
�, wi2

� and wi3
� are the mutated weight.

Results and discussion

Optimisation of SVM without stepwise regression

Table 2 shows the results obtained using different PSO algorithms from SVM that have been

performed in this work. For each algorithm, different combinations of PSO parameters were

tested, which include varying c1, c2, wmax and wmin to obtain the best accuracy results of SVM.

Each combination of c1 and c2 were varied from 0.1 to 2.0 with a step size of 0.1. Each test was

repeated for 100 times to obtain the average result. The population size was set to 50. From

Table 2, it can be seen that each algorithm yields different parameters, average SVM accuracy

and run time, number of convergence at first iteration and best c and σ. The accuracy of the

SVM was calculated based on the percentage of correct fault type identification.

From the results obtained, the proposed SVM-MEPSO-TVAC technique yields the highest

accuracy with an average accuracy of 99.50% and with an average run time of 90.8578s. It is

followed by SVM-MPSO-TVAC with 99.10% accuracy, SVM-EPSO with 99.01% accuracy,

SVM-IPSO with 99.00% accuracy and finally SVM-PSO with 98.88% accuracy. From 100 runs,

the lowest number of run which converges at first iteration was achieved by SVM-PSO, which
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is 27 or 27% while the highest number of run which converges at first iteration is from

SVM-MEPSO-TVAC, with 93 runs or 93%. When the percentage of convergence at first itera-

tion is higher, this indicates that the algorithm can be run with less maximum iteration, which

will reduce its run time. The shortest average run time is SVM-PSO while the longest average

run time is SVM-MEPSO-TVAC.

The main advantages of PSO are simple, computation efficient and easy to be implemented.

This is why the average run time is the fastest, as shown in Table 2. In PSO, the search towards

the optimal solution of the parameter is guided by 2 stochastic acceleration components, the

social and cognitive components. Proper setting of these components is vital to yield accurate

and efficient search towards the optimum solution. If the cognitive component is higher than

the social component, of individuals will be wandering excessively through the searching

space. However, if the social component is higher than the cognitive component, particles will

rush toward a local optimum prematurely. Hence, improvement on PSO algorithm, such as

allowing the automated search of the stochastic acceleration term weighting and introduction

of mutation feature has shown enhancement on the average accuracy of the SVM.

Optimisation of SVM with stepwise regression

Stepwise regression was applied on the input and output data to select gases obtained from

DGA with the most dominant characteristic in transformer fault identification. The results

obtained after stepwise regression are shown in Table 3. It can be seen that the data used for

SVM training and testing displays similar characteristics. The p-value tests the null hypothesis,

which the coefficient equals to zero. A predictor with low p-value as displayed by CO with a

Table 3. Result for feature selection using stepwise regression.

Type of gas Training data Testing data

p-value Regression coefficient

(×10−3)

Standard error (×10−3) p-value Regression coefficient

(×10−3)

Standard error (×10−3)

Hydrogen,H2 5.6278×10−21 0.1692 0.014007 5.3723×10−21 0.1684 0.013927

Acetylene,C2H2 0.2335 -0.0266 0.022164 0.2251 -0.0269 0.022028

Methane, CH4 0.1682 0.0016 0.001118 0.1769 0.0016 0.001504

Carbon monoxide,

CO

1.0214×10−36 0.0071 0.000349 1.0979×10−36 0.0071 0.000349

Ethane, C2H6 0.0397 -0.0155 0.007428 0.0377 -0.0156 0.007420

Ethylene, C2H4 0.9550 -0.0005 0.009492 0.9325 -0.0008 0.009491

https://doi.org/10.1371/journal.pone.0191366.t003

Table 2. Results using different PSO algorithms for SVM without stepwise regression.

Algorithm SVM-PSO SVM-IPSO SVM-EPSO SVM-MPSO-TVAC SVM-MEPSO-TVAC

Best parameters c1 = 0.6 c1 = 1.5 c1 = 1.3

c2 = 0.6 c2 = 1.7 c2 = 1.9 wmax = 0.9 wmax = 0.9

wmax = 0.9 wmax = 0.9 wmax = 0.9 wmin = 0.4 wmin = 0.4

wmin = 0.4 wmin = 0.4 wmin = 0.4

Average accuracy (%) 98.88 99.00 99.01 99.10 99.50

Average run time (s) 74.3678 75.2416 80.9249 88.5753 90.8578

Number of convergence at first iteration 27 / 100 75 / 100 83 / 100 91 / 100 93 / 100

(27%) (75%) (83%) (91%) (93%)

Best c 1.5741 1.3692 1.6083 1.5810 1.6261

Best σ 0.4637 0.5345 0.3399 0.3896 0.4738

https://doi.org/10.1371/journal.pone.0191366.t002

Identification of transformer fault based on DGA using hybrid SVM-MEPSO

PLOS ONE | https://doi.org/10.1371/journal.pone.0191366 January 25, 2018 8 / 15

https://doi.org/10.1371/journal.pone.0191366.t003
https://doi.org/10.1371/journal.pone.0191366.t002
https://doi.org/10.1371/journal.pone.0191366


value of 1.0214×10−36 is a meaningful addition to the model of the selected features. A smaller

p-value possessed by the gas reflects that the DGA data for that particular gas has a stronger

association with the transformer fault type. In this work, stepwise regression shows that the

type of gas in the order of decreasing significance towards the identification of transformer

fault type for training data and testing data is CO, H2, C2H6, CH4, C2H2 and finally C2H4.

Standard error is important to access the strength of the relationship between the model

made up of selected features and the response variable. Also, standard error accesses the valid-

ity of the p-values as it represents the distance that the observed values fall from the regression

line in mathematical form. A smaller standard error equates a better response as the model

obtained gives observations of the response variable, which is the fault type closer to the fitness

line. From Table 3, it is observed that there is a small value of standard error with values less

than 10−4 for all types of gases in training and testing data. With p-value and standard error

showing small values, it can be deduced that the selected features have a strong relationship

with the response variables, where smaller values display a stronger relationship.

The regression coefficient in Table 3 shows the change of mean in the response parameter

for a unit of change in the specific predictor parameter while the other predictors are kept con-

stant. For example, in training data, the coefficient for H2 is 0.1692×10−3. This indicates that

for every unit addition in the concentration of H2, it can be expected that the overall result of

the response variable increases by 0.1692×10−3.

Based on the stepwise regression results as shown in Table 3, for 3 gas input data, H2, CO

and C2H6 were used as the input data for testing and training of SVM. These 3 gases are ranked

at the three lowest p-values. For 4 gas input, H2, CO, CH4 and C2H6 were taken as the input

gas while for 5 gas input, H2, CO, CH4, C2H2 and C2H6 were taken as the input gas. Table 4

shows the type of gases for training and testing data according to stepwise regression for differ-

ent number of gas input. By decreasing the number of input data applied to SVM, the size of

the kernel matrix and complexity of the computing can be reduced, hence reducing the test

time.

Table 5 shows results using MEPSO-TVAC and MPSO-TVAC algorithms on SVM by

using different number of gas input for 100 runs. These two algorithms were selected to be

tested due to their average SVM accuracy is two highest values according to Table 2. From

Table 5, when 3 gas input was used, the accuracy for SVM-MPSO-TVAC and SVM-MEP-

SO-TVAC is 99.02% and 99.45% each with average run time of 53.1552s and 55.0159s respec-

tively. The number of run which converges at first iteration is 97 and 100 out of 99 for

SVM-MPSO-TVAC and SVM-MEPSO-TVAC respectively. Comparing with 6 gas input data,

the average run time for SVM-MPSO-TVAC and SVM-MEPSO-TVAC is 88.5753s and

90.8578s respectively but the average SVM accuracy is 99.10% and 99.50% for SVM-MPSO-T-

VAC and SVM-MEPSO-TVAC respectively.

Table 4. Type of gases for training and testing data according to stepwise regression (
p

means included, X means excluded).

Type of gas Training data Testing data

Number of gas input Number of gas input

n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6

Hydrogen,H2

p p p p p p p p

Acetylene,C2H2 X X
p p

X X
p p

Methane, CH4 X
p p p

X
p p p

Carbon monoxide,CO
p p p p p p p p

Ethane, C2H6

p p p p p p p p

Ethylene, C2H4 X X X
p

X X X
p

https://doi.org/10.1371/journal.pone.0191366.t004
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Referring to Table 5, when the number of gas input used is higher, the percentage of correct

fault detection (average SVM accuracy) improves with a small percentage only. However, it is

obvious that the average run time increases significantly when the number of gas input used is

higher due to more data are used. The number of convergence at first iteration decreases

slightly when more gas input is used because the number of particles in PSO algorithm is

higher. Therefore, this shows that using data reduction by stepwise regression for SVM train-

ing and testing data, the run time can be reduced significantly without affecting the accuracy

results of the SVM.

From Table 5, comparison between SVM-MPSO-TVAC and SVM-MEPSO-TVAC shows

that SVM-MEPSO-TVAC has higher number of convergence at first iteration and average

SVM accuracy than SVM-MPSO-TVAC for different number of gas input data. However, the

average run time slightly longer for SVM-MEPSO-TVAC compared to SVM-MPSO-TVAC

when different number of gas input was used. Mutation in the particle weight is a critical

improvement in SVM-MEPSO-TVAC over SVM-MPSO-TVAC.

Comparison with the previous works

The proposed hybrid SVM with various PSO techniques employed in this work were com-

pared with the existing works in literature on the transformer fault identification according to

dissolved gas analysis data. Table 6 shows the comparison between the proposed methods and

previously developed works. It is observed that the proposed SVM-MEPSO-TVAC method

results in the highest accuracy with 99.50% compared to other reported existing works.

Referring to Table 6, the IEC method yields only 75.00% accuracy. IEC method is based on

the existing dissolved gas analysis (DGA) technique, which utilises three different ratios of the

gas. These include CH4/H2, C2H2/C2H4 and C2H4/C2H6. This method does not depend on

specific gas concentrations to exist in the transformer but it is used only when the normal lim-

its of the individual gases have been exceeded. Hence, it is not suitable to be used in all condi-

tion of gas concentration. This is why the accuracy obtained using the IEC method in this

work is low.

Table 6. Comparison between different methods.

Method Correct fault identification (%)

IEC method 75.00

Unoptimised SVM 97.00

Proposed SVM-PSO 98.88

Proposed SVM-IPSO 99.00

Proposed SVM-EPSO 99.01

Proposed SVM-MPSO-TVAC 99.10

Proposed SVM-MEPSO-TVAC 99.50

ANN-PSO [18] 96.00

ANN-IPSO [18] 97.00

ANN-EPSO [18] 98.00

Self-organizing polynomial network (SOPN) [42] 97.68

Genetic wavelets network (GWN) [43] 96.19

Support Vector Machine (SVM) [44] 92.00

Genetic programming-k-neural network (GP-KNN) [45] 92.11

Rough Set Theory [46] 81.25

Immune Neural Network [47] 86.30

Evolutionary programming-artificial neural network (EPANN) [48] 95.00

Artificial neural network-expert system (ANNEPS) [49] 90.95

https://doi.org/10.1371/journal.pone.0191366.t006
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The accuracy of the unoptimised SVM, proposed SVM-PSO, SVM-IPSO, SVM-EPSO and

SVM-MPSO-TVAC is 97.00%, 98.88%, 99.00%, 99.01% and 99.10% respectively. These are the

results obtained from this work. Comparing these results with the IEC method, it shows a sig-

nificant improvement in the percentage of correct prediction of the fault type, which is over

20%. Referring to results reported in [18], which applied artificial neural network (ANN) as

the classifier, the accuracy results as in Table 6 show that the proposed methods using SVM is

generally higher than using ANN. The accuracy result using ANN-PSO, ANN-IPSO and

ANN-EPSO is 96.00%, 97.00% and 98.00% respectively.

SVM is a supervised learning machine, which uses mainly the kernel method. SVM locates

the decision function from a set of labelled training data. The decision function is made by

hyperplane, which segregates the training data into two groups. The solution of the classifica-

tion learning problem is obtained in terms of a subset of training data, also known as support

vectors. An optimal hyperplane will be selected from all the separating hyperplanes, whereby

the margin of separation between itself and any training point is of maximum value. This is

why SVM yields better results than ANN and the IEC method. Therefore, referring to the

results shown in Table 6, it has been demonstrated that the hybrid SVM with MEPSO-TVAC

algorithm proposed in this work can be an alternative solution for diagnosis of transformer

fault type based on DGA in industrial practice.

Conclusions

In this work, hybrid support vector machine (SVM) with modified particle swarm optimisa-

tion (PSO) algorithms has been successfully proposed in optimising the SVM performance. In

the proposed method, SVM was successfully employed to determine the transformer fault type

and different algorithms of PSO were employed to optimise the SVM parameters. From results

comparison, the proposed hybrid SVM with modified EPSO-Time Varying Acceleration Coef-

ficient (TVAC) yields the best performance in terms of correct identification percentage of

transformer fault compared to the current DGA method, unoptimised SVM and the reported

existing works. After feature selection using stepwise regression was applied, it was found that

there is a significant reduction in the training and testing time but the accuracy of SVM-MEP-

SO-TVAC is still high when less number of gas input was used. The proposed SVM-MEP-

SO-TVAC also achieves highest number of convergence at first iteration than other SVM-PSO

algorithms. Hence, the proposed SVM-MEPSO-TVAC method combined with feature selec-

tion using stepwise regression can be proposed as an alternative solution for power trans-

former diagnosis.
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